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ABSTRACT 

In order to better understand the relationship between normal and 
neoplastic brain, we combined five publicly available large-scale datasets, 
correcting for batch effects and applying Uniform Manifold Approximation 
and Projection (UMAP) to RNA-seq data. We assembled a reference Brain-
UMAP including 702 adult gliomas, 802 pediatric tumors and 1409 healthy 
normal brain samples, which can be utilized to investigate the wealth of 
information obtained from combining several publicly available datasets to 
study a single organ site. Normal brain regions and tumor types create 
distinct clusters and because the landscape is generated by RNA seq, 
comparative gene expression profiles and gene ontology patterns are 
readily evident. To our knowledge, this is the first meta-analysis that allows 
for comparison of gene expression and pathways of interest across adult 
gliomas, pediatric brain tumors, and normal brain regions. We provide 
access to this resource via the open source, interactive online tool 
Oncoscape, where the scientific community can readily visualize clinical 
metadata, gene expression patterns, gene fusions, mutations, and copy 
number patterns for individual genes and pathway over this reference 
landscape.  
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Introduction 

Over the past several decades the scientific community has characterized 
and cataloged individual genes for their function and involvement in 
development and disease. More recently, several single-cell atlases from 
different tissues and organ sites for various species (for example human 
and mouse) have been created that provide deep insights into the 
relationships between different cell types in development and in adult 
tissues.  In this study, we have blended publicly available RNA seq 
datasets of normal and neoplastic brain to derive similar insights into the 
relationship between various central nervous system (CNS) tumors and 
between neoplastic vs. normal brain. Using this reference landscape, 
expression of specific genes and gene ontology groups can be compared 
across all tumor types and normal brain regions. 

A variety of omics approaches have been employed to characterize both 
tumor and healthy tissue at the molecular level by various large-scale 
international initiatives. The Cancer Genome Atlas (TCGA)1 contains data 
from across 33 cancer types, including uniformly processed cancer 
genomic data (whole transcriptome RNA-Seq), microarray, gene fusions, 
gene mutations and copy number calls) from 702 glioma patients and 5  
matched normal patients. The Chinese Glioma Genome Atlas (CGGA)2 
contains RNA-seq, whole genome sequencing, DNA methylation, 
microarray data from over 2000 brain tumor samples. The Children’s Brain 
Tumor Tissue Consortium (CBTTC)3 contains whole genome sequencing 
and RNA-seq data across 23 different pediatric tumors. The Genotype 
Tissue Expression Project (GTEx)4, contains genomic data from 54 non-
diseased tissue sites across nearly 1000 individuals, including 1409 brain 
tissue samples from 13 GTEx defined brain regions. 

Here, we present a visual integration approach for analyzing multiple 
diverse molecular datasets combining large numbers of samples across 
different brain regions and brain tumor subtypes. We combined 
transcriptional data from three different datasets for adult glioma, pediatric 
tumors and healthy normal brain regions, corrected for batch effects, and 
used a dimension reduction technique to construct a UMAP to find 
meaningful patterns in this pooled multi-disease dataset.  
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This comparative study can help researchers and clinicians visualize 
similarities and differences in patient cohorts, study and compare 
alterations in gene expression, signaling pathways, gene fusions, copy 
number profiles and mutation calls across multiple tumor types. By adding 
normal healthy brain tissues from GTEx to our reference landscape, we 
also allow for comparisons between healthy and neoplastic states. 
Visualizing these similarities and differences in an opensource, interactive 
website, Oncoscape 
5(https://oncoscape.sttrcancer.org/#project_bulkrnaseqbrainumap), can aid 
in analysis for translational research.  

 

Results 

Constructing the Brain-UMAP / Clustering of gene expression data 
identifies diverse disease types 

To characterize and better understand the molecular intricacies of brain 
tumors, we downloaded uniformly processed RNA-seq abundances values 
from recount-brain, a curated repository for human brain RNA-seq 
datasets, for three different uniformly processed datasets - 702 adult 
glioma samples from TCGA1, 270 adult glioma samples from CGGA5,6, 
1409 healthy normal brain samples from GTEx4 across 12 GTEx-defined 
brain regions (Supplementary Table 1a).  Retrieving data from recount7 
ensured that consistent bioinformatic pipelines were used for these three 
datasets thus resulting in no batch effects between the three datasets.  

The most common solid tumors in children are brain tumors with 
approximately 1.15 to 5.14 cases per 100,000 children in the United States 
alone8. To adequately represent a wide range of CNS tumors in our 
reference landscape, we additionally included 802 pediatric tumor samples 
(Supplementary Table 1b) from the Children Brain Tumor Network (CBTN)3. 
Fig. 1a represents an overview of data sources (details in Supplementary 
Table 1c)  

Gene expression data from each of the datasets was converted to units of 
Transcripts per million (TPM) to avoid inter-pipeline difference and were 
limited to a common set of 19142 protein-coding genes9. While both CBTN 
and recount used different bioinformatic pipelines (Supplementary Table 
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1c), in order to ensure that there were no batch effects we used combat10 
method from the R package “sva” to remove unwanted variation in our 
combined dataset. 

We explored three different dimension reduction techniques (Principal 
Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding 
(tSNE) and uniform manifold approximation and projection (UMAP) for data 
visualization. We chose UMAP to build a Brain-UMAP (Fig. 1b) on batch 
corrected TPM integrated counts, as UMAP segregated the mini clusters 
well and was very effective in visualizing clusters and their relative 
proximities (Supplementary Fig 1a).  

While 2-dimenisonal representation of the data is helpful, we also provide a 
3-dimensional representation of the data on the interactive web-based 
platform Oncoscape5) where users can easily toggle among and compare 
different patient groups, while using a suite of interoperable tools.  

At a first glance, distinct clustering of samples is observed. The adult 
glioma samples from the different datasets, TCGA-LGG, TCGA-GBM and 
CGGA, co-localized closely within the same region of the UMAP, whereas 
the pediatric tumor samples clustered between the GTEx healthy normal 
brain and the adult glioma samples. (Fig. 1b).  

 

Distinct gene expression profiles in normal human brain 

The 1409 normal brain samples segregated into two distinct clusters of 
multiple supratentorial regions and cerebellum, as we have previously 
shown11 (Fig. 1c). The supratentorial regions further revealed three 
anatomically distinct regions for basal ganglia (caudate, nucleus 
accumbens, putamen), cortex (amygdala, Brodmann Area 24, cerebral 
cortex), and the midline structures (spinal cord, substantia nigra and 
hypothalamus). We confirmed that different classifiers such as postmortem 
interval (PMI), age (years), sex, Hardy score and type of sample 
preparation (Supplementary Fig. 1b) were not associated with distinct 
clustering patterns, suggesting that the sample clusters we observe are 
based on actual biological differences between these brain regions rather 
than sample preparation parameters. However, we observed that a few 
samples with much lower RNA integrity number (RIN) compared to all the 
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other samples from different brain regions converged at a point 
(Supplementary Fig. 1b).   

 

 Clustering of transcriptomic glioma datasets reveals distinct glioma 
subtype  

Within the adult glioma clusters, we observe that while the samples from 
the two TCGA datasets cluster together, there is a more continuous pattern 
when looking at gene expression profiles for samples from TCGA-GBM and 
TCGA-LGG (Fig. 2a). This contrasts with the distinct clusters observed by 
analyzing whole exome single nucleotide alterations (SNAs) and whole 
genome copy number alterations (CNAs) from the same patients, as shown 
by Bolouri12 et al. In line with previous reports, we observed that the age of 
the patients at diagnosis for the TCGA-GBM and TCGA-LGG samples 
revealed a sharp gradient illustrating the known correlation between age 
and outcome (Fig. 2b). By contrast, patient gender was not associated with 
any specific clusters (Supplementary Fig. 2a). Regarding chromosomal 
alterations, tumors with a gain of chromosome 7 and hemizygous deletion 
of chromosome 10 (Fig. 2c) or co-gain of chromosome 19 and 20 
(Supplementary Fig 2b) co-localized in the top area of the UMAP 
containing the TCGA-GBM samples (Fig. 2c). Tumors exhibiting a co-
deletion of chromosome 1p and 19q and mutation in isocitrate 
dehydrogenase 1 and 2 genes (IDH-mut) (Fig. 2d) were concentrated in 
the lower half of the UMAP containing the TCGA-LGG samples. Tumors 
containing mutation in IDH1 (Fig. 2e), TP53 (Fig. 2f) and ATRX (Fig. 2g) 
were also found to be concentrated and clustered together in specific 
regions of the adult glioma UMAP. Using the supervised DNA methylation 
classification, transcriptional subtype, MGMT promoter status and TERT 
promoter status (Supplementary Fig 2c-f) to color the adult gliomas from 
TCGA-LGG and TCGA-GBM also revealed distinct patterns across the 
adult glioma landscape.  Selecting for common glioma mutations and copy 
number alterations clearly shows three distinct subtypes of glioma - 
IDHmut-1p19q co-deleted oligodendrogliomas, the IDH mutated 
astrocytomas with p53 and ATRX mutations, and the wild-type IDH (IDH-
wt) glioblastomas with gain of chromosome 7 and loss of chromosome 10 
molecular GBM. (Fig. 2h).  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.522658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522658
http://creativecommons.org/licenses/by-nd/4.0/


 

Adult glioma subtypes from TCGA and CGGA show similar gene 
expression profiles 

We next assessed if glioma samples of similar molecular subtypes from the 
TCGA and CGGA datasets exerted similar gene expression profiles and 
co-localized in their respective clusters. Similar to the TCGA samples, 
using grade, IDH mutation status and chromosome 1p 19q codeletion 
status for the CGGA samples, three distinct subtypes of adult glioma from 
the CGGA samples were observed. Interestingly, we observed that the 
oligodendrogliomas, astrocytomas and IDH-wt tumors from both CGGA 
and TCGA colocalized (Fig. 3a-f). Separated from the large cluster 
containing adult glioma subtypes, there were two small clusters of gliomas 
from the CGGA dataset. Based on their grade and IDH mutation status, 
one cluster consisted of a mix of IDH mutant grade 2 and grade 3 
oligodendrogliomas while the second cluster consisted of grade 4 IDH-wt 
glioblastomas. For the remainder of the paper, we will refer to the adult 
glioma datasets from TCGA and CGGA by their molecular subtypes 
(oligodendrogliomas, astrocytomas and IDH-wt glioblastomas). 

We analyzed the survival for each subtype for all three glioma subtypes 
and observed similar survival rates between TCGA and CGGA datasets for 
the respective subtypes. (Fig. 3g). We then used a nearest neighbor 
approach to predict the survival for different UMAP subregions. Survival 
was predicted for samples with the median survival of its nearest 
neighbors, present in close proximity on the UMAP landscape (Fig. 3h).  

We observed a small number of glioma samples formed an isthmus 
connecting to the normal brain samples. These samples were 
characterized by a low amount of copy number alterations and were a mix 
of IDH-wt glioblastomas, IDH-mut oligodendrogliomas or astrocytoma. 
These tumors were characterized by longer survival compared to other 
gliomas of their respective molecular subtype.  It is conceivable that in 
some samples this region may represent either early forms of gliomas or a 
mix of glioma and normal brain. 

Taken together, our results show that the transcriptomic data from different 
datasets can be combined to generate a population of adult gliomas, 
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creating a landscape where the location of specific tumor sample can be 
predictive of subtype and outcome.  

 

Pediatric Tumors cluster by disease type  

We added the 802 pediatric tumors from the CBTN dataset to our analysis 
to compare their gene expression patterns to both normal brain and adult 
glioma samples (Fig. 4a-b). We observed the formation of distinct 
subclusters for several tumor types that correlated with established 
molecular subgroups. As an example, we observed that medulloblastoma 
samples were split into three distinct clusters that correlated with known 
Medulloblastoma subtypes13 (Wnt, Sonic hedgehog (SHH) and groups 3,4, 
Supplementary Fig. 4a). Similarly, Ependymomas (EPN) samples formed 
several clusters that correlated with the anatomic tumor location 
(supratentorial (ST)-EPN, spinal-EPN, and posterior fossa (PF)-EPN) 
13(Fig. 4a, Supplementary Fig. 4b). Pediatric pilocytic astrocytomas (PAs) 
and pediatric low-grade gliomas clustered closely together suggesting that 
they exert similar gene expression patterns. The schwannomas separated 
from the pediatric tumors and were located near the neurofibromas, which 
were localized adjacent to the malignant peripheral nerve sheath tumors 
(MPNST). The subependymal giant cell astrocytoma (SEGA) form a tight 
cluster as do the meningiomas. Interestingly, we observed that 
neurocytomas, DNET, ganglioglioma clustered near normal brain samples, 
specifically the hypothalamus and amygdala samples. Building a UMAP 
with just normal brain samples and the pediatric tumors, showed similar 
clustering profile (Supplementary Fig. 4c). Taken together, these results 
suggest that pediatric tumors cluster by disease type and also form 
subclusters made by subtypes in the case of medulloblastomas and 
ependymomas.  

 

Using the reference landscape to understand pathway regulation 

Alterations in signaling pathways are a hallmark of cancer and 
understanding the extent to which these pathways are dysregulated in 
tumor samples compared to healthy normal brain can help inform 
researchers about the underlying mechanisms of different cancer types.  
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Bulk gene expression from adult glioma, pediatric brain tumors and healthy 
brain samples was subjected to a Gene Set variation Analysis (GSVA) and 
the gene set variation scores for each pathway were used to color in the 
Brain-UMAP. A score closer to 1 represented up-regulation of pathway in 
the given samples, whereas a score closer to -1 represented down-
regulation of the pathway. We calculated GSVA scores for all pathways 
present in Reactome14, KEGG15 and biocarta16 pathways. We then tested 
whether there is a difference between the GSVA enrichment scores from 
different pair of phenotypes using a linear model and moderated t-statistic.  

As examples, we found that 605, 589, and 529 (Supplementary Table 2a-c) 
pathways were up-regulated in IDH-wt glioblastomas, IDH-mut 
astrocytomas and oligodendrogliomas respectively compared to healthy 
brain samples from GTEx. A total of 456 pathways (Supplementary Table 
2d) were up regulated in all three adult glioma subtypes compared to 
healthy brain.  The top pathways which were enriched in all adult glioma 
subtypes were pathways enriched for cell cycle, DNA repair, translation, 
splicing, oncogenic signaling pathways such as RAS pathway, Notch 
pathway, MHC pathway, PI3K/AKT Signaling, Wnt pathway, SHH pathway 
(Fig. 5, Supplementary Fig. 5a). Additionally, neurotransmitter pathways, 
calcium channel, potassium channel opening pathways were up regulated 
in healthy brain regions compared to pediatric tumors and adult gliomas 
(Supplementary Fig. 5b).  

Interestingly, we noted that the two small clusters (IDH mutated grade 2 
and grade3 oligodendroglioma and grade 4 IDH-wt glioblastomas) from the 
CGGA dataset were enriched in pathways related to olfaction, 
glucoronidation, ascorbate and aldarate metabolism and xenobiotics 
(Supplementary Fig. 5c) in comparison to the main adult glioma cluster. 

While visualizing pathways across the reference Brain-UMAP is extremely 
informative, researchers exploring targets for drug development may be 
also interested in investigating individual genes of a particular pathway. For 
example, Reactome’s mismatch repair pathway (R-HAS-5358508) and 
Biocarta RELA pathway (M10183) were both found to be up-regulated in all 
adult glioma subtypes compared to healthy normal brain, coloring in the 
gene expression for individual genes over the Brain-UMAP show different 
gene expression patterns across members of the same pathway. (Fig. 6, 
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Supplementary Fig. 6). For example, almost all the genes in the mismatch 
repair pathway have elevated gene expression levels in medulloblastoma, 
except RPA3 and POLD4. 

Studying candidate genes at multiple genomic levels 

While bulk gene expression exhibited illuminating patterns in our data, 
analyzing other genomic information such as copy number alteration, gene 
fusions, or somatic alteration for each of these tumors can further enhance 
our understanding for a given gene of interest. Since processed copy 
number, gene fusions and somatic variants were publicly available only for 
two out of five datasets (TCGA and CBTN), we first built a much smaller 
UMAP using only the bulk gene expression data from these two datasets. 
The resulting UMAP (Fig. 7a) showed a similar clustering pattern as our 
original Brain-UMAP.  Next, we downloaded the copy number calls, gene 
fusion calls and somatic variants for adult gliomas from Genomic Data 
Commons (GDC) and the pediatric tumors from CBTN.  

Of note, the IDH-mut oligodendrogliomas, astrocytoma and pediatric high-
grade gliomas have the highest mutational burden and number of gene 
fusions across all brain diseases (Fig. 7b-c, Supplementary Fig. 7a-b) in 
comparison to copy number profiles (Fig.  7d-e) which show a mixture of 
genes with amplified and lost copy number profiles across all brain 
diseases. Gene fusions are another class of potential oncogenic drivers in 
cancer, including pediatric cancers.17 We observed that specific gene 
fusions and/or gene fusion partners were enriched in specific cancer 
subtypes. Adult IDH-wt glioblastoma frequently harbored gene fusions 
involving EGFR (17.7% of tumors, most commonly EGFR−PSPHP1, 
EGFR−LINC01445, EGFR−SEC61G−DT), whereas pediatric lower-grade 
gliomas frequently harbored BRAF fusions (KIAA1549−BRAF in 32% of 
low-grade gliomas and in 60% of pilocytic astrocytomas). In addition, 
supratentorial ependymomas most commonly harbored the 
C11orf95−RELA fusion (71% of tumors, also known as ZFTA-RELA) and 
meningiomas most frequently harbored fusions in NF2 and YAP1 (both 
15% of tumors) (Supplementary Fig. 7c). 

Armed with additional genomic information such as gene fusions, copy 
number variation and somatic alternation, we investigated members of the 
Reactome mismatch repair pathway (R-HAS-5358508) (Supplementary 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.522658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522658
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 8a-c). We observe that different genes belonging to this pathway 
exhibit different trends, for example genes such as POLD1(chr19), 
RPA2(chr1), and LIG1(chr19) loose a copy in IDH-mut oligodendrogliomas, 
while genes RPA3(chr19), PMS2(chr19), PCNA(chr20) and POLD2(chr7)  
gain a copy in IDH-wt GBM. While most genes show elevated gene 
expression levels for all brain tumors, of interest is EXO1 and RPA3 which 
are only up-regulated in IDH-wt GBM samples. While members of this 
pathway do not form gene fusions, they get mutated in different brain 
tumors. For example, in pediatric high grade tumors, we observed 
mutations in all the members of the mismatch repair pathway - MSH2 
(22%), MSH6 (15.71%), POLD3 (14.29%), MSH3 (12.86%), LIG1(11.43%), 
EXO1(10%), PMS2(10%), PCNA(10%), POLD1 (8.57%), RPA2(8.57%), 
MLH1 (7.14%), RPA1(7.14%),   POLD2(5.71%), POLD4(5.71%) and 
RPA3(5.71%).  

Oncogenes show altered gene expression in tumor samples, leading to 
abnormal phenotype in samples. Understanding gene expression patterns 
across various cancers of the nervous system can further our 
understanding of the disease. When studying known oncogenes such as 
EGFR, PTEN and CIC at a gene level (Fig. 8), as expected, we observe 
high number of mutations, high number of gene fusions, amplified gene 
expression values and copy number gains for EGFR across IDH-wt GBM. 
This contrasts with PTEN which shows loss of 1 copy in IDH-wt GBM 
samples. CIC, a transcriptional repressor, shows high number of mutations 
and copy number loss in oligodendrogliomas. For pediatric tumors, we 
observe BRAF gene fusions (Fig. 8) in 63% pilocytic astrocytoma tumors 
and 34% of low grade pediatric tumors (Supplementary Table 3a) ALK (Fig. 
8) mutations are also observed in 38% high-grade pediatric tumors, 33% 
spinal cord ependymomas, 22% ATRT and 21% of the medulloblastoma 
tumors (Supplementary Table 3b).This reference landscape is a useful 
research tool for the scientific community, where researchers can explore 
existing data to increase their understanding of oncogenic pathways and 
individual genes that make up these pathways, potentially uncovering 
candidates for novel therapeutic targets. By providing access to this 
reference landscape via an open source website like Oncoscape, we 
provide an interactive tool to researchers doing CNS research. 
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Discussion 

As costs for performing RNASeq continues to decline with increasing 
technological advances, more and more tumors will be sequenced, and 
additional tumor banks will be created with the underlying goal to 
understanding cancer’s complexity. The wealth of knowledge that that 
already exists in publicly available datasets such as those described here 
(GTEx, TCGA, CGGA, CBTN) is remarkable. Individually these datasets 
comprise of well-defined biologically similar set of patient samples and 
allow the analysis in exquisite resolution of genetic changes from one 
sample to the next. For example, comparing medulloblastomas to other 
medulloblastomas allows for precise characterization of molecular 
subtypes. As researchers, we can get so focused on comparing like with 
like that we lose sight of the proverbial forest for focusing too much on the 
leaves of a single tree. By integrating multiple datasets while correcting for 
batch effects, such as with the Brain-UMAP presented here, we can 
harness the power of multiple datasets.  

This landscape can be used to prospectively compare patients, similar to 
work that has been done using methylation arrays. Unlike methylation 
arrays, however, RNA seq is based on gene expression and therefore each 
cluster represented on the landscape contains granular information about 
the underlying tumor biology of the samples it contains. Because the 
overall expression pattern is identifiable for each tumor, this allows for 
cross comparison of various kinds of cancer to allow for characterization of 
tumor types not previously known. For example, asking questions about 
expression of particular genes or pathways across a wide panel of samples 
and tumor cohorts may uncover previously unknown roles or similarities 
between adult and pediatric tumor subtypes, which can possibly open new 
avenues for therapeutic discovery.   

The landscape that we present reveals correlations between tumor type 
and outcome. We have learned how diagnosis of a given tumor type can be 
confirmed using various pieces of genomic information. For example – the 
adult glioma subtype of oligodendroglioma can be confirmed by presence 
of co-deletion of chr1p/19q and somatic alteration in IDH1.  
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We are also able to compare tumor samples which were sequenced years 
apart (TCGA and CGGA) in two different continents and confirm that these 
differences did not contribute to expression changes in majority of the 
tumor samples. We are also able to identify novel entities and gain insight 
into genes that drive their unique character, such as in the case of the two 
adult glioma subtypes seen only in the CCGA data that appear to strongly 
and uniquely express genes involved in olfaction.  

Using this study as an example, we have seen how one diagnosis can be 
comprised of more than one expression entity, such as in the case of 
medulloblastoma and ependymoma.  The UMAP also indicates room for 
better classification of tumors. For example, we found tumors which were 
documented as one type in the publicly available database, but in our 
UMAP were found to cluster with tumors of a different type. For example, 
some embryonal tumors ended up clustering with the medulloblastoma 
samples indicating that they may be medulloblastomas, or at least share 
many common features with medulloblastoma. We also have seen that 
multiple diagnoses may really be one entity as in the case of tumors 
diagnosed as either pilocytic astrocytoma (PA) or pediatric low-grade 
glioma.  

Reference landscapes like the Brain-UMAP, will be informative for 
researchers who wish to obtain a quick diagnosis or characterization of 
newly obtained tumor samples. For example, if we look at the 
medulloblastoma subtypes from CBTN, there are 14 group 3, 49 group 4, 
30 SHH, 9 WNT and 19 unclassified medulloblastoma samples. For the 19 
unclassified samples, we can predict which subtype they belong to, based 
on which medulloblastoma subtype samples they cluster with. (Supp Fig 
4a).  

By combining results from both RNA-seq data (gene expression, gene 
fusions) as well as whole genome sequencing (copy number, mutation 
calls) and with the help of a few examples, we illustrate the knowledge that 
can be mined from this resource, at both a pathway level as well as a gene 
level. The work presented here demonstrates the utility of reference 
landscapes for combining genomic data across multiple tumor types for 
both diagnosis, prognosis and better understanding the biology of the 
tumors that are similar to a given patient collected prospectively. The power 
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of visualizing gene expression changes, regulation of pathways, 
chromosomal alteration, gene fusions across multiple tumor types is 
informative to every researcher, especially those who may not have 
immediate access to computational biology experts. The reference 
landscape described here provides a useful tool for researchers interested 
in gene level questions across large scale patient data, while the methods 
used for integrating data sources highlight the tremendous potential for 
combining future datasets with existing resources to address complex 
biological questions.  

Methods 

All analyses were performed in R (https://www.r-project.org/) using 
Bioconductor (https://www.bioconductor.org/) packages. We have 
deposited all scripts, associated data, at: 
https://zenodo.org/badge/latestdoi/584982012 to maximize transparency 
and reproducibility. TCGA data from GDC was downloaded using 
R/Bioconductor package TCGAbiolinks18,19, SummarizedExperiment20 was 
used to store adult glioma and pediatric tumor data. All plots were made 
using ggplot221, RcolorBrewer22. 

Obtaining gene expression RNASeq Data  

RNA Seq gene expression was downloaded from two sources for adult 
gliomas, GTEx defined healthy brain samples and pediatric tumors 
respectively (Supplemental Table 1).  

Conversion of abundance estimates to transcripts per million (TPM) 

For consistency, we converted all FPKM gene expression data to TPM data 
using the formula 

��� �
FPKM

∑ FPKM��� �����

 � 10� 

as described by Collins et al23. 

Uniform Manifold Approximation and Project (UMAP) 

Uniform Manifold Approximation and Project (UMAP) values were 
generated using the R function umap() using all protein-coding genes and 
visualized with R package ggplot221.  
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Obtaining Copy Number 

Gistic2 thresholded gene level copy number variation estimated using the 
GSITIC2 method were downloaded from UCSC 
Xena(https://xenabrowser.net/datapages/?cohort=TCGA%20Lower%20Gra
de%20Glioma%20(LGG)&removeHub=https%3A%2F%2Fxena.treehouse.
gi.ucsc.edu%3A443 and 
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(G
BM)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 ) 
for adult gliomas. Copy Number calls for pediatric tumors estimated from 
the GISTIC2 pipeline were downloaded from 
https://github.com/AlexsLemonade/OpenPBTA-analysis. 

Obtaining Gene Fusions  

Gene fusions for adult gliomas estimated using Arriba and Star-Fusion as 
per the GDC RNA-Seq pipeline were downloaded from the GDC portal ( 
https://portal.gdc.cancer.gov/projects/TCGA-GBM , 
https://portal.gdc.cancer.gov/projects/TCGA-LGG ). Gene fusions for 
pediatric tumors were downloaded from 
https://github.com/AlexsLemonade/OpenPBTA-analysis. Only high-
confidence gene fusion calls were retained from ARRIBA.  

Obtaining Mutations  

Annotated Variant call Format (VCF) files containing somatic variants from 
MuSE, VarScan2, MuTect2 and Somatic Sniper were downloaded from 
GDC portal for TCGA-GBM and TCGA-LGG. The variants for each patient 
were combined based on custom script present in our github repository. 
Somatic Variant calls for pediatric tumors was obtained from 
https://github.com/AlexsLemonade/OpenPBTA-analysis.  

GSVA Pathway Analysis 

Gene sets for all the pathways from Biocarta, Kyoto Encylcopedia of Genes 
and Genomes (KEGG) and Reactome pathways were downloaded from 
Molecular Signature Databases (MSigDB)(v7.2)24. https://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp#C2   Batch corrected log2(TPM) 
counts from each pipeline were used to conduct a Gene Set Variation 
Analysis (GSVA)25 using Biocarta, KEGG and Reactome pathways. GSVA 
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scores obtained from 1 and -1 for each sample, were visualized using 
ggplot2.   

Kaplan-Meier curves for TCGA and CGGA patients 

To generate Kaplan-Meier curves for TCGA and CGGA patients, all 
samples labeled recurrent, secondary, or normal tissue were removed. 
Duplicate samples were also excluded so that each patient was 
represented by exactly one sample. Kaplan-Meier curves were drawn by 
the Python package lifelines (Python version 3.8.6, lifelines version 
0.25.2)26 using survival data and glioma subtype labels downloaded from 
GDC, where the world health organization (WHO) 2016 criteria for the 
classification of adult diffuse gliomas was used to determine glioma 
subtype27. 

Survival-Annotated UMAP 

To annotate the Brain-UMAP with survival data, each TCGA and CGGA 
sample was colored with the median survival of a cohort of patients 
(nearest neighbors) close to the sample in question on the UMAP 
landscape. The notion of nearest neighbors was defined as a number of 
samples within a radius of 2 from the sample in question under the 
constraint that all nearest neighbors must be of the same glioma subtype 
and from the same dataset (TCGA or CGGA) as the sample in question. 
The radius parameter was chosen qualitatively. The number of nearest 
neighbors was defined as 25% of the total number of samples of the same 
glioma subtype and dataset as the sample in question. If the median 
survival of a sample’s cohort of nearest neighbors is undefined, or if a 
sample has fewer than 10 nearest neighbors, the point is not colored in. 
Non-primary and duplicate samples were excluded in the same manner as 
was done for the Kaplan-Meier curve analysis. 

Oncoscape integration  

Gene expression and survival data analysis result files were prepared 
according to the oncoscape instructions here: 
https://github.com/FredHutch/OncoscapeV3/blob/master/docs/upload.md  

Data Analysis 
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All statistical analyses and plots were done in R (v.3.3.1) as implemented in 
Rstudio (v.1.0.136). Plots were created using the R basic graphics. The 
following R packages were used: GenomicAlignments53 (v.1.24), 
reshape64 (v.0.8.8), png65 (v.0.1–7), ape66 (v.5.3) and seqinr67 (v.3.6–1). 
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Figure Legends 

Fig1. Overview of data analyzed (a) showing datasets used, batch 
correction and construction of Brain-UMAP. (b) UMAP of complete dataset 
including adult gliomas, pediatric tumors and GTEx-defined normal brain. 
(c) UMAP showing unique clustering of GTEx-defined brain-regions  

Fig 2. UMAP for adult glioma showing patients colored in by (a) TCGA-
GBM and TCGA-LGG patients (b) age at diagnosis (c) Chr 7 gain/ Chr10 
loss in patients. (d) Chr 1p/19q co-deletion status in patients ( e) IDH1 
mutation (f) TP53 mutation (g) ATRX mutation. (h) UMAP identifying the 3 
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distinct adult glioma subtypes – IDH wildtype, Astrocytoma and 
Oligodendrogliomas.  

Fig 3. Co-localization of adult gliomas from two publicly available datasets 
TCGA and CGGA. Top and bottom panel shows (a) grade, (b) IDH 
mutation status and (c) 1p19q co-deletion status for adult gliomas from 
TCGA colored in, and adult gliomas from CGGA greyed out and vice versa. 
(d)  Survival analysis for adult glioma subtypes IDH wildtype(red), 
Astrocytoma (blue) and Oligodendroglioma (green) from TCGA and CGGA 
shown in solid and dotted lines respectively. ( e) Prediction of survival time 
(in years) using a nearest neighbor approach shows a gradient for adult 
gliomas.   

Fig 4. (a) UMAP of pediatric tumors (b) Updated coloring of the Brain-
UMAP showing pediatric tumors and three subtypes for the adult gliomas. 

Fig 5. Visualization of GSVA Pathway scores across Brain-UMAP for 
cancer pathways and cellular processes.  

Fig 6. Visualization of gene expression profiles for genes from the 
Reactome mismatch repair pathway across the Brain-UMAP 

Fig 7. (a) UMAP of pediatric tumors and adult glioma subtypes from TCGA. 
Coloring in UMAP of pediatric tumors and adult glioma subtypes from 
TCGA by (b) number of point mutations and (c) number of gene fusions per 
tumor. 

Fig 8. Integration and visualization of genomic information such as gene 
expression, mutation, copy number and gene fusions at a single gene level 
across Brain-UMAP for 5 genes – EGFR, PTEN, CIC, BRAF and ALK. 
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Figure 5
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Figure 6
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