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Breast cancer is one of the diseases with the highest incidence and mortality among
women in the world, which has posed a serious threat to women’s health. The
appearance of clustered calcifications is one of the important signs of breast cancer,
and thus how to classify clustered calcifications comes to be a key breakthrough in
controlling breast cancer. In this study, the discriminant model based on image
convolution is used to learn the image features related to the classification of clustered
microcalcifications, and the graph convolutional network (GCN) based on topological
graph is used to learn the spatial distribution characteristics of clustered
microcalcifications. These two models are fused to obtain a complementary model of
image information and spatial information. The results show that the performance of the
fusion model proposed in this paper is obviously superior to that of the two classification
models in the classification of clustered microcalcification.

Keywords: breast cancer, microcalcification, graph convolut ional network, computer-aided
diagnosis, classification
INTRODUCTION

Breast cancer is one of the diseases with the highest incidence and mortality among women in the
world. According to the statistics of the World Health Organization, in 2020, there were 2.3 million
new cases of breast cancer among women worldwide, and about 685,000 women died of breast
cancer, accounting for 15.5% of all female deaths from malignant tumor (1). However, there is still a
lack of detailed scientific understanding of the causes and mechanisms of breast cancer, and thus it
is particularly difficult to prevent breast cancer (2). Therefore, early diagnosis and early treatment
are particularly important for women with breast cancer. At present, as a relatively low-dose, safe,
and low-cost means of image detection, all-digital mammography has become one of the best
methods for routine clinical examination and preventive screening of breast cancer (3, 4).

The appearance of clustered calcifications is one of the important signs of breast cancer (5), and
the high correlation between clustered calcifications and breast cancer has also attracted extensive
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attention in medical communities and academic circles. How to
classify clustered calcifications comes to be an important
breakthrough in controlling breast cancer.

In evaluating the possibility of malignant calcifications, the
morphology and distribution of microcalcifications are equally
important. The morphology of calcifications in breast cancer is
an important factor to determine whether the calcifications are
benign or malignant. Generally, according to the morphology,
calcifications can be divided into being benign calcifications,
intermediate concern calcifications, and calcifications with a
higher probability of malignancy (6). The spatial distribution
of microcalcifications in breast cancer is another important
factor to distinguish between benign calcifications and
malignant ones. The linear and segmental distributions are
usually closely related to malignant calcifications, the diffused
and regional distribution usually indicates benign calcifications,
and the clustered distribution predicts intermediate concern
calcifications (7). However, this classification is only a rough
estimate based on experience, and the specific diagnosis still
depends on needle biopsy.

In the research on the classification of clustered
microcalcifications in mammography, most of the previous
methods manually extract features of microcalcifications, then
screen the features, and finally classify them by constructing
a classifier.

Feature extraction and screening are the key to automatic
classification of clustered microcalcification. Soltanian et al. (8)
selected 15 characteristics in the cluster, including the number of
microcalcifications, the maximum size of microcalcifications, the
standard deviation of the size of calcifications, the number of
calcifications with the size of 1 pixel, the total area of the
microcalcifications, the average compactness, the maximum
compactness (the ratio of the square of the perimeter to the area),
the maximum moment representing the roughness of
microcalcifications, the average roughness, the approximate circle
radius, the scattering of the microcalcifications, the average gray
level of the microcalcifications, the standard deviation of the mean
of gray levels of microcalcifications, the maximum standard
deviation of the gray levels of the calcifications, and the average
standard deviation of the gray levels of the calcifications. Then, they
trained the classifier to classify clustered calcifications as benign or
malignant calcifications. Veldkamp et al. (9) used 16 features to
classify microcalcifications, which can be split into two types,
distribution features and morphologic features. These features
comprise the distribution features of individual microcalcification
in the cluster, themorphology of the cluster, and the position feature
of the cluster. In mammography, the distribution features include
the number of calcifications in the cluster, as well as the mean and
standard deviation of pixels, direction, contrast, eccentricity, and
compactness of microcalcifications. Moreover, the morphologic
features of microcalcification clusters contain the area, the
eccentricity, and the orientation of calcification clusters.
Furthermore, the position features of clustered calcifications
mainly refer to the relative distance between clustered
calcifications and pectoralis major as well as the relative distance
between clustered calcifications and the breast margin.
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At the same time, the classifier plays an important role
in the computer-aided diagnosis of microcalcifications in
mammography. The classifier is trained by using these
extracted features or a screened subset of features, so as to
classi fy microcalcifications as benign or malignant
microcalcifications. Lee et al. (10) used the artificial neural
network based on shape recognition, which has a general
shape feature layer and can extract general rules by learning
from examples. The evaluation of the system by Nijmegen
mammography database shows that its sensitivity and
specificity can reach 86.1% and 74.1%, respectively. Ferreira
et al. (11) designed a nearest neighbor classifier, which used
Euclidean distance as the metric between the corresponding
wavelet coefficients to verify the classification. Veldkamp et al.
(9) used the classification method of clustered calcifications
based on k-Nearest Neighbor (KNN), which firstly assigned a
benign or malignant probability value to each clustered
calcification and then averaged the probability values of
clustered calcification in Cranio Caudial (CC) view and
mediolateral oblique (MLO) view of patients as the final
benign or malignant predictive value.

However, all of these methods have two common defects. On
the one hand, it is necessary to manually predefine the lesion area
of clustered microcalcifications, so as to characterize features and
extract the features of microcalcifications and clusters. This
process is cumbersome, and its labor cost is high. On the other
hand, the feature space constructed by traditional methods often
needs to extract the morphologic features of microcalcifications.
However, because of weak signals and noise, the features of
microcalcifications are difficult to exact, including morphological
features and texture features. Hence, it is a challenging task to
study how to build an effective and robust classification model.

Deep convolutional neural network has been widely used in
image classification, image recognition, natural language processing,
and other fields and has attracted the attention of academic circles
in recent years (12–14). The main advantage of deep learning
method used for classification of microcalcifications in breast cancer
lies in that it can directly learn features and patterns related to
benign or malignant classification from a large number of
microcalcifications data through supervised learning, without
manually constructing and screening corresponding classification
features for microcalcifications (15).

Inspired by the clinical diagnosis mechanism, this study also
sets out from the morphology and distr ibution of
microcalcifications and constructs a model to distinguish benign
microcalcifications frommalignant ones. Firstly, with regard to the
morphologic features of microcalcifications, this study uses the
deep convolutional neural network to extract hidden layer features
related to classification in images. For the spatial distribution
features of microcalcifications, the artificially constructed features
mainly include the number of calcifications in the cluster, the
mean and standard deviation of pixel direction, contrast,
eccentricity and compactness of microcalcifications, and so on,
which are difficult to extract by general convolutional neural
network. In order to solve this problem, this study constructs a
topological graph model and uses the graph convolutional neural
May 2022 | Volume 12 | Article 871662
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network to learn the spatial distribution features of
microcalcifications in the breast. Then, the above two models are
fused through the modal fusion and voting strategy, and finally the
benign or malignant predictive value of the whole input image is
the output.
MATERIALS AND METHODS

Data Set
The data set of this study is from Sun Yat-sen University Affiliated
Hospital, which contains the data of 197 cases (394 two-
dimensional mammograms). The approval of the institutional
review board (IRB) had been obtained before the data set was
collected. The acquisition equipment is Mammo-Novation
Siemens imaging equipment and solid-state detector of
amorphous selenium with a pixel space size of 70 mm/pixel and
a resolution of 2,560 × 3,328 pixels or 3,328 × 4,084 pixels. All
cases included two kinds of mammograms, namely, axial view and
MLO view. The results of all cases are confirmed by biopsy and
hence can be used to evaluate the effectiveness of the diagnostic
system proposed. An experienced radiologist marked a rectangular
lesion area of clustered microcalcifications and the corresponding
results of biopsy (Figure 1). Then, the labels were confirmed and
revised by another experienced radiologist as the gold standard of
the final experiment. The data used in this study are selected cases
that only contain microcalcifications; that is, they do not contain
lumps, structural distortion, and other diseases. Therefore, the
benign or malignant results obtained by needle biopsy can only
reflect whether microcalcifications are benign or malignant, so the
gold standard meets the requirements without ambiguity.

Methods
Discriminant Model Based on Spatial Convolution
Network
In the classification task of benign or malignant clustered
microcalcifications, the regions of interest are irregular with
different sizes. The large one may occupy the whole or half of
the breast, while the small one may only spread in the area with a
diameter of a dozen pixels. Therefore, it is not realistic to use a
unified and large frame to capture the lesion area and input it
into the network training. Especially for small lesions, too large a
frame may cause the lesion area to occupy only a small part of the
captured image. However, it is not appropriate to use image
scaling because the microcalcifications in the image are so small
that their area is only a dozen pixels. With image scaling, a large
amount of microcalcification lesion information may be lost.

In order to solve this problem, this study adopts the strategy of
splitting the large cluster using clustering algorithms. We adopted
a density-based spatial clustering of applications with noise
algorithm (11) (see Figure 2). By adjusting the cluster radius,
the cluster is prevented from forming too large clusters, so that the
originally large clusters will be split into several subclusters with
appropriate sizes. In this circumstance, the researcher can take
these subclusters as the center, use a frame with a uniform size to
capture the lesion area, and input the image into the network for
Frontiers in Oncology | www.frontiersin.org 3
training. The strategy of splitting large clusters can be applied to
benign cases, while it is not suitable for malignant cases. Because in
malignant cases, it is likely that only part of the large clusters is
malignant, while other areas are still benign. However, the needle
biopsy only obtains the gold standard of the whole case and cannot
accurately locate the specific malignant lesions in large clusters.
Therefore, for malignant cases, only some cases without
particularly large clusters can be selected for training, so that the
frame with a uniform size is still applicable here. Malignant cases
with relatively large clusters are classified into a verification set and
a test set.

The discriminant network based on spatial convolution
mainly adopts the deep convolutional neural network based on
ResNet-50 (12) structure (see Figure 3), which conducts
multilayer perceptual learning through convolution,
downsampling, and nonlinear activation, and uses the back
propagation and stochastic gradient descent algorithm to seek
the parameters of the network model. In the training process,
low-layer features will constitute high-layer features through
automatic composition, and finally features will be screened
and classified by a linear model. The size of the input image is
3 × 224 × 224, and the output is a benign or malignant predictive
value between [0,1]. Because there is only one channel in the gray
image, the other two channels are filled by replication method to
form the 3-channel network input layer.

The basic structure module of the residual network is shown
in Figure 4. The structure of the feed-forward non-residual
network is mostly y = H(x), where x and y are input and
output of the residue block, respectively. The residual block of
the residual network can be expressed as H(x) = F(x) + x, that is F
(x)= H(x) – x. Consequently, the network learns the residual of
input variables, which is equivalent to a differential amplifier. It is
difficult to learn microcalcifications directly because of its small
size and low contrast. But using a residual can make the network
pay more attention to the details of microcalcifications, so it is a
better solution.

Discriminant Model Based on the Graph
Convolutional Network
The graph convolutional network (GCN) can extract spatial
distribution. The convolutional neural network studies the
statistical characteristics of Euclidean data with a regular
spatial structure, such as image, speech sounds, text sequence,
and so on. Essentially, a convolution in the convolutional neural
network uses a filter with shared parameters and constructs a
feature map by calculating the weighted sum of pixel values of
the center point and adjacent points so as to extract image
features (16). However, in this research, microcalcifications
have rather complicated spatial laws and do not have neatly
arranged pixel elements like image matrix, which means
the spatial position relationship between microcalcifications is
non- Euclidean, and image convolution may be difficult to
extract image features for microcalcification clusters. In order
to extract spatial distribution features between clustered
microcalcifications through the network, this study firstly
constructed the relationship between microcalcifications as a
May 2022 | Volume 12 | Article 871662

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Classification of Microcalcification Clusters
graph model, in which the nodes are hidden layer features of
convolutional neural network of microcalcifications and the
edges are Euclidean distances between central pixels of
microcalcifications. Then, what this study needs to solve is
how to choose a fixed convolution kernel to adapt to the
Frontiers in Oncology | www.frontiersin.org 4
irregularity of the whole graph and thereby construct a feed-
forward network to extract spatial distribution features from
node information and edge information. It means that this study
should construct a graph convolution operation similar to the
extension of image convolution on a topological graph, as shown
FIGURE 1 | Region of interest of microcalcification cluster for classification: (left) original image; (right) red contour is the possible region of interest of microcalcification,
and blue box is the region of interest of microcalcification cluster for classification.
FIGURE 2 | Illustration of density-based spatial clustering of applications with noise algorithm.
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in Figure 5. The starting point of convolution on a topological
graph is similar to that of image convolution. The basic idea is to
generate a new feature graph by integrating the features of the
points adjacent to the central point and parameterize the
Frontiers in Oncology | www.frontiersin.org 5
convolution kernel to attain an optimized solution by building
a network (16–18).

The constructed graph is recorded as G = (V, E), the element
in V is the vertex of the graph (microcalcifications), and the
element in E is the side between the vertices. The neighbors of
vertex vI are defined as:

(i) = vj ∈ V jvivj ∈ E
� �

(1)

The degree matrix is a diagonal matrix describing the degree
of each vertex vi, namely, (vi):

D(G) =

d(v1) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ d(vn)

0BB@
1CCA (2)

Adjacency matrix is an n-order square matrix describing the
spatial position relationship between vertices. It mainly encodes
the spatial distribution information of the graph network, which
is defined as:

½A(G)�ij =
distij if vivj ∈ E

0 otherwise

(
(3)

Laplacian matrix, also known as admittance matrix (17), is
mainly used in graph theory. For graph G = (V, E), the Laplace
FIGURE 3 | Illustration of the network structure used for classification.
FIGURE 4 | Structure of a residual block.
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matrix is defined as the difference between the degree matrix D
and the adjacency matrix A of graph G:

L = D − A

=

d(vi) if i = j

−distij if  ≠  j and vivj  ∈  E

0 otherwise

8>><>>: (4)

Obviously, the Laplace matrixLis a symmetric matrix. In fact,
it is easy to prove that it is a positive semidefinite matrix; that is,
the quadratic form is greater than or equal to 0. Usually, the
experiment will normalize it, so the symmetric normalized
Laplace matrix is obtained:

eL = D−1
2LD−1

2 = I − D−1
2AD−1

2 (5)

Considering that the calculation of convolution in the
frequency domain is relatively simple, the Fourier transform
on the graph is introduced to construct the convolution on the
topological graph. Taking the feature vectors of Laplace matrix as
the basis of Fourier transform on the graph, the following is
obtained:

F(ll) = bf (ll) =on
i=1f (i)u

∗
l (i) (6)

The following is obtained when it is expressed in matrix form:

f̂ (l1)

⋮

f̂ (lN )

0BB@
1CCA =

u1(1) ⋯ u1(N)

⋮ ⋱ ⋮

uN (1) ⋯ uN (N)

0BB@
1CCA

f (1)

⋮

f (N)

0BB@
1CCA (7)

Also

UT =

u1(1) ⋯ u1(N)

⋮ ⋱ ⋮

uN (1) ⋯ uN (N)

0BB@
1CCA (8)
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Then, the signal f of Fourier transform on the graph is

bf = UTf : (9)

Inverse transform to be

f = Ubf (10)

According to the convolution theorem, the Fourier transform
of function convolution is equal to the product of function
Fourier transform:

f ∗ h = F−1 bf (w)bh (w)
h i

=
1
2p

Z bf (w)bh (w)eiwtdw (11)

The convolution operation on a graph can be derived; that is,
graph convolution (16):

(f ∗ h)G = U((UTh) o ̇ (UTf )) = U · diag bh (l)� �
· UTf (12)

However, when the above convolution is actually used, there
exists the following difficulties in solving the convolution kernel.
First of all, the product of U, diag (ĥ (l)) and UTneeds to be
calculated in each forward propagation with a complexity of (n2).
Besides, the convolution kernel has n parameters and does not
have spatial locality.

In order to solve the above problems, the Chebyshev polynomial
k-order truncation is used to approximate the diag ĥ (l)) ,

hq(L) ≈oK
k=0q

0
kTk

eL� �
(13)

eL =
2

lmax
L − IN (14)

So,

(hq ∗ x)G ≈oK
k=0q

0
kTk

eL� �
x : (15)
FIGURE 5 | Generalization from image spatial convolution to graph convolutional network.
May 2022 | Volume 12 | Article 871662
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eL =
2

lmax
L − IN (16)

At this time, the graph convolution does not depend on the
whole graph but only on the k-order neighbors of the current
central node.

The GCN is constructed. Although the above k-order
approximation can establish the dependence of k-order
neighbors, it still needs to perform k-order operation on L. In
order to further reduce the calculation process, k is limited to 1.
At this time, the graph convolution can be approximated as a
linear function of L:

(gq ∗ x)G ≈ q 0
0x + q 0

1(L − IN )x = q 0
0x + q 0

1D
−1=2AD−1=2 (17)

There are only two shared parameters to be trained in the
above formula. To establish k-order neighbor dependence, k-th
continuous first-order graph convolution operation can be
adopted to construct forward propagation:

Z = f (X,A) = softmax(~AReLU(~AXM(0))W(1)) (18)

The loss function adopts the cross-entropy loss function:

Lce = −
1
No

N
i=1onK

j=0yij logpij (19)

Fusion of Discriminant Model
The discriminant network based on spatial convolution is mainly
used to extract the image features of clustered microcalcifications,
including morphologic features. The discriminant model based on
the graph convolution is mainly used to extract the spatial
distribution characteristics of microcalcifications. They need to be
fused tomake full use of the extracted image information and spatial
distribution information, so as to comprehensively diagnose the
input microcalcifications images as benign or malignant.

The key of this part is how to fuse the extracted image
information and spatial distribution information. Image
information and spatial distribution information can be
regarded as two different modes, so the problem comes down
to multimodal fusion. There are many ways to solve multimodal
fusion, such as element-by-element weighted summation,
element-by-element maximum pooling, gated activation, gated
attention, bilinear mapping, and so on (19). According to
different levels, it can be fused at the feature level, such as
splicing, adding, and so on, at the score level, such as
weighting based on the scores of different modes obtained
from training, and at the decision-making level, such as
majority voting, maximum voting, and so on. First, this study
used non-maximum suppression in the scores obtained from the
spatial convolution discriminant model to obtain the predictive
scores based on images at the spatial convolution level. Second,
this study combined the predictive scores with the scores
obtained after the topological graph convolution extracted the
spatial distribution information. Last, using the fusion method at
the score level and the corresponding weights of image
information mode and spatial distribution information mode
obtained through training, the scores are weighted and fused at
Frontiers in Oncology | www.frontiersin.org 7
the full connection layer (20) to output a final benign or
malignant predictive value. The fusion process of discriminant
model was illustrated in Figure 6.

Training of Benign or Malignant Classification
Network
The discriminant network based on the spatial convolution
adopts the convolutional neural network based on the ResNet-
50 structure. The size of the input image is 3 × 224 × 224, and the
output is a benign or malignant predictive value between [0,1].
Because there is only one channel in the gray image, the other
two channels are filled by the replication method to form the 3-
channel network input layer.

There were 273 benign samples and 273 malignant samples in
the testing data set. The training, validation and testing data sets
were separated as shown in Table 1. During training, data
augmentation was carried out on the samples in the training
set, mainly by random rotation, adding Gaussian noise, and so
on, to expand the training samples. After that, the network can
learn some more essential and stable features, and thus the
trained discriminant model is more robust.

The discriminant network based on the spatial convolution
adopts the graph convolutional neural network, as shown in
Figure 7. The input is the topological graph composed of
microcalcifications. The feed-forward network contains two
hidden layers, among which the rectified linear unit (ReLU)
activation function (14) is used. After the input goes through the
feed-forward network and the action of Sigmoid activation
function (21), the benign or malignant predictive values
between [0,1] are output finally. Back propagation adopts the
two-class cross entropy loss function, and the stochastic gradient
descent optimizer is used for optimization.
RESULTS

Establishing Quantitative
Evaluation Indicators
In order to more clearly compare the results of different methods
in the classification of benign or malignant clustered
microcalcifications, this study uses sensitivity, specificity, and
receiver operating characteristic (ROC) curve as relevant
quantitative evaluation indexes to evaluate the classification
results of clustered microcalcifications in images.

Comparison of Results
In this paper, the comparison was made among the test results of
the discriminant network (referred to as ResNet-50) based on the
spatial image convolution to extract the image information
related to the classification of benign or malignant subclusters,
those of the GCN based on the topological graph convolution to
extract the spatial distribution information of microcalcifications
related to the classification of benign or malignant clustered
microcalcifications and those of the fused network (referred to as
ResNet50-GCN Fusion). The results are shown in Table 2
and Figure 8.
May 2022 | Volume 12 | Article 871662
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DISCUSSION

The classification of benign ormalignant clusteredmicrocalcifications
in breast cancer mainly considers the morphology and spatial
distribution of microcalcifications clinically. Taking this as the
starting point, this study proposed to use the discriminant model
based on image convolution to learn the image features related to the
classification of microcalcifications and use the GCN based on the
topological graph to learn the spatial distribution features of
FIGURE 6 | Illustration of fusion process of discriminant model.
FIGURE 7 | Graph neural network.
TABLE 1 | Number of samples for training, verification, and testing in benign or
malignant.

Patch Numbers

Training set Validation set Test set

Benign 590 227 273
Malignant 831 227 273
May 2022 | Volume 12 | Article 871662
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microcalcifications. After that, this study tried to fuse them to get a
complementary model.

In this study, the model based on the spatial image convolution
obviously performed better than the model based on the
topological graph convolution both in sensitivity and specificity.
The AUC area under the ROC curve of the former model is also
nearly 5% higher than that of the latter. This shows that the image
information for the diagnosis of benign or malignant clustered
microcalcifications learned by the model based on spatial image
convolution is very helpful for classification to a certain extent.
Although the overall result of the model based on the topological
image convolution is not as good as that based on the spatial image
convolution, the spatial distribution information extracted by the
model is still effective to a certain extent. Especially, if this
distribution information has certain orthogonality with the
image information, it will contribute more and the researcher
can make use of the two information to combine their advantages
and obtain a stronger classification fused model.

In fact, from the comparison results in the table, the AUC area
under the ROC curve of the fused model reaches 0.943, which is
about 1% higher than the AUC of ResNet-50 of the spatial image
convolution, the best model in single mode. This shows that the
spatial distribution information extracted by the GCN model
based on the topological graph convolution exerts a complement
action. However, it is worth noting that when the topological graph
was input into the construction of the GCN in this paper, the
features of the nodes of the graph were the hidden layer features of
false-positive identification of microcalcifications, which actually
limited the classification ability of the GCN to a certain extent. If
Frontiers in Oncology | www.frontiersin.org 9
the features related to the benign or malignant microcalcifications
can be obtained, it is natural to guess that the overall ability of the
GCN to classify the benign or malignant microcalcifications will be
better. But this is exactly the difficulty of the research. In this study,
it is difficult to obtain the mark of benign or malignant
microcalcifications because doctor’s labeling is costly and highly
subjective. Moreover, it is unrealistic to perform needle biopsy and
registration for each microcalcification. Furthermore, previous
research has never involved this area. Therefore, the following
research can further improve the model to replace the features of
nodes in the GCN with those of diagnosis of benign or malignant
microcalcification if the labeling information of benign or
malignant microcalcifications is obtained. It may be easier to
capture the hidden features of the classification of benign or
malignant microcalcifications and their spatial distribution law
in the breast, which will be more effective for the results.

When constructing the graph network, the node features used in
this study are the hidden layer features of the false-positive
discrimination network of microcalcification detection. If the
benign and malignant label ing information at the
microcalcification level can be obtained in the subsequent
research, the model can be further improved to replace the
features of the GCN nodes with the features of microcalcification
benign and malignant discrimination level. It may be easier to
capture the differences between benign and malignant
microcalcifications and their spatial distribution in the breast,
which may be more helpful to the results.
CONCLUSION

There are some obstacles in the classification of benign or malignant
clustered microcalcifications in mammograms. In this study, image
information and spatial distribution information are modeled on
the issue of the classification of benign or malignant
microcalcifications in breast cancer. The discriminant network
based on spatial image convolution is constructed to extract the
image information related to the classification of microcalcifications
subclusters, and the discriminant network based on the topological
graph convolution is proposed and constructed to extract the spatial
distribution information of microcalcifications related to the
classification of benign or malignant clustered microcalcifications.
This study used non-maximum suppression in the scores obtained
from the spatial convolution discriminant model to obtain the
predictive scores based on images at the spatial convolution level.
Then, this study combined the predictive scores with the scores
obtained after the topological graph convolution extracted the
spatial distribution information. Lastly, using the fusion method
at the score level and the corresponding weights of image
information mode and spatial distribution information mode
obtained through training, the scores are weighted and fused to
output a final benign or malignant predictive value. The results
show that compared with the single-mode classification results, the
classification after modal fusion is more accurate. Automatic
detection and classification of microcalcification clusters may have
an important impact in breast cancer screening.
TABLE 2 | Comparison of classification results of clustered microcalcification in
different methods.

Methods TPR TNR AUC

ResNet50 0.964 0.906 0.932
GCN 0.904 0.782 0.883
ResNet50-GCN Fusion 1.000 0.812 0.943
FIGURE 8 | ROC curve comparison.
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