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The study of the synchronous characteristics and functional connections

between the functional cortex and muscles of hand-grasping movements

is important in basic research, clinical disease diagnosis and rehabilitation

evaluation. The electroencephalogram (EEG) and electromyographic signal

(EMG) signals of 15 healthy participants were used to analyze the

corticomuscular coupling under grasping movements by holding three

di�erent objects, namely, card, ball, and cup by using the time-frequency

Granger causalitymethod based on time-varying nonlinear autoregressivewith

exogenous input (TV-NARX) model and Coiflets wavelet packet transform. The

results show that there is a bidirectional coupling between cortex and muscles

under grasping movement, and it is mainly reflected in the beta and gamma

frequency bands, in which there is a statistically significant di�erence (p< 0.05)

among the di�erent grasping actions during the movement execution period

in the beta frequency band, and a statistically significant di�erence (p < 0.1)

among the di�erent grasping actions during themovement preparation period

in the gamma frequency band. The results show that the proposedmethod can

e�ectively characterize the EEG-EMG synchronization features and functional

connections in di�erent frequency bands during the movement preparation

and execution phases in the time-frequency domain, and reveal the neural

control mechanism of sensorimotor system to control the hand-grasping

function achievement by regulating the intensity of neuronal synchronization

oscillations.

KEYWORDS

TV-NARX, Granger causality, wavelet packet transformation, corticomuscular

coupling, hand-grasping, EEG, EMG

1. Introduction

The key to sensorimotor control lies in the interaction between the motor cortex

and the muscles involved in the movement (Chen et al., 2018). In the process of

movement, the motor cortex sends nerve impulses through the brainstem and spinal

cord along the motor nerve pathway to innervate muscle contraction and drive
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the skeleton to complete the corresponding action. At the

same time, the proprioceptive sensations generated by

muscle contraction and limb movement are integrated and

analyzed along the sensory nerve feedback pathway to the

cortex to output decision-making instructions and finally

complete the movement accurately. The motor nervous

system transmits motor control information through neural

oscillations, causing synchronous oscillatory activity in

motor units. This synchronous oscillatory activity reflects the

functional connection between the cortex and muscles, i.e.,

corticomuscular coupling (CMC) connection (Bourguignon

et al., 2019). The electroencephalogram (EEG) of the motor

cortex is a general reflection of the electrophysiological activity

of brain nerve cells on the surface of the cerebral cortex or

scalp, and the surface electromyography (EMG) of the muscles

involved in movement is the temporal and spatial superposition

of action potentials of motor units in numerous muscle fibers,

both of which reflect motor control information and functional

response information of the muscle to the brain’s control

intention, respectively. Therefore, the coupled connections

between cortex and muscle can be measured by simultaneous

coupling analysis of EEG-EMG signals.

Human working life is inseparable from the dexterous

movement of hands, among which precise grasping is the

most important form of hand function, which is the basis

for various precise and complex operations. Research on the

neural control and perceptual feedback mechanisms of hand

movement functions is of great value in both basic research

and clinical diagnosis of diseases. Sensory-motor dysfunction

of the upper limbs not under the autonomic control of the

brain due to neurological impairment is more common, and

hand-grasping function is an important index for clinical

rehabilitation evaluation (Bao et al., 2021). Therefore, the

coupling connection between the sensorimotor cortex and

muscles during the execution of precise hand-grasping can be

used as a basis for exploring the mechanism of sensorimotor

control and clinical rehabilitation evaluation. Since the discovery

of the correlation between EEG and EMG signals during

exercise in 1995 (Conway et al., 1995), researchers have

successively conducted studies on the relationship between

EEG-EMG coherence and locomotion paradigm, analyzing the

change characteristics and synchronization patterns of scalp

EEG signals and EMG signals for hand movements (Johnson

and Shinohara, 2012; Clark et al., 2013). Zhang et al. (2017)

based on different grip CMC analysis, confirmed that CMC was

mainly reflected in the beta and gamma bands during static

grip output, where the coupling intensity in the EEG→ EMG

direction was higher than that in the EMG→ EEG direction.

Witte et al. (2007) found an increased frequency of synchronous

oscillations in the smaller steady-state force output state of the

hand. Some studies further suggested that gamma band CMC

was related to participants’ attention during task performance,

and that enhanced task attention promotes neuronal gamma

band activity (Li et al., 2020). Also, it has been suggested that

gamma band may occur during finger movement preparation

and motor performance control (Tun et al., 2021).

The aforementioned study showed that synchronized

oscillations in different frequency bands between cortex and

muscles reflect different functional coupling relationships. The

coupling relationships in different frequency bands are related

to hand force output and task attention. The above EEG-

EMG synchronization characteristics based on the traditional

coupling analysis methods can not reflect the functional

interaction information transfer between the cerebral cortex and

the corresponding muscles, while Granger causality analysis was

applied to the EEG-EMG synchronization studies because of

its ability to describe the causal information transfer pattern,

and found a bidirectional coupling between EEG and EMG

(She et al., 2019). Modeling has a wide range of applications

in the biomedical field (Gu et al., 2020; Li et al., 2022a).

Granger causality was originally developed in the context of

linear autoregressive models with exogenous inputs (ARX)

and has been extensively studied in the time and frequency

domains, respectively (Zhao et al., 2013; He et al., 2014).

However, due to the inherent non-stationary and non-linearity

of EEG and EMG signals, traditional methods of Granger

causality analysis may not be sufficient to effectively reveal the

underlying non-stationary and non-linearity. Therefore, this

paper combines the time-varying nonlinear autoregressive with

exogenous input model (TV-NARX) with the Granger causality

analysis approach. At the same time, considering that it is

more practical to study the variation pattern of EEG-EMG

synchronization in the time-frequency domain, the frequency

resolution cannot be too low, otherwise the detailed information

will be lost. Based on the high frequency resolution of wavelet

packet transformation, this paper proposes the wavelet packet

transform time-frequency Granger causality (WPT-TF-GC)

method to better characterize the time-frequency domain of

EEG-EMG synchronous coupling, detect nonlinear dynamic

effects and track the changes of these effects over time, explore

the motor control and feedback response mechanisms of cortical

muscles under different hand-grasping movements, and provide

a neurophysiological basis for the application of neuromuscular

synchronous coupling connections in basic research and clinical

rehabilitation evaluation.

2. Methods

2.1. Data and pre-processing

The data for this study were obtained from the open access

database of Korea University (Jeong et al., 2020), which collected

60 EEG electrodes to record cortical responses to upper limb

movements according to the 10–20 international configuration,

and 7 Ag/AgCl electrodes to record EMG using a sampling
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FIGURE 1

Experimental paradigm in a single trial and the representation of

visual cues according to each task.

frequency of 2,500 Hz, recording experimental data for a total

of 11 different upper limb movements in 25 participants. When

the experiment started, visual instructions were provided on a

monitor. Participants stared at the visual instructions for 4 s at

rest. After the rest, the visual cue for the task was given for 3 s and

the participants performed the corresponding task within 4 s.

And the task was performed a total of 50 times. The experimental

flow is shown in Figure 1.

Coherence between EMG and EMG has been found to exist

in primates performing fine hand tasks (Beck et al., 2021). The

hand-grasping function is mainly associated with the finger

extensors and finger flexors (Mangold et al., 2005), and the focus

of this study is on the corticomuscular interaction of the human

sensorimotor system. Therefore, EEG signals from C3 channel

of the main sensorimotor region and surface EMG signals from

finger extensors of three designated graspmovements by holding

the objects, namely, card, ball, and cup with different degrees of

fineness were selected for the study in 15 participants.

The EEG and EMG signals were preprocessed using

MATLAB programming software based on signal processing

and its toolbox EEGLAB (Iversen and Makeig, 2019), and the

process was referred to relevant studies to select the appropriate

parameters (Bao et al., 2018; Scba et al., 2021). The data

preprocessing steps are described below. First, EEG signals were

common average referenced. The EEG-EMG signals were 1–

60 Hz bandpass filtered, down sampled to 250 Hz, separated

into 7 s segments (3 s before and 4 s after the start of the

movement), and splitting the data into two analysis periods:

the first 3 s defined as the movement preparation period

and the last 4 s defined as the movement execution period,

and baseline corrected. Independent Component Analysis

(ICA) was then applied to extract EEG source activity, and

the sources of independent components were automatically

labeled using IClabel to remove components associated with

eye movement, muscle, and heartbeat artifacts. ICA is a

widely used pre-processing technique that decomposes EEG

signals into independent components; IClabel is a classifier

that automatically labels the independent components of EEG

signals, and this two can be used together to separate and

remove noise sources (Pion-Tonachini et al., 2019). In addition,

line noise is removed using the EEGLAB CleanLine plug-

in to reduce the external electrical noise interference in the

original signal. The segmented data is superimposed and

averaged to further remove spontaneous background noise. In

the original experimental data set, there were scale differences

in the amplitudes of the EEG and EMG signals. To avoid

pathological problems in the relevant calculation steps, the data

were normalized so that their amplitudes had similar scales (Gu

et al., 2020).

2.2. WPT-TF-GC

The synchronization oscillations between cortical and

muscles at different times and frequency bands reflect different

functional coupling relationships, so it is more practical to study

the variation patterns of EEG-EMG synchronization in the time-

frequency domain than in the time or frequency domain alone.

Wavelet transform can provide both time domain and frequency

domain information of the signal, and is an effective method to

analyze EEG and EMG signals. However, wavelet transform only

further decomposes the low frequency part of the signal, and

does not continue to decompose the high frequency part, i.e., the

detailed part of the signal, which has poor frequency resolution

in the high frequency band and poor time resolution in the

low frequency period. Therefore, the wavelet packet analysis

method with better time-frequency resolution is selected in

this study to extract the EEG and EMG signals in each time-

frequency band. The wavelet packet transform is an extension

of wavelet transform, which can effectively decompose the high

frequency part of wavelet transform without subdivision and

select the corresponding frequency band adaptively according to

the characteristics of the analyzed signal, to improve the time-

frequency resolution (Chinara et al., 2021). The wavelet packet

transform with arbitrary multi-scale feature avoids the defects

of wavelet decomposition with fixed time and frequency, which

provides a great choice for time-frequency analysis. So, it can

better reflect the nature and characteristics of signals.

2.2.1. WPT

The wavelet packet transform yields a binomial tree

structure, and the binomial tree nodes are noted as (j, i),

j is the number of decomposition layers, i is the number

of nodes in the layer. After wavelet packet transform, the

original signal is divided into several frequency bands, and the

frequency resolution of each band is fs/(2j+1) Hz, fs is the

sampling frequency. The three-layer decomposition structure

of the wavelet packet is shown in Figure 2, (0,0) indicates the

original signal, (j, i) denotes the wavelet packet coefficient of the

corresponding node dj,i, where j = 0, 1, 2, 3, i = 0, 1, 2, ..., 7. Let

S3,i be the reconstruction of d3,i, then the original signal can be
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FIGURE 2

Three-layer Wavelet packet decomposition structure.

expressed as:

S = S3,0 + S3,1 + S3,2 + S3,3 + S3,4 + S3,5 + S3,6 + S3,7 (1)

In this study, feature extraction is performed using a seven-

layer Coiflets wavelet packet that segments EEG and EMG

signals and extracts their time-frequency domain coefficients

up to the seventh layer of the wavelet packet transform

(Venkata Phanikrishna et al., 2021), which yields the amplitude

features w(f , t) of EMG and EEG at a specific frequency f at

time point t. When the frequency resolution is 1 Hz, neither

the detailed information of EEG and EMG signal changes with

frequency nor the frequency overlap phenomenon will be lost

(Zhang et al., 2017). Therefore, in this study, the frequency

resolution is set to 1 Hz, and the EEG and EMG signals with

center frequency f = 1, 2, ..., 50 Hz are extracted, respectively.

2.2.2. GC

A classical method to detect causal influence between two

coupled signals is the Granger causality test. Suppose X and Y

are two signals whose time observations are denoted by x(t), y(t),

where t = 1, 2, ...,N. In order to calculate the Granger causality

from X to Y , an unbiased model must be built in advance,

which defines the relationship between the output Y and the

past information Y− and the input X and the past information

X−, denoted as: Y = f (Y−,X−). Based on the sampled data,

the parameters f (Y−,X−) in the model are estimated, and then

predictions of Y are generated based on Y− only and based on

Y− and X−, respectively. In both cases, the model prediction

error variance var(Y|Y−), var(Y|Y−,X−), is used to represent

the accuracy of the prediction. Then the Granger causality of X

to Y , defined as:

GX→Y = ln
var(Y|Y−)

var(Y|Y−,X−)
(2)

And vice versa for the causality from Y to X. An advantage

of this approach is the ability to detect bidirectional causality,

since causality from Y to X and from X to Y is computed

independently, and the method can be used for both linear and

nonlinear systems if the model structure is properly chosen.

2.2.3. NARX and TV-NARA model

The NARX model was first proposed by Billings and

Leontatis and can describe a wide range of nonlinear dynamic

systems (Billings, 2013). The input-output relationship of a

nonlinear system can be expressed using a polynomial NARX

model with y(f ), u(f ) denoting a segment of EEG and EMG time

series at a specific frequency f after preprocessing, respectively,

with a univariate NAR model as:

y(f , t) =

p∑

k=1

a1,ky(f , t − k)+

p∑

k=1

p∑

j=1

a3,k,jy(f , t − k)y(f , t − j)

+ey(f , t) (3)

var(Y|Y−) =

N∑

t=1

(̂y(f , t)− y(f , t))2/N (4)

x(f , t) =

p∑

k=1

b1,kx(f , t − k)+

p∑

k=1

p∑

j=1

b3,k,jx(f , t − k)x(f , t − j)

+ex(f , t) (5)

var(X|X−) =

N∑

t=1

(̂x(f , t)− x(f , t))2/N (6)

which a1,k, a3,k,j, b1,k, b3,k,j is the model coefficient, p is

the number of model orders, and ey(f , t), ex(f , t) is the model

prediction error, N is the number of samples, and var(Y|Y−),

var(X|X−) represent the variance of the univariate NAR models

for the series y(f ), u(f ), respectively. Considering the EEG

and EMG signals together, the bivariate NARX model can be

expressed as:

y(f , t) =

p∑

k=1

a1,ky(f , t − k)+

q∑

k=1

a2,kx(f , t − k)

+

p∑

k=1

p∑

j=1

a3,k,jy(f , t − k)y(f , t − j)

+

q∑

k=1

q∑

j=1

a4,k,jx(f , t − k)x(f , t − j)

+

p∑

k=1

q∑

j=1

a5,k,jy(f , t − k)x(f , t − j)+ey(f , t) (7)

var(Y|Y−,X−) =

N∑

t=1

(̂y(f , t)− y(f , t))2/N (8)
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x(f , t) =

p∑

k=1

b1,kx(f , t − k)+

q∑

k=1

b2,ky(f , t − k)

+

p∑

k=1

p∑

j=1

b3,k,jx(f , t − k)x(f , t − j)+

q∑

k=1

q∑

j=1

b4,k,jy(f , t − k)y(f , t − j)

+

p∑

k=1

q∑

j=1

b5,k,jx(f , t − k)y(f , t − j)+ex(f , t) (9)

var(X|X−,Y−) =

N∑

t=1

(̂x(f , t)− x(f , t))2/N (10)

which a1,k, ..., a5,k,j, b1,k, ..., b5,k,j is the model coefficient, q

is the number of model orders. var(Y|Y−,X−), var(X|X−,Y−)

represent the variance of the univariate NARX models for the

series y(f ), u(f ), respectively. Then the nonlinear causal impact

between X and Y can be measured by the following indicators.

GX→Y = ln
var(Y|Y−)

var(Y|Y−,X−)
(11)

GY→X = ln
var(X|X−)

var(X|X−,Y−)
(12)

The initial full regression set of NAR, NARX may be highly

redundant, and some regression quantities or model terms

have little impact on the predictive power of the model and

can be removed from the initial regression equation, and this

elimination of redundant regression quantities usually improves

the model performance. For most nonlinear dynamical system

identification problems, only a relatively small number of model

terms are usually required in the final regression model (Gu

et al., 2020). Therefore, an efficient model term detection

algorithm is needed to detect and select the most important

regression quantities. In this paper, the forward regression least

squares method is used to be able to detect the model structure

that explains the key features of the data. The key to the model

structure detection problem is how to find a subset Dn =

{ϕl1 ,ϕl2 , . . . ,ϕln }({l1, l2, . . . , ln} ∈ {1, 2, . . . ,M}) from the initial

set of candidate model items D = {ϕ1,ϕ2, . . . ,ϕM} (M is the

number of model terms) such that y can be approximated by a

linear combination: y = θl1ϕl1 +θl2
ϕl2 + . . .+θlnϕln + e, which

e is model prediction error.

Step 1: Calculate the creation of all M model terms and

calculate the EER set:

ψ = [ǫ1, ǫ2, ǫ3, · · · , ǫM] (13)

ǫm = (yTϕm)
2
/(yTy)(ϕTmϕm) (14)

l1 = arg max
1≤m≤M

{ǫm} (15)

The model term with the largest value of ǫm is selected as

the first valid model term with index l1 and is denoted as ϕl1 .

Then ϕl1 is the first valid model term selected and the first

associated orthogonal vector is defined as q1 = ϕl1 . When a

valid model term is selected, it should be deleted from the set

of candidate model terms, and then the set of candidate model

items is reduced toM − 1.

Step s(s ≤ 2): the remaining set ofM−s+1 candidate model

terms need to be transformed into a new set of orthogonalized

vectors by Gramm-Schmidt (GS) transformation. The GS

transformation can be implemented by the following equation:

qsj = ϕj −

s−1∑

r=1

(ϕj)
Tqr

(qr)
Tqr

qr (16)

where qr (r = 1, 2, . . . , s− 1) is the orthogonal vector,

ϕj
(
j = 1, 2, . . . ,M − s+ 1

)
is the unselected model terms, and

qsj is the new orthogonal vectorization. The ERR matrix for step

s is then computed using [qs1, q
s
2, . . . , q

s
M−s+1]:

ψ =
[
ǫ1, ǫ2, ǫ3, · · · , ǫM−s+1

]
(17)

ǫm = (yTϕm)
2
/(yTy)(ϕTmϕm) (18)

ls = arg max
1≤m≤M−s+1

{ǫm} (19)

ϕls is selected as the s-th validmodel term, and the s-th associated

orthogonal vector is defined as qs = ϕls . Therefore, the subsets[
ϕl1 ,ϕl2 , ...,ϕln

]
are selected step by step. Finally, the model

parameter vector θ = [θl1 , θl2 , ..., θln ] is estimated by the

triangular formula Aθ = (y)Tqj/(qj)
Tqj(j = 1, 2, . . . , n), where

A is the unit-on-unit triangular matrix and n is the number

of model terms finally selected. If the interaction between two

signals is time-varying rather than stationary, the complexity of

the model will increase significantly. When dealing with time-

varying problems, the assumption of “short -time invariance” is

often adopted, i.e., the time-varying parameters are treated as

constants for a very short period (Chen et al., 2020). Under this

assumption, given a suitable short time interval1t, for any time

step tn, within the time interval [tn-0.51t, tn+0.51t], Equation

(20) can be treated as a time-invariant system to fit the full

TV-NARX model by gradually sliding the window in the data.

y(f , t) =

p∑

k=1

a1,k(t)y(f , t − k)+

q∑

k=1

a2,k(t)x(f , t − k)

+

p∑

k=1

p∑

j=1

a3,k,j(t)y(f , t − k)y(f , t − j)+

q∑

k=1

q∑

j=1

a4,k,j(t)x(f , t − k)x(f , t − j)

+

p∑

k=1

q∑

j=1

a5,k,j(t)y(f , t − k)x(f , t − j)+ey(f , t) (20)
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FIGURE 3

Coiflets wavelet packet transform of the signal (from top to bottom, the normalized signal after pre-processing, extracted after wavelet packet

transform for 16, 24, 32, and 40 Hz bands, respectively). (A) EEG, (B) EMG.

The time-varying non-linear causal effect of X to Y can then

be measured by the following equation:

GX→Y = ln
var(Y|Y−)(t)

var(Y|Y−,X−)(t)
(21)

2.3. Statistical analysis

In order to better compare the statistical differences in

GC among frequency bands and time periods for different

hand-grasping movements, statistical analyses of GC across

frequency bands and time periods for the three grasping

actions in the directions EEG→ EMG and EMG→ EEG were

performed using SPSS data analysis software (Field, 2013)

and MATLAB programming software to test the effects of

intra-group (different frequency bands) and inter-group factors

(different hand-grasping movements) on the observed variables.

Before conducting statistical analysis, GC should be performed

to meet the normal distribution and variance chi-square, if it

meets the normal distribution and variance chi-square, one-way

ANOVA is used; if it does not meet the normal distribution then

multiple independent samples Kruskal-Wallis test is selected.

3. Results

In this paper, the EEG and EMG signals of three hand-

grasping movements in 15 healthy participants in Jeong et al.

(2020) were selected and preprocessed according to the method

in Section 1.2 to obtain data with a duration of 7 s under

each movement. According to the method in Section 2.1.1 of

this paper, Coiflets wavelet packet decomposition is applied to

extract the EEG and EMG signals in each frequency band from 1

to 50 Hz. Figure 3 shows the normalized EEG and EMG signals

after pre-processing and the extracted EEG and EMG signals at

16, 24, 32, and 40 Hz after wavelet packet transformation. The

mean square error between the combined signal of each wavelet

packet transform and the original signal is less than 1 × 10−20,

which shows that the wavelet packet transform does not lose the

information of the original signal and confirms the effectiveness

of the wavelet packet decomposition. Meanwhile, the spectrum

plot with the corresponding frequency of Figure 3 is given in

Figure 4, and it can be seen that after Coiflets wavelet packet
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FIGURE 4

Spectrum of wavelet packet decomposition signal (from top to bottom, the normalized signal after pre-processing, extracted after wavelet

packet transform for 16, 24, 32, and 40 Hz bands, respectively). (A) EEG, (B) EMG.

transform, EEG and EMG signals can be well extracted in each

band. The WPT-TF-GC relationship between EEG and EMG

signals in each frequency band was calculated according to the

method in Section 2.1. To explore the bidirectional causality

between EEG and EMG during the execution of different

hand-grasping movements in healthy participants, the results

of GC analysis of 15 participants were used to illustrate. To

quantitatively compare the differences of EEG-EMG causality

among participants in different grasping movements, different

frequency bands and different time periods, the GC during

the grasping of cards, balls, and cups in 15 participants were

analyzed.

3.1. General trend analysis of EEG-EMG
GC in di�erent frequency bands

The EEG signals and EMG signals of 15 participants

under different grasping movements were calculated separately

according to themethods in Sections 2.1 and 2.2 for bidirectional

WPT-TF-GC: GEEG→EMG and GEMG→EEG. Figure 5 shows the

GC time-frequency plots of participants in the two directions

of EEG→ EMG and EMG→ EEG under three different hand

grasping movements. The horizontal coordinate is time and

the vertical coordinate is frequency, which can clearly show

the variation pattern of the EEG-EMG synchronous coupling

relationship in the time-frequency domain, and the GC intensity

in the EEG→EMG direction is higher than that in the EMG→

EEG direction. The significant frequency bands of GEEG→EMG

are scattered in the alpha band, beta band and gamma band,

with the beta band being the most significant and the gamma

band the secondmost significant; while the significant frequency

bands of GEMG→EEG are mainly concentrated in the beta band

and gamma band. This indicates that in the state of precise

hand movements, the corticomuscular functional coupling is

bidirectional, where the coupling strength in the EEG→EMG

direction is higher than that in the EMG→EEG direction. The

instructions of movement control were mainly transmitted to

muscles through alpha, beta, gamma and caused oscillations of

beta, gamma of EMG; while the EEG-EMG coupling caused
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FIGURE 5

Time-frequency plots of EEG-EMG GC in the two directions of EEG→ EMG and EMG→ EEG under di�erent hand-grasping movements (from

top to bottom, card, ball, and cup hand-grasping movement, respectively). (A) EMG→ EEG, (B) EEG→ EMG.

by sensory feedback from muscles to cortex was significant in

mainly in the beta frequency band. The time-frequency plot of

one of the participants was given in Figure 5, and the remaining

14 showed similar patterns of changes in the time-frequency

domain.

In order to more clearly describe the EEG-EMG GC

characteristics at different frequency bands and compare the

differences in EEG-EMG coupling intensity in each frequency

band, the GC averages in five EEG frequency bands [delta (0.5–4

Hz), theta (4–8 Hz), alpha (9–12 Hz), beta (13–35 Hz), gamma

(>35 Hz)] were calculated for all participants in the EEG→

EMG and EMG→ EEG directions and during the movement

preparation and movement execution periods, respectively, and

the results are shown in Figure 6. Comparing on different

frequency bands, the GC of beta and gamma bands were

significantly higher than that of delta, theta, and alpha bands

under three movements and two different time periods. To

further test whether the different frequency bands ofGEEG→EMG

and GEMG→EEG were significant at different movements and

different time periods, a one-way ANOVA was performed on

the GC data of 15 participants according to the method in

Section 2.2. It was found that there were significant differences

among the different frequency bands at the three movements

and different time periods (p< 0.01).

3.2. EEG-EMG GC analysis of di�erent
grasping movements

In order to analyze the EEG-EMG GC characteristics

and compare the differences in EEG-EMG coupling intensity

under different movements, the GC averages in the EEG→

EMG and EMG→ EEG directions in the motor preparation

period and movements execution period were first calculated

at full frequency for all participants, and the results are

shown in Figure 7, in which it can be seen that there are

differences in GEMG→EEG among the three grasping movements

in the movements execution period. To further examine in

which frequency band this difference in EEG-EMG coupling

intensity was found specifically, and as shown in Figure 5,

the GEEG→EMG and GEMG→EEG of all participants under

the three grasping movements were mainly reflected in the
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FIGURE 6

Comparison of GC averages under di�erent frequency bands (from top to bottom, card, ball, and cup hand-grasping movement, respectively,

***p < 0.01). (A) EMG→ EEG, (B) EEG→ EMG.

alpha, beta, and gamma frequency bands. Therefore, the mean

values of GC in the alpha, beta, and gamma frequency bands

were calculated for all participants in the two directions

of EEG→ EMG and EMG→ EEG during the movement

preparation and movement execution periods, as shown in

Figure 7. In the gamma band, differences in GEMG→EEG and

GEEG→EMG were observed during the movements preparation

period, while in the beta band, differences in GEEG→EMG

were observed among the movements in the execution period.

Also, in order to confirm the significance of the above

results, the statistical significant analysis of the GC data of 15

participants was performed according to the method in Section

2.2, and it was found that there were significant differences

among the different movements in the full frequency of the

movement execution period (p < 0.1), the beta frequency

band of the movement execution period (p < 0.05) and the

gamma frequency band of the movement preparation period

(p< 0.05).

4. Discussion

At present, there are not many studies on the EEG-

EMG synchronization characteristics under different grasping

movements of the hand, and most of them are based on

the traditional coherence analysis methods, which cannot give

information on the directionality of EEG-EMG coupling. Also,

the classical Granger causality based on linear autoregressive

models cannot give information on the nonlinear and

time-varying aspects of EEG-EMG coupling. In this paper,

the WPT-TF-GC algorithm is proposed to explore the

differences of nonlinear time-varying characteristics of EEG-

EMG synchronization under hand-grasping movements in two

dimensions of the time-frequency domain. Compared with

the conventional GC, WPT-TF-GC has better time-frequency

resolution and can comprehensively explain the time-frequency

domain characteristics and directional information of nonlinear

EEG-EMG synchronization coupling.
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FIGURE 7

Comparison of GC averages under di�erent hand-grasping movements (from top to bottom, full frequency, alpha, beta, gamma band, *p < 0.1;

**p < 0.05). (A) EMG→ EEG, (B) EEG→ EMG.

The results of this paper confirm the existence of a

bidirectional Granger causality between EEG and EMG in

healthy participants during the execution of different hand-

grasp reflecting the characteristics of a closed-loop cortical-

muscle control loop, in which motor commands from the

cortex travel down to the muscle through the control efferent

pathway accompanied by afferent neural feedback processes

from the contracting muscle. Meanwhile, the coupling intensity

in the EEG→ EMG direction was higher than that in the

EMG→ EEG direction, reflecting the difference in directional

synchronous oscillations between sensory feedback and motor

control mechanisms, which is consistent with the previous

findings (Zhang et al., 2017).

The coupling strength of EEG-EMG varies in different

frequency bands because different frequency bands are involved

in different functional coupling oscillations during sensorimotor

control. In the comparison of different frequency bands, the

EEG-EMG coupling was mainly reflected in the alpha, beta,

and gamma bands, indicating that it is the alpha, beta, and

gamma bands that dominate in hand grasp motor control (Xie

et al., 2019). The highest GC values were found in the beta

band, because the beta band is mainly associated with cortical-

to-muscle control functions during sensorimotor control and

is dependent on proprioceptive afferents (Bourguignon et al.,

2019). The cortical-muscle functional coupling in the beta band

reflects the relatively stable control state of the sensorimotor

cortex. In addition, there were significant differences in

GEEG→EMG among movements during movement execution,

suggesting that the control state of the beta band of sensorimotor

cortex for grasping different objects may also differ.
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It has been shown that gamma-band oscillations are

associated with changes in attention (Honkanen et al., 2015; Li

et al., 2020). Enhancement of task attention promotes neuronal

gamma band oscillations. During the movement preparation

period, there were significant differences in the gamma

frequency bands of the three different graspingmovements. This

suggests that before the start of the movement, depending on

the task performed, the cortical sensory control system already

starts to deploy different levels of attention in preparation

for the start of the movement, resulting in an accelerated

frequency of synchronized oscillations of neuromuscular motor

neurons. This may be due to the fact that more motor neurons

are required for the control of smaller forceful and delicate

hand grasping movements, and the rate of recruited neuronal

potentials is accelerated. And the intensity of high-frequency

synchronous oscillation varies for different degrees of precise

hand gripping action. Witte et al. in their study of 16% MVC

grip output compared to an increase in EEG-EMG frequency

at 4% MVC grip output, i.e., an increase in the associated peak

frequency at smaller force outputs (Witte et al., 2007). This

suggests that the rate of neuronal potential release is accelerated

during the maintenance of very small static force outputs or

during the execution of small force hand precise movements.

Recent studies have also indicated that cortical activity in the

gamma band is closely related to higher cognitive functions (Liu

et al., 2022). It can be inferred that synchronized EEG-EMG

gamma band oscillations are involved in the sensory-cognitive

activity of task-selective attention, reflecting the integration

process of motor information processing associated with task

attention.

Deep learning is widely used in the biomedical field (Zeng

et al., 2021; Li et al., 2022b; Wu et al., 2022), and subsequent

applications of deep learning can be considered in this paper.

5. Conclusion

In this study, a WPT-TF-GC analysis method was

constructed based on the NARX model and Coiflets wavelet

packet transform to investigate the differences in coupling

strength, frequency band, and information flow characteristics

of simultaneous EEG-EMG signal coupling under different

hand-grasping movements. The analysis results show that the

WPT-TF-GC method has better resolution and can reveal the

EEG-EMG synchronous coupling characteristics from two

dimensions of the time-frequency domain. The analysis of

EEG-EMG synchronous coupling can help explore the control

feedback mechanism of human hand-grasping function and

can provide a theoretical basis for the basic research of hand

function and motor rehabilitation evaluation.
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