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Abstract: Mitochondria are considered to be important organelles in the cell and play a key role in the
physiological function of the heart, as well as in the pathogenesis and development of various heart
diseases. Under certain pathological conditions, such as cardiovascular diseases, stroke, traumatic
brain injury, neurodegenerative diseases, muscular dystrophy, etc., mitochondrial permeability
transition pore (mPTP) is formed and opened, which can lead to dysfunction of mitochondria and
subsequently to cell death. This review summarizes the results of studies carried out by our group
of the effect of astaxanthin (AST) on the functional state of rat heart mitochondria upon direct
addition of AST to isolated mitochondria and upon chronic administration of AST under conditions
of mPTP opening. It was shown that AST exerted a protective effect under all conditions. In addition,
AST treatment was found to prevent isoproterenol-induced oxidative damage to mitochondria and
increase mitochondrial efficiency. AST, a ketocarotenoid, may be a potential mitochondrial target in
therapy for pathological conditions associated with oxidative damage and mitochondrial dysfunction,
and may be a potential mitochondrial target in therapy for pathological conditions.

Keywords: astaxanthin; oxidative stress; heart failure; mitochondria; mitochondrial permeability
transition pore (mPTP)

1. Introduction

Mitochondria are the main organelle in cells and play a key role in the normal func-
tioning of the heart, as well as in the pathogenesis and development of various heart
diseases [1]. Physiologically, mitochondrial ATP stores are consistent with changes in heart
ATP consumption, and mitochondrial Ca2+ transport pathways that provide an increase in
mitochondrial Ca2+ concentration mediate these changes [1]. Mitochondria are organelles
that are the main source of reactive oxygen species (ROS) in the heart, as the respiratory
chain activates the superoxide anion O2− as part of normal respiration, and this can trigger
the production of other ROS [2].

The most important precondition for the normal functioning of cells is the mainte-
nance of the structural and functional integrity of mitochondria, since mitochondria play an
important role in energy metabolism, as well as in maintaining the cellular redox state and
regulation of apoptosis. Since mitochondria are the main source of ROS [2], mitochondrial
dysfunction leads to oxidative stress, which can result in various disorders in the cellular ac-
tivity and ultimately to their death [3]. The development of oxidative stress can be the main
cause of various human diseases, such as metabolic syndrome, neurodegenerative, car-
diovascular and inflammatory diseases, as well as age-related disruptions. Mitochondrial
dysfunction can trigger the development of diseases associated with oxidative stress [4,5].

It is known that cardiac function is regulated by various antioxidant defense mech-
anisms; however, in heart disease, antioxidant protection is impaired and an increase
in ROS production suppresses the ability of cells to antioxidant protection [1,4–6]. Re-
cently, mitochondria-targeted antioxidants have been created to effectively combat diseases
caused by ROS, for example, the MitoQ10 antioxidant of ubiquinol with a lipophilic tail of
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triphenylphosphonium, which accumulates 100-fold in mitochondria due to its extremely
negative membrane potential [7,8]. In studies, mainly in rat models of heart disease, Mi-
toQ10 has been shown to be useful in protecting against ischemia/reperfusion injury [9],
hypertension and hypertrophy [10] and sepsis-induced cardiac dysfunction [11]. The heart
has different mechanisms of antioxidant defense, however, ROS, apparently, is not sup-
pressed in heart failure, rather it is the increase in ROS production that suppresses the
antioxidant capacity [6]. Mitochondria contain several enzymes that detoxify ROS: Mn2+

superoxide dismutase (Mn-SOD) converts O2 to H2O2, and glutathione peroxidase and
peroxiredoxins convert H2O2 to H2O [2]. In addition to adding exogenous antioxidants,
strategies that enhance endogenous defense pathways are candidates for the prevention or
treatment of heart failure. One of these enzymes is glutathione peroxidase, which is present
in both the cytosol and mitochondria, which absorbs H2O2 and prevents the formation
of hydroxyl radicals: overexpression of this enzyme in mice prevents the development
of heart failure after myocardial infarction [12]. Using a similar model in rats, vitamin
E supplementation was observed to also protect against heart failure, which may be re-
lated to increased catalase and glutathione peroxidase activity [13]. Disabling Mn-SOD
in mitochondria also leads to dilated cardiomyopathy in mice that die within 10 days of
birth [14].

There are dietary antioxidants, such as vitamins E and C, that can reduce oxidative
stress [15,16], increase the protection of the mitochondrial antioxidant system [17] and, as a
result, prevent the development of cardiovascular disease. Among the dietary antioxidants
are carotenoids, which are divided into carotenes and xanthophyll. The group of carotenes
includes β-carotene and lycopene, and the group of xanthophylls contains lutein, canthax-
anthin, zeaxanthin, violaxanthin, capsorubin and astaxanthin [18,19]. Astaxanthin (AST) is
of the greatest interest for research because it is obtained from natural sources as an ester
of fatty acids or as a conjugate of proteins in food [3].

In this review, we present our findings, which shed light on the function of AST in
heart failure and we hypothesized that mitochondria may be the target of the protective
effect of AST.

2. The Biological Role of Astaxanthin

Astaxanthin (AST) was first isolated from lobsters [20]. AST belongs to a broad
class of chemical compounds known as terpenes and is classified as xanthophyll be-
cause it has two additional oxygen atoms on each of the six-membered rings compared
to beta-carotene [21,22]. AST is present in most red-colored aquatic organisms and has
been found in the tissues of a variety of fish, shrimp, birds and plants. The red color of
salmon meat is due to the presence of AST in it. Content varies both between species and
between individuals, as it is highly dependent on diet and living conditions. AST and other
chemically related asta-carotenoids have also been found in a number of lichen species
in the arctic zone [23]. The Haematococcus pluvialis alga is an essential source of AST for
industrial production. Under normal conditions, it has a green color, but with a decrease
in the amount of food, it goes into a dormant state and begins to produce AST to protect
against ultraviolet radiation and oxidation [24]. In nature, AST can be present not only in
free form, but also in the form of mono- and di-esters. In Antarctic krill, up to 65% of AST
is contained in the form of diester, in algae up to 70% in the form of monoester and in red
yeast—100% in free form [25].

AST affects the biochemical processes occurring in almost all organs and tissues of a
human. Among the well-known properties of AST, its antioxidant and anti-inflammatory
properties can be noted. Whereas AST has such a molecular structure (Figure 1) containing
hydroxyl and keto moieties on each ionone ring, it therefore exhibits high antioxidant
properties [26,27].
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Figure 1. The structure formula of astaxanthin.

The activity of AST as an antioxidant is 10 times higher than that of zeaxanthin, lutein,
canthaxanthin and beta-carotene, and 100 times higher than that of alpha-tocopherol.
Due to its molecular structure, AST remains both inside and outside the cell membrane,
therefore it provides cells with protection against oxidative damage caused by various
mechanisms; traps free radicals to prevent chain reactions; preserves the membrane struc-
ture by inhibiting lipid peroxidation; enhances the functions of the immune system and
participates in the regulation of gene expression.

It is known that, due to increased ROS production and mitochondrial leakage, mito-
chondrial dysfunction can induce the expression of pro-inflammatory cytokines, increase
the sensitivity of cells to inflammatory signaling, induce a molecular pattern associated
with damage and activate the inflammasomes [28]. It has been shown that AST can have
a prophylactic effect in degenerative pathological conditions caused by oxidative stress.
For example, in a mouse model of Alzheimer’s disease, AST in the form of an ester with
docosahexaenoic acid reduced oxidative stress and the inflammasome activation [29]. AST
can increase the stability of cell membranes by preventing the penetration of substances
that promote lipid peroxidation through the lipid layer [30] and can provide additional
protection against damage caused by free radicals [31]. The antioxidant effect of AST is
a clinically significant, especially in people who are susceptible to oxidative stress, such
as smokers and overweight people [32]. Moreover, AST is able to inhibit the induction
of inflammation in biological systems. AST has been shown to reduce bacterial load and
gastric inflammation in H. pylori-infected mice [33]. In addition, AST reduced inflammation,
a biomarker of oxidative DNA damage, thereby enhancing the immune response in young
healthy adult women [34].

AST is also known to be able to reduce the oxidative stress caused by hyperglycemia
in the β-cells of the pancreas, and AST has been observed to improve glucose and serum
insulin levels. Therefore, AST is able to protect β-cells of the pancreas from glucose toxic-
ity [35]. It was also shown that during the restoration of lymphocyte dysfunction associated
with diabetic rats, AST proved to be a good immunological agent [36]. AST increased the
total number of T and B cells relative to placebo effect, as well as the cytotoxic activity of
natural killer cells, which indicates its effect on the immune system of the organism [34].
AST has shown antitumor activity in various types of cancers. Thus, it suppressed the
growth of fibrosarcoma, breast and prostate cancer cells, and embryonic fibroblasts [37].
Astaxanthin inhibited cell death and proliferation in breast tumors in male and female rats
and mice induced by chemical means [38,39]. There is evidence of a positive effect of AST
on deceleration of the degradation of cognitive functions caused by age-related changes in
people with dementia [40].

Moreover, there was also a positive trend in the course of the disease, an improvement
in the ability to remember in mice [41]. In addition, AST has a positive effect on smoothing
wrinkles, moisturizing and skin tone, its elasticity, smoothness, puffiness and age spots [42].
AST also has a positive effect on visual acuity even in healthy people, reduces eye fatigue
and in senile farsightedness, AST has a positive effect on vision due to the improvement of
the contractility of the papillary [43]. Figure 2 shows some of the benefits of astaxanthin.
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Figure 2. Scheme of the biological benefits of AST.

3. Astaxanthin and Mitochondrial Permeability Transition Pore Opening (mPTP)
3.1. What Is mPTP?

Mitochondrial permeability transition pore (mPTP) is a mitochondrial Ca2+-dependent
cyclosporine A (CsA)-sensitive pore that is formed by a complex of proteins and is a chan-
nel that passes through the outer and inner membranes of the mitochondria. This channel
is considered a pore that changes the permeability of the mitochondrial membrane [44].
Until now, the final composition of mPTP has not been established. Among the regulator
components of the pores, the voltage-dependent anion channel (VDAC) and the translo-
cator protein (TSPO), located in the outer mitochondrial membrane, are distinguished.
Adenine nucleotide translocase (ANT) in the inner membrane, cyclophilin D (CyP-D)
and a phosphate transporter in the matrix [45]. It has been shown that VDAC and ANT
are not structural components of mPTP [46,47] however, these proteins are considered
regulators of mPTP. Recently, in our laboratory, a protein in the nonsynaptic mitochondria
of the rat brain was identified as 2’,3’-cyclonucleotide-3’-phosphodiesterase (CNPase) [48].
We have shown that CNPase is involved in the regulation of mPTP opening [49]. In
addition, we found that an ADAP1, a brain-specific protein (known recently as p42IP4

or Centaurin-α1 is also implicated in the function of mPTP [50]. Moreover, CNPase co-
localizes with CyP-D, VDAC, ANT, ADAP1 and α-tubulin [51]. Subunit c, mitochondrial
(N, N-dicyclohexylcarbodiimide DCCD-binding proteolipid) [52], also known as subunit 9
F0c, forms in cooperation with subunit α, proton channel of FoF1-ATPase [53]. We have
recently shown that the subunit c FoF1-ATPase can be a structural and/or regulatory com-
ponent of the mPTP complex, the activity of which can be modulated by Ca2+-dependent
phosphorylation [54].

mPTP is a nonselective channel that plays a significant role in Ca2+ exchange between
mitochondria and the environment [55]. Ca2+ influx and efflux from mitochondria occur in
different ways. So, into the matrix, Ca2+ passes through the Ca2+-uniporter—the voltage-
dependent Ca2+ channel of the inner mitochondrial membrane and leaves the matrix through
Na+/Ca2+—and H+/Ca2+ exchangers or through mPTP [55,56]. Ca2+ initiating the opening
of mPTP plays a regulatory role in the functioning of mPTP, i.e., activates its opening from the
side of the matrix, but also blocks it from the outside of the mitochondrial membrane.

Martin Crompton was the first to acknowledge that the opening of mPTP may cause
heart damage during reperfusion after a period of ischemia [57,58]. Subsequent studies
using isolated cardiac myocytes [59,60] and perfused Langendorff hearts [61,62] directly
showed that the mPTP opening does occur with such reperfusion injury, and that prevent-
ing the opening of the mPTP provides protection against reperfusion injury. The results
of many investigations have shown the central role of mPTP in reperfusion injury and its
importance as a pharmacological target for cardioprotection [63–66]. Due to its central role
in reperfusion injury, mPTP has become an obvious target for cardioprotection.
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An increase in mitochondrial matrix of Ca2+ alone may not be sufficient to trigger
the opening of mPTP, and additional factors such as oxidative stress, adenine nucleotide
depletion, increased phosphate concentrations and mitochondrial membrane depolariza-
tion are considered critical. Indeed, such factors, and especially oxidative stress, may be
more important than the increase in Ca2+ for mPTP opening seen under conditions such as
ischemia/reperfusion [64,67–69].

3.2. The Involvement of AST in the Protection of Mitochondria from Ca2+-Induced Oxidative Stress

AST is known to reduce oxidative stress and maintain mitochondrial integrity. Wolf
and coauthors showed that AST improves mitochondrial function by protecting mito-
chondrial redox balance [70]. Interestingly, AST significantly reduced physiologically
occurring oxidative stress and maintained mitochondria in a more reduced state even
after H2O2 stimulation. It also prevented a drop in membrane potential (∆ψm) and in-
creased mitochondrial oxygen consumption. AST can prevent mitochondrial dysfunction
by penetrating and localizing in mitochondria [71,72]. In our studies, we studied the effect
of AST on the opening of mPTP both when directly added and when it is chronically
administered to rats for two weeks orally. Park and coauthors showed that AST treatment
increased mitochondrial content, ATP production and the activity of respiratory chain
complexes [73]. It is known that the respiratory control index (RCI) indicates the effec-
tiveness of mitochondria in stimulating oxidative phosphorylation and the relationship
between O2 consumption and ATP production. The addition of AST (5 µM) to rat heart
mitochondria increased RCI and the ratio of P/O [74]. We have demonstrated that Ca2+-
induced mPTP opening is delayed at 5 µM AST in isolated RHM. AST was able to suppress
Ca2+-induced Ca2+ release and ∆ψm dissipation and increase CRC. To test the inhibitory
effect of AST, we examined another parameter that characterizes the opening of mPTP,
Ca2+-induced mitochondrial swelling. The addition of Ca2+ at a threshold concentration
to the mitochondrial suspension caused a decrease in light scattering, which indicates
swelling of mitochondria. Thus, the addition of AST to mitochondria increased the Ca2+

capacity in the RHM, while the rate of mitochondrial swelling decreased. AST prevented
mitochondrial swelling and delayed Ca2+ release from RHM when AST was added to
mitochondria [74]. This result demonstrates the involvement of AST in mPTP functioning
and is consistent with literature data showing an inhibitory effect of AST on oxidative
stress-induced mitochondrial dysfunction [75].

We obtained similar results on the effect of AST on the functional state of mitochondria
after chronic oral administration of AST to rats. The results of the study suggested that
AST is able to improve the functional state of RHM, increasing the ratio of RCI and P/O
both with the addition of AST to RHM and with AST administration. AST is an antioxidant
that is permeable to mitochondria [72] and can effectively prevent oxidative stress. AST
increases the resistance of RHM to Ca2+-dependent stress; it can be assumed that, after
further research, this antioxidant can be considered an effective tool for improving the
functioning of the heart muscle in general, both under normal conditions and under
clinical conditions.

3.3. The Effect of Chronic Administration of AST on the Change in the Content of
Proteins-Regulators of mPTP

In our studies, we have shown that AST can alter the expression of mPTP-regulator
proteins. The role of translocator protein (TSPO) previously named peripheral benzodi-
azepine receptor, in the heart is not fully understood; however, this protein is known to be
involved in the pathophysiology of heart disease, and its ligands improve cardiac function,
which makes TSPO a potential target for the therapy of cardiovascular diseases [76]. In
the heart, the level of TSPO varies depending on stressful conditions; in chronic stress, its
level decreases, and in acute stress, it increases [76]. We showed that the TSPO level in
isolated RHM decreased, probably due to the inhibitory effect of AST administration. TSPO
forms a multimeric complex with VDAC, another mPTP regulator [77]. It is known that
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VDAC regulates the rate of Ca2+ penetration into the intermembrane space [46], thereby
participating in the regulation of mPTP. A decrease in VDAC content in RHM isolated from
rats treated with AST suggests a decrease in the rate of Ca2+ influx and, therefore, a slower
opening of mPTP.

CyP-D is a mitochondrial matrix protein that is considered a structural component
and regulator of mPTP, as well as an important mediator of mPTP. mPTP regulated by
CyP-D is required for proper regulation of mitochondrial metabolism [78]. Loss of CyP-D
does not prevent mPTP from opening but increases the Ca2+ load required to open [79].
CyP-D directly binds the lateral leg of ATP synthase and alters its activity [80] and also
controls the assembly of the electron transport chain, making it a central node for the
control of mitochondrial function [81]. Moreover, the CyP-D interaction reduces the rate of
ATP synthesis and hydrolysis to modulate energy production and necrotic cell death [82].
Decreased CyP-D content in RHM isolated from AST-treated rats may result in increased
Ca2+ loading and slower mPTP opening [74]. Subunit c of Fo sector of FoF1-ATPase plays a
critical role in the formation of the Ca2+-induced mPTP channel [54,83,84]. In the presence
of a threshold value of [Ca2+], the dephosphorylated subunit c has the ability to stimulate
the opening of mPTP and induce mitochondrial swelling, as well as to reduce the ability
to uptake Ca2+ and ∆ψm. In mitochondria, when mPTP is opened, the level of subunit
c decreases [54]. In RHM isolated from rats treated with AST, the content of subunit c
increased, which could contribute to an increase in Ca2+ capacity and a slowdown in
mitochondrial swelling [85].

4. Astaxanthin Administration and Heart Failure

Our further research was aimed at studying the effect of AST administration on the
structure of the heart tissue, the functional state of the RHM, the activity of the respiratory
complexes and the levels of the main subunits of the ETC complexes in heart failure caused
by isoproterenol (ISO). For this purpose, four groups of rats were studied. The rats of
the first group were the control; the rats from the second group were orally treated with
AST. The rats of the third group were injected with ISO to cause acute heart failure by the
method adopted in the world scientific community [86]. The rats of the fourth group were
orally treated with AST and two weeks later, they were injected twice with ISO.

The results obtained by histological analysis suggest that the use of AST significantly
reduced both degeneration and post ischemic edema of the muscle fibers of the heart,
and the degree of fibrotic myocardial damage after acute heart failure caused by ISO.
The data obtained using digital bioimaging of transmural histotopograms of left ventricle
of the studied groups allowed us to conclude a significant decrease in the degree of
fibrosis of subendocardial lesions of the heart, which indicates a protective effect from the
administration of AST [85].

The electron transport chain (ETC), which consists of transmembrane protein com-
plexes (I–IV), is located in the inner membrane of mitochondria. For proper operation,
the complexes are assembled into a specially tuned supercomplex, which, together with
CV, become the basis for the production of ATP during oxidative phosphorylation. It
should be noted that defects in the respiratory complexes and ATP synthase affect the
function of mitochondria. [87,88]. We showed that the level of the main subunits of the
respiratory chain complexes in RHM in rats injected with ISO decreased, which indicates
the development of mitochondrial damage in rats. AST abolished the effect of ISO and
increased the content of subunits in the RHM. Complexes III, IV and I are involved in the
pumping of electrons and the subsequent generation of a directed proton gradient across
the inner mitochondrial membrane. In addition, the degree of damage to mitochondrial
proteins increases in various pathologies, which leads to a decrease in the efficiency of
mitochondria and the production of cellular energy [89]. Heart failure can suppress the
expression of ETC subunits and reduce their activity [1]. We found that ISO reduced the
activity of complexes I, II, IV and ATP synthase in RHM, while AST eliminated the effect
of ISO and increased their activity. It is generally accepted that the main subunits of the
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respiratory chain complexes have a significant effect on the efficiency of mitochondria. It
should be noted that a decrease in the level of subunits of these complexes can cause a
decrease in the activity of the complexes and mitochondrial respiration in RHM in rats
injected with ISO.

Cardiolipin (CL) is a phospholipid that is involved in the development of structural
integrity and enzymatic activity in the complexes of the respiratory chain of mitochondria.
CL plays an important role in mitochondrial bioenergy by stimulating the activity of key
proteins of inner mitochondrial membrane, namely several anionic transporters and some
complexes of ETC [90], and is a major phospholipid involved in maintaining mitochondrial
function and myocardial health [91]. Loss of CL in heart disease increases the production
of ROS and enhances the peroxidation of cardiolipin, which leads to dysfunction of mito-
chondria and, ultimately, to the death of cardiomyocytes [92]. There are specific binding
sites for CL with Complex I [93], Complex III [94], Complex IV [95] and Complex II [96].
We noticed that a decrease in the level of CL in RHM isolated from rats that injected with
ISO can reduce the expression of the main subunits of the ETC complexes and, therefore,
impair the functional state of mitochondria. In addition, CL is involved in the functioning
of mPTP [97], possibly for this reason, the Ca2+ capacity in RHM in rats injected with
ISO decreased, which accelerated the opening of mPTP and could increase the rate of
mitochondrial swelling. AST improved the functional state of RHM in ISO-treated rats,
while CL levels increased, resulting in increased RCI and Ca2+ capacity and slowed the
rate of mitochondrial swelling.

Antioxidants trigger a defense mechanism that breaks down harmful ROS and in-
hibits lipid peroxidation. In this case, enzymes neutralizing free radicals such as catalase,
glutathione peroxidase and superoxide dismutase help the restore of protective antioxidant
system and inhibit ROS production [98]. In our study, we noticed a decrease in the level
of Mn-SOD-2 in RHM in rats that were injected with ISO. The administration of AST
significantly increased the level of Mn-SOD-2 in RHM rats injected with ISO. AST provided
protection for cardiac tissue from oxidative damage.

ATP synthase plays a central role in maintaining the energy state of cells and the
respiratory function of mitochondria [99]. A decrease in activity of ATP synthase strongly
affects mitochondrial respiration and, consequently, cardiac activity, since disturbances in
mitochondrial energy are involved in the development of various heart pathologies [100].
Complex V (CV) consists of two functional parts: Fo and F1. The Fo complex contains
transmembrane subunits that transport protons from the intermembrane space, and F1 is
a peripheral complex in the matrix that binds to nucleotides and inorganic phosphate to
synthesize ATP [101,102]. ATP synthase is known to catalyze the final step of oxidative
phosphorylation to provide energy in the form of ATP. Changes at this stage can decisively
affect mitochondrial respiration and, therefore, the work of the heart. It is known that the
contractile ability of the heart is strongly dependent on mitochondria and that a decrease
in the level of myocardial ATP is a key sign of heart failure. In mitochondria, subunit alpha
(ATP5A) is the part of F1 sector; subunit c (ATP5G) and b (ATP5F1) are the parts of Fo
sector of ATP synthase [99]. We showed that ISO reduced CV activity in RHM, while AST
abolished the ISO effect and increased CV activity. Under these conditions, the level of sub-
units c and b decreased in RHM after BNE in rats injected with ISO, while AST eliminated
the effect of ISO and increased the level of all CV subunits. Chronic administration of AST
increased the level of subunits of the respiratory chain complexes, ATP synthase, which
suggests that AST prevents oxidative damage by increasing mitochondrial efficiency.

5. Summary

AST is able to improve the functional state of RHM by increasing RCI and P/O ratio
both with the administration of AST to rats and with direct addition of AST to isolated
mitochondria. AST, a dietary carotenoid, can penetrate to the mitochondria and inhibit the
mPTP opening. The AST administration and direct addition of AST to mitochondria can
delay Ca2+-induced Ca2+ release.
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AST administration enhanced the activity of the respiratory chain and ATP synthase
complexes in RHM exposed to ISO injection. The AST administration increased the level
of subunits of the respiratory chain complexes and ATP synthase in intact RHM samples,
suggesting that AST prevents oxidative damage and increases mitochondrial efficiency.
CyP-D regulates mitochondrial oxidative phosphorylation. The AST administration de-
creased the content of CyP-D and increased the levels of ANT, subunits of the respiratory
chain complexes, and ATP synthase subunits in the RHM after the injection of ISO, which
indicates an improvement in the functional state of RHM and mitochondrial respiration.
It may be the reason for the increased activity of the complexes of the respiratory chain
and ATP synthase. The AST treatment led to an increase in the level of Mn-SOD-2 in the
RHM in rats that were injected with ISO, thus protecting against oxidative damage. The
administration of AST inhibited the elimination of CL, which plays an important role in
the regulation of membrane integrity and the activity of the respiratory chain complexes.

AST has a protective effect in RHM and can be considered an effective drug for
improving cardiac muscle function, both under normal and clinical conditions. The mecha-
nisms by which AST acts in mitochondria need to be determined. However, based on the
above, there is no doubt that AST exerts its effect through the mitochondria (Figure 3). We
concluded that AST may be a potential target in mitochondria in therapy for pathological
conditions associated with oxidative damage and mitochondrial dysfunction.

Figure 3. Scheme of the AST effects in Heart failure. Up arrow indicates increase or enhancement,
down arrow means decrease or reduction.
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