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Abstract

Background: TP53 mutations are rarely identified in low grade endometrioid carcinoma of the endometrium, and
their pathogenic significance in such tumors is evidenced by the fact that TP53 aberrations have been associated
with reduced recurrence-free survival in this subset of tumors. However, TP53 aberrations may not always represent
a driving molecular event in a given endometrial cancer with a mutation. In this case study, the immunophenotype
of a distinctive low grade endometrioid adenocarcinoma with an unusual pattern of lymph node metastases is
used to explore the possible roles for underlying TP53-related molecular events in its pathogenesis.

Case presentation: A low grade endometrioid carcinoma, 9 cm in greatest dimension, with 35% invasion of
the myometrial wall thickness, focal lymphovascular invasion, and metastases to 2 of 16 pelvic lymph nodes, was
diagnosed in a 52-year-old woman. The endometrial tumor showed a p53-mutation (aberrant)-type
immunohistochemical pattern in 40% of the tumor, but the rest of the tumor, as well as the foci of myometrial and
lymphovascular invasion, were p53-wild type. Both lymph nodes with metastatic disease showed a distinct biphasic
pattern, comprised of both p53-wild type and p53-aberrant areas in tumoral foci that were spatially apposed but
not intermixed. Most p53-aberrant areas (at both the lymph nodes and the endometrium) showed a higher mitotic
index and increased atypia as compared to the p53-wild type areas; both showed squamous differentiation. The
p53-aberrant areas at both locations were also p16-diffusely positive, vimentin-positive, and estrogen/progesterone
receptor-positive, whereas the p53-wild type areas showed an identical immunophenotype with the exception of
being p16-mosaic positive. All components of the tumor at both the primary and metastatic sites showed loss of
MSH2 and MSH6 and retained MLH/PMS2 expression.
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Conclusions: The presence of p53-mutant and wild-type areas in multiple lymph nodes, coupled with the
absence of a p53-aberrant immunophenotype in the myometrium-invasive or lymphovascular-invasive portions
of the tumor, argues against the possibility that the TP53 mutation in this tumor is a driving event in its
pathogenesis, at least regarding the metastatic process. This case illustrates how routine immunohistochemistry can
provide important insights into underlying molecular events in cancers, exemplifies an uncommon co-existence of
DNA mismatch repair protein deficiency and p53-aberrant immunophenotype in low-grade endometrioid carcinoma,
illustrates morphologic differences between p53-aberrant and p53-wild type areas within in the same tumor, and is an
exemplar of the emerging theory that lymph node metastases of endometrial cancer may be comprised of different
subclones of the primary tumor.
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Background
The TP53 gene, which is located on 17p13.1 [1], encodes
the p53 protein and is one of the most frequently
mutated genes in human cancers [2, 3]. p53 occupies a
central position in a vast, likely integrated but
incompletely understood network of cellular signaling
that essentially maintains the “genomic health” [3, 4].
Accordingly, inactivation of p53 may result in a cellular
environment that is conducive to or permissive of onco-
genesis [3, 4]. Inactivation of p53 may occur through a
variety of mechanisms, including mutation of the p53
gene, binding to viral proteins, expansion of its negative
regulators, or other alterations of genes and proteins
that are directly or indirectly involved in p53-mediated
signaling [4, 5]. The p53 content of cells is generally kept
at low levels through an ubiquitin-effectuated proteolytic
process that is primarily mediated by the protein
MDM2, itself a p53 target, thereby creating a negative
feedback loop [4–6]. Mutant forms of p53, in contrast,
are stable and accumulate to high levels intracellularly.
This has traditionally been attributed to the inability of
the p53 mutant protein to optimally transactivate its
negative regulator (MDM2), but a comprehensive
picture of all contributing factors to the process remain
unclear [4–6]. p53 function is inactivated in most human
cancers through missense or nonsense/frameshift muta-
tions of the gene [7], which respectively correspond to
the protein “overexpression” and “null” patterns of aber-
rant (i.e. non wild type) p53 immunoreactivity [8].
Among the histotypes of endometrial carcinoma, p53 ab-

errations represent the most frequently identified recurring
molecular event in serous carcinomas [9, 10] and carcino-
sarcomas [11, 12] but have also been identified in significant
subsets of high grade endometrioid [13], clear cell [14] and
dedifferentiated/undifferentiated carcinomas [15, 16]. Nu-
merous reports have found p53 aberrations to be a signifi-
cantly negative prognostic factor in endometrial carcinomas
in general, although how independent this significance is of
the necessarily dependent variables of tumor histotype and
tumor grade has been a subject of some debate [17–22].

p53 aberrations are very rarely identified in low grade endo-
metrioid carcinomas and are occasionally identified in
intermediate-grade carcinomas. In the TCGA (The Cancer
Genome Atlas) dataset, 0 and 11.8% of grades 1 and 2 endo-
metrioid carcinomas had a TP53 mutation [9]. Recently,
Kurnit et al. examined 125 cases of grades 1 and 2, stage 1
and II endometrioid carcinomas by next generation sequen-
cing, and found TP53 mutations, which were present in 9%
of cases, to be associated with worse recurrence-free survival
on multivariate analysis [22]. This suggests that the “acquisi-
tion” of a TP53 mutation in a low-stage, low-grade endome-
trioid carcinoma is of adverse prognostic significance and is
accordingly a significant event in its pathogenesis.
Only 7% of endometrial carcinomas show a DNA mis-

match repair protein (MMR) deficiency that is unrelated
to MLH1 promoter hypermethylation [23], and as was
previously indicated, TP53 mutations are uncommon in
low grade endometrioid carcinoma [9]. The combin-
ation, i.e. TP53 mutations in a low grade endometrioid
carcinoma with MMR deficiency unrelated to promoter
hypermethylation, is distinctly uncommon. In this re-
port, the authors describe one such case - a low grade
endometrioid carcinoma of the endometrium showing a
p53-aberrant immunophenotype in one portion of the
tumor, MSH2 and MSH6 loss in all components, and a
distinctive pattern of lymph node metastases in multiple
lymph nodes comprised of both the p53 wild-type and
p53-aberrant components. The unique aspects of this
case are used to explore the role of TP53 mutation in
the case, its implications on the subclone theory of
tumor metastases, and how immunohistochemistry may
potentially provide valuable insights into these events

Case presentation
A 52-year-old woman, gravida-3, para-3, 3 years post-
menopausal, presented with post-menopausal bleeding of
“several weeks” duration. She ultimately underwent a bi-
opsy on which a diagnosis of endometrioid adenocarcin-
oma, FIGO grade 1 was rendered. Imaging showed a left
adnexal mass whose features were equivocal regarding
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benignancy. A decision was made to perform a total
hysterectomy and bilateral salpingo-oophorectomy. An in-
traoperative pathologic assessment was performed, which
showed the adnexal mass to be benign but the endomet-
rial mass to be of large volume (a 9 × 6 cm soft polypoid
mass that occupied the entirety of the uterine cavity) with
myometrial invasion and lower uterine segment involve-
ment. A bilateral pelvic lymphadenectomy was also per-
formed. Microscopic examination of the permanent
sections of the case showed a grade 1 endometrioid car-
cinoma of the endometrium, with 35% invasion of the
myometrial wall thickness, focal lymphovascular invasion,
and metastases to 2 of 16 pelvic lymph nodes (Figs. 1 and
2). Approximately 40% of the tumor was comprised of col-
umnar glands showing more nuclear stratification, more
nuclear enlargement, and more prominent nucleolome-
galy than the background glands (atypical areas). These
areas also showed comparatively increased mitotic indices
(average 17 MF/10 HPF) than the background glands
(average 9 MF/10 HPF), from which they were spatially
distinct. Immunohistochemically, the atypical areas
showed a p53 aberrant immunophenotype, characterized

by diffuse and marked nuclear positivity for p53 in more
than 90% of lesional nuclei. The p53-aberrant areas were
also p16-diffusely positive, vimentin-positive, Napsin A-
negative, estrogen receptor positive, and progesterone
receptor-positive (Fig. 1). The remainder of the tumor
(60% of tumoral volume) displayed a p53-wild type immu-
nophenotype, and were p16-mosaic positive, vimentin-
positive, Napsin A-negative, estrogen receptor positive,
and progesterone receptor-positive. As such, the p53-
aberrant and p53-wild type areas showed an identical
immunophenotype with the exception of the latter being
p16-mosaic positive. Foci of lymphovascular invasion and
myometrial invasion showed a p53-wild type immunophe-
notype and were identical in immunophenotype to the
other p53-wild type areas within the tumor. Areas of
background hyperplasia showed a p53 wild type immuno-
phenotype. The endometrioid carcinoma at its primary
site showed minor squamous differentiation, and no solid
components in both the p53-wild type and p53-aberrant
areas.
The 2 lymph nodes with metastatic disease each showed

a distinct biphasic pattern, comprised of both p53-wild
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Fig. 1 Morphologic and immunophenotypic features of tumor in the uterus: a Focus of myometrial invasion (black arrow) with overlying endometrial
tumor (blue arrow) (H and E, original magnification: 2 x). b The p53-wild type areas of the tumor (H and E, original magnification: 40X). c Transitional
areas between myoinvasive glands (black arrow) and overlying, non-myoinvasive parts of tumor (blue arrow) (H and E, original magnification: 40X). d
and e p53 immunohistochemistry showing wild-type staining pattern in the myoinvasive glands and aberrant staining pattern in the overlying, non-
myoinvasive parts of tumor (original magnifications: 1D: 2X; 1E: 10X). f Loss of MSH2 in both components of the tumor (original magnification: 10×). g
p16 immunohistochemistry showing mosaic staining pattern in the myoinvasive glands and diffuse staining pattern in the overlying, non-myoinvasive
parts of tumor (original magnification: 10X). h Vimentin expression in both components of the tumor (original magnification: 10×). i Estrogen receptor
expression in both components of the tumor (original magnification: 10×)
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type and p53-aberrant areas in foci that were spatially ap-
posed but not intermixed. The p53-aberrant areas were
identical in morphology and immunophenotype to the
“atypical areas” of the endometrial tumor described above.
The p53-wild type tumoral areas were comprised of
glands with less columnar configuration and more non-
specific cytoplasmic clarity. However, they showed foci of
squamous differentiation and were otherwise immuno-
phenotypically identical to the p53-wild type areas within
the endometrial tumor (Fig. 2). All components of the
tumor at both the primary and metastatic sites showed
loss of MSH2 and MSH6 with retained expression of
MLH1 and PMS2. The patient declined germ-line testing,
and underwent adjuvant chemotherapy. The case is too
recent for meaningful follow-up.
All immunohistochemical studies were performed on

4 μ-thick, unstained slides of formalin-fixed, paraffin-
embedded tissue sections using the Ventana Benchmark
automation and the Ultra View detection kit (Ventana
Medical Systems, Tucson, AZ) and the following primary
antibodies: Estrogen receptor (ER; Clone SP1; prediluted,
Ventana), Progesterone receptor (PR; clone IE2; predi-
luted; Ventana), p53 (clone DO-7; dilution 1:40;
Ventana), Napsin-A (polyclonal, prediluted; Cell

Marque, Rocklin, CA), Vimentin (clone V9, dilution 1:
1000, Ventana), p16 (Clone JC8, prediluted, Santa-Cruz,
Dallas, TX), MLH1 (clone G168–15, prediluted, Biocare
Medical, Concord, CA), PMS2 (Clone A16–4; dilution
1:25; BD Biosciences, San Jose, CA), MSH2 (clone FE11,
prediluted, Biocare Medical), and MSH6 (clone BC/44,
prediluted, Biocare Medical).

Discussion
Approximately 8% of the 65 hypermutated (microsatel-
lite unstable) endometrial carcinomas in the TCGA data
set showed a TP53 mutation [9]. The grade distribution
for those TP53-mutant, hypermutated cases were not
outlined [9]. However, in one comparable analysis of 319
cases that sought to recreate the molecular subgroups of
the TCGA study, only 8 (2.5%) of 319 cases concurrently
displayed a TP53 mutation and a DNA MMR protein
deficiency, and all 8 cases were high grade carcinomas
[24]. A case of a low-grade endometrioid carcinoma of
the endometrium showing a p53-aberrant immunophe-
notype in one portion of the tumor, MSH2 and MSH6
loss in all components, and a distinctive pattern of
lymph node metastases, is described herein. It is the
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Fig. 2 Morphologic and immunophenotypic features of tumor in one lymph node. a-c The 2 components of the tumor (ie areas that
were ultimately classified as p53 wild-type (black arrow) and p53-aberrant (gray arrow) were apposed but not intermixed. An red line ap-
proximately separates the 2 areas. [H and E, original magnification: 2 x (1A); 4× (1B); 10× (1C)]. d, g p53 immunohistochemistry, showing
different patterns of expression in both areas of the tumor [original magnifications: 2 x (1D); 10× (1G)]. e, h p16 immunohistochemistry,
showing different patterns of expression in both areas of the tumor [original magnifications: 2 x (1E); 10× (1H)]. f, i Progesterone receptor
immunohistochemistry showing similar patterns of expression in both components [original magnifications: 2 x (1E); 10× (1H)]
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authors’ experience that this combination is extraordin-
ary uncommon.
DNA mismatch repair proteins recognize and correct

errors that may arise during DNA replication and recom-
bination, and inactivation of DNA mismatch repair can
increase spontaneous mutation rates, which in turn in-
creases the likelihood of oncogenesis [25]. Similarly,
among a myriad of other cellular functions, TP53 is a
tumor suppressor gene that prevents the propagation of
potentially oncogenic events by inducing apoptosis [1–7].
Therefore, a loss of function in both systems may theoret-
ically have a synergistic effect. Indeed, in vitro analyses of
colon cancer cell lines has shown that loss of function of
both systems synergistically increases the frequency of
mutations, promotes genomic instability under stress, and
increases chemoresistance [26–28]. Other in vitro evi-
dence suggest the existence of some interaction between
the 2 systems, but a clear picture is lacking [29–32].
Somatic mutations in cancer genomes have tradition-

ally been categorized into 2 major groups based on the
consequences of those mutations on oncogenesis and/or
cancer evolution: “Driver” mutations result in a selective
growth advantage to cells that harbor them [33, 34].
Cells with driver mutations were selected for at some
point in the evolution of the cancer, and are often impli-
cated in the causality and maintenance of the cancer
[33]. As such, they are identified at a relatively high fre-
quency in a cancer of a particular type [35]. “Passenger”
mutations, which greatly outnumber driver mutations,
have traditionally been thought to not confer a growth
advantage and to have a limited role in oncogenesis [33].
Recently, an additional “mini-driver” model has been
proposed, in which some somatic mutations are nei-
ther passengers nor drivers, but are “mini-drivers”,
each with “relatively weak tumor-promoting effects”,
but which may cumulatively display major tumor-
driving tumorigenic effects under the right conditions
[36]. Other recent proposals include the “latent
driver” model in which some mutations generally be-
have as passengers but can drive cancer development
when coupled with other mutations [37], and a model
in which passenger mutations are not simply neutral
events, but which may have cumulative effects that
actually slow or prevent tumor progression [38, 39].
The morphologic and immunophenotypic findings in

the current tumor are of interest in deciphering whether
the p53 mutation that was apparently acquired in one
portion of the tumor was a driving or passenger event in
lymph node metastases. As was previously noted, TP53
mutations in low and intermediate grade endometrioid
carcinomas have been associated with reduced survival
[22], and studies of endometrial cancer cell lines have
showed that TP53 mutation increases invasion and mi-
gration, and therefore likely promote metastases [40].

However, in the current case, it is unlikely that TP53
mutation was the primary driving event. Most −60%- of
the tumor was p53-wild type, including foci of back-
ground hyperplasia, which suggests that the p53-
aberrant areas were a manifestation of a subclone of
p53-mutated tumor within this background. The areas
of the tumor that displayed “aggressive” features (i.e.
myometrial invasion and lymphovascular invasion) all
showed a p53-wild-type immunophenotype, which ar-
gues against the possibility that the p53-aberrant clone
was particularly aggressive. More importantly, the find-
ings in the lymph nodes argue against the possibility. If
there had been a clonal expansion of an aggressive
TP53-mutant clone in the endometrial cancer, the lymph
node metastases would be expected to be p53-aberrant
in their entirety. In contrast, the presence of multiple
lymph nodes with p53-wild type tumor concurrent with
their p53-mutant counterparts suggests that the TP53
aberration in this case may function no more than as a
mini-driver, possibly synergizing with other molecular
events, but not being the primary driving force in the
metastatic process.
This case may also have some implications regarding

the larger “subclone” theory of metastases [41]. This
theory proffers that a given cancer is composed of sub-
populations (subclones) of cells that are heterogeneous
regarding a variety of molecular properties, including
the potential for metastasis, and that subclones with
metastatic potential can emerge at various points in the
lifecycle of a tumor [41]. One recent study of colorectal
cancer in which high-confidence phylogenetic trees were
constructed using hypermutable DNA found that in 65%
of cases, metastases arose from independent subclones
of the primary tumor [42]. An earlier study, also on
colorectal cancer, had reported that individual node
metastasis are comprised of multiple sub-clones from
the primary tumor [43]. In the current case, the pri-
mary tumors and their metastases indeed showed an
identical overall immunophenotype. However, the two
tumor-positive lymph nodes each seemed to harbor 2
clones of the same tumor, with each node showing
p53-wild type areas and p53-aberrant areas in differ-
ent areas of a contiguous nodal deposit. One potential
explanation is that the TP53 mutation in the lymph
node metastases was newly acquired there, and is un-
related to the TP53 mutation in the endometrial
tumor. In support of this possibility is the finding
that about one-half of mutations that are present in
endometrial cancer metastases are absent in their
matched primary tumors [44]. Arguing against this
possibility is the fact that in the present case, metas-
tases in two different lymph nodes showed this “bi-
clonal” morphology, since it is highly unlikely that
metastatic deposits in 2 separate lymph nodes each
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acquired an unrelated TP53 mutation. Overall, the
subclone theory appears to be more probable.
Irrespective of how the nodal tumors acquired a

TP53 mutation, the pattern of metastases arguably
bolsters the point that the TP53 mutation in this case
was not the driving event, at least with regard to the
promotion of lymph node metastases. As was previ-
ously noted, a clonal expansion of an aggressive
TP53-mutant clone in the endometrial cancer should
result in lymph node metastases that are p53-aberrant
in their entirety. In contrast, TP53-aberration as a
passenger mutation may theoretically be unrelated to
the metastatic process in the case. The critical mo-
lecular event driving metastases appeared to be, at
minimum, incompletely dependent on TP53. It is un-
clear whether the driving event in this case is loss of
MSH2/MSH6. In one recent study from the ProMisE
(Proactive Molecular Risk Classifier for Endometrial
Cancer) group, patients in the MMR-deficient sub-
group (defined as those displaying loss of PMS2 and
MSH6) had relatively poor outcomes [24], although in
general, the prognostic significance of DNA MMR
protein deficiency in endometrial cancer is still the
subject of debate [45, 46].
It is perhaps expected that tumors with a high mu-

tational burden, including ultramutated cancers (typ-
ically those harboring a POLE exonuclease domain
mutation) and hypermutated cancers (typically those
that are microsatellite unstable) would also harbor
the most commonly altered cancer gene, TP53, with
a significant frequency. The POLE mutation status of

the present case is unknown. Nonetheless, the on-
going challenge in cancers in general is to identify
the most significant alterations. With the increasing
availability of genomic information in cancers, distin-
guishing between passenger mutations with limited
clinical consequence, and driver mutations that
would likely affect outcome takes on added import-
ance. We hypothesize that in endometrial endome-
trioid carcinomas, the role of TP53, much like the
gene itself, is variable, driving pathogenesis in some
instances, being a passenger in others, and serving
in others in a myriad of “intermediate” roles in an-
other subset.
The proportion of low grade endometrioid carcin-

omas that display a TP53 mutation is very low [9,
22], and it is even more uncommon in our experience
for a low grade endometrioid carcinoma to show a
p53-aberrant immunophenotype in only one portion
of the tumor. This offered a rare opportunity to study
within the same case the morphologic and immuno-
phenotypic differences between the p53-aberrant and
p53-wild type areas. At both their primary and meta-
static sites, we found that the p53-aberrant areas were
more mitotically active than the p53 wild-type areas
and showed more atypia, as evidence by more nuclear
stratification, more nuclear enlargement, and more
prominent nucleolomegaly (Fig. 3). However, we did
not think that the changes were sufficiently distinctive
to allow the confident delineation of cancers that are
likely to be p53-aberrant by their morphologic fea-
tures alone.

a

c

b

d
Fig. 3 Morphologic and immunophenotypic features of the p53-aberrant areas of tumor at its primary site (arrows indicate focus of squamous
differentiation, consistent with an endometrioid histotype). a, b Morphologic features, showing increased atypia and mitotic activity in a p53-
aberrant area of the tumor, compared to the p53-wild type areas as illustrated in Fig. 1b [H and E, original magnification: 40 x]. c p53-aberrant
immunophenotype. [original magnifications: ×40]. d, 1H: p16-diffusely positive immunophenotype. [original magnifications: ×40]
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Conclusions
This case illustrates how routine immunohistochemis-
try can provide important insights into underlying
molecular events in cancers, exemplifies an uncom-
mon co-existence of a DNA mismatch repair protein
deficiency and a p53-aberrant immunophenotype in
low-grade endometrioid carcinoma, illustrates mor-
phologic differences between p53-aberrant and p53-
wild type areas in the same tumor, and is exemplary
of the emerging theory that lymph node metastases
may be comprised of different subclones of the
primary tumor.
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