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Abstract

Proposal

This paper investigates a novel screening tool for Obstructive Sleep Apnea Syndrome

(OSAS), which aims at efficient population-wide monitoring. To this end, we introduce

SASscore which provides better OSAS prediction specificity while maintaining a high

sensitivity.

Methods

We process a cohort of 2595 patients from 4 sleep laboratories in Western Romania, by

recording over 100 sleep, breathing, and anthropometric measurements per patient; using

this data, we compare our SASscore with state of the art scores STOP-Bang and NoSAS

through area under curve (AUC), sensitivity, specificity, negative predictive value (NPV),

and positive predictive value (PPV). We also evaluate the performance of SASscore by con-

sidering different Apnea–Hypopnea Index (AHI) diagnosis cut-off points and show that cus-

tom refinements are possible by changing the score’s threshold.

Results

SASscore takes decimal values within the interval (2, 7) and varies linearly with AHI; it is

based on standardized measures for BMI, neck circumference, systolic blood pressure and

Epworth score. By applying the STOP-Bang and NoSAS questionnaires, as well as the

SASscore on the patient cohort, we respectively obtain the AUC values of 0.69 (95% CI 0.66-

0.73, p < 0.001), 0.66 (95% CI 0.63-0.68, p < 0.001), and 0.73 (95% CI 0.71-0.75, p <
0.001), with sensitivities values of 0.968, 0.901, 0.829, and specificity values of 0.149,

0.294, 0.359, respectively. Additionally, we cross-validate our score with a second indepen-

dent cohort of 231 patients confirming the high specificity and good sensitivity of our score.

PLOS ONE | https://doi.org/10.1371/journal.pone.0202042 September 5, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Topı̂rceanu A, Udrescu M, Udrescu L,

Ardelean C, Dan R, Reisz D, et al. (2018) SAS

score: Targeting high-specificity for efficient

population-wide monitoring of obstructive sleep

apnea. PLoS ONE 13(9): e0202042. https://doi.org/

10.1371/journal.pone.0202042

Editor: Andrea Romigi, University of Rome Tor

Vergata, ITALY

Received: February 21, 2018

Accepted: July 26, 2018

Published: September 5, 2018

Copyright: © 2018 Topı̂rceanu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by Romanian

National Authority for Scientific Research and

Innovation, CNCS/CCCDI - UEFISCDI, project

number PN-III-P2-2.1-PED-2016-1145, within

PNCDI III.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202042
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202042&domain=pdf&date_stamp=2018-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202042&domain=pdf&date_stamp=2018-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202042&domain=pdf&date_stamp=2018-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202042&domain=pdf&date_stamp=2018-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202042&domain=pdf&date_stamp=2018-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202042&domain=pdf&date_stamp=2018-09-05
https://doi.org/10.1371/journal.pone.0202042
https://doi.org/10.1371/journal.pone.0202042
http://creativecommons.org/licenses/by/4.0/


When raising SASscore’s diagnosis cut-off point from 3 to 3.7, both sensitivity and specificity

become roughly 0.6.

Conclusions

In comparison with the existing scores, SASscore is a more appropriate screening tool for

monitoring large populations, due to its improved specificity. Our score can be tailored to

increase either sensitivity or specificity, while balancing the AUC value.

Introduction

Obstructive sleep apnea syndrome (OSAS) is a serious sleep respiratory disorder, which has

a prevalence that is considered by many authors as epidemic [1–6]. OSAS consists of abnor-

mal breathing pauses that occur during sleep, resulting in sleep fragmentation and excessive

daytime somnolence [7, 8]; it is considered as part of the wider category named SDB (sleep-

disordered breathing). In general, SDB produces an impaired quality of life, including an

increased risk of causing motor-vehicle accidents. SDB also increases the mortality rate [9],

because it contributes to the development of cardiovascular diseases [10] such as hyperten-

sion [11], type 2 diabetes [12], cancer [13], and chronic kidney disease [14]. Because it is

associated with many co-morbidities [15], SDB has several distinct clinical phenotypes. If

not properly diagnosed and treated, SDB may increase morbidity and preoperative risks as

well [16–20].

OSAS severity is quantified with the Apnea-Hypopnea Index (AHI). Apneas are defined

as a decrease of at least 90% of airflow from baseline, which lasts for� 10 seconds, whereas

hypopneas are defined as a� 30% decrease of airflow that lasts� 10 seconds; both are associ-

ated with either an arousal or a� 3% O2 saturation decrease [21]. The AHI represents the

mean number of apneas and hypopnoeas per hour of sleep. Clinically significant OSAS is

characterized by AHI� 30. However, some studies are adopting different AHI thresholds for

OSAS, such as 15 (considered as the lower limit for moderate risk) or 20 [22]. Nonetheless, the

clinical relevance and consequences of mild obstructive sleep apnoea is still unclear [23]. Also,

there is a variability in scoring the respiratory events across different countries [24].

In current practice, there are three major predictive scores based on questionnaires, namely

Berlin (since 1999), STOP-Bang (since 2008), and NoSAS score (since 2016) [22, 25–28].

STOP-Bang is considered as the better alternative to Berlin score, due to its high sensitivity

rates (83-100%). STOP-Bang has a low specificity (37-56%) [27, 28], which prevents its usage

for large population screening. NoSAS score comes to improve the prediction specificity by a

considerable margin (69%), while maintaining a sufficient sensitivity value (79%).

Present practice shows that the existing screening tools are limited when monitoring large

populations (e.g. groups of more than 100, 000 people). In other words, current scores mainly

focus on simplicity and high sensitivity, because these characteristics are paramount for clini-

cal problems such as a rapid diagnosis of preoperative patients—the unfortunate consequence

is a high rate of false positives.

This paper builds upon our previous work to improve the SASscore [29] by specifically aim-

ing at a high specificity. At the same time, to address the needs of practitioners in sleep labora-

tories, we simplify the computation of the original score, so that it may easily be applied in

daily scenarios. Altogether, the contributions of this paper are:
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• We redefine our computer-based algorithm that calculates SASscore in a form that can also be

used by practitioners in a much simpler way, without the need to employ dedicated in silico
tools. To this end, we only marginally reduce the accuracy of the original SASscore, while sig-

nificantly increasing its usability.

• We validate the simplified SASscore on a cohort of 2595 patients diagnosed in several sleep

centers from Western Romania.

• We optimize the performance of our SASscore, to maximize its specificity (using AUC).

• We compare SASscore with state of the art monitoring tools (i.e. STOP-Bang, NoSAS) in

terms of sensitivity, specificity, AUC, to conclude that SASscore is indeed better suited for

monitoring large populations.

Materials and methods

Study design and participants

The study presented in this paper is based on the approval granted by The Ethical Committee

of Victor Babes Hospital, Timisoara, Romania (approval no. 10/12.10.2013).

The “Western Romania” (WestRo, available as S1 Dataset) cohort consists of 2595 consecu-

tive patients with suspicion of sleep breathing disorders, which were evaluated at several sleep

laboratories in Timisoara (Western Romania) between March 2005 and May 2017. At the

initial visit, the study protocol was clearly explained, to obtain the patient’s consent and the

acceptance of referral physicians. Subsequently, cardiorespiratory polygraphy and polisomno-

graphy (PSG) were performed. Polygraphy was carried out with both Philips Respironics’

Stardust polygraph (2005) and SleepDoc Porti 7, while PSG was performed with Philips

Respironics’ Alice 5 and Alice 6 Diagnostic Sleep System, according to the appropriate guide-

lines [30, 31]. The polygraphy was performed both at home and at the hospital, whereas PSG

measurements were only performed under medical supervision (at the hospital). To preserve

the information accuracy, all collected data were carefully verified. Throughout the entire pro-

cess we ensured complete data confidentiality. Overall, our observational, retrospective study

employs only standardized procedures that are non-invasive.

All 2595 patients with completed sleep study protocol and signed informed consent are

included in the WestRo cohort, each with the corresponding 108 cardio-respiratory parame-

ters and anthropometric measurements. Based on the collected data, we are able to compute

not only the SASscore, but also state of the art scores STOP-Bang and NoSAS. For the STOP-

Bang score we use the following parameters: gender (“M” = male), age (> 50 years), BMI

(> 35 kg/m2), neck circumference (> 41/43 cm females/males), hypertension (“1” = yes), snor-

ing (“1” = yes), sleepiness/tired (“1” = yes), observed apneas/agitated sleep (“1” = yes). To com-

pute the NoSAS score we use the following parameters: gender (“M” = male), age (> 55 years),

BMI (> 25/30 kg/m2), neck circumference (> 40 cm), snoring (“1” = yes). The parameter

thresholds used to compute STOP-Bang and NoSAS have the exact values that were originally

defined for each screening tool [27] [26] [22].

State of the art screening tools for OSAS

To address the need for OSAS/SDB screening, state-of-the-art scores such as Berlin [25],

STOPBang [27], and NoSAS [22] have been proposed.

The Berlin questionnaire includes information about snoring, daytime sleepiness and

fatigue, obesity, and hypertension. It was developed by using a general clinical sample of 744

individuals, of whom 13% had their OSAS diagnosis confirmed through polygraphy [25].

Obstructive sleep apnea monitoring with SAS score
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The STOP-Bang score combines information from a self-administered questionnaire about

complaints of snoring, tiredness, observed apnea, and high blood pressure, with clinical and

anthropological parameters such as body mass index (BMI), age, neck circumference, and sex.

It was created by processing a large group of 2477 patients that were assessed prior undergoing

surgery. Out of these patients, 9% were diagnosed with OSAS [27].

Most literature recommends STOP-Bang over Berlin due to its higher sensitivity rates of

83.6% for AHI> 5, 92.9% for AHI> 15, and 100% for AHI> 30. However, STOP-Bang has

a lower specificity (56.4% for AHI> 5, 43% for AHI> 15, and 37% for AHI> 30) [27, 28],

which prevents its usage for large population screening. Although there are notable attempts

to improve STOP-Bang’s specificity [32], they are mainly targeting narrow-type cohorts such

as preoperative patients.

NoSAS is a relatively new score introduced by Marti-Soler et al. [22] that provides a good

sensitivity for detecting individuals at risk of SDB. The score was developed based on multiple

factor analysis and logistic regression to identify patients with clinically significant OSAS. The

initial development of NoSAS was done on a cohort of 2121 participants from Lausanne (Swit-

zerland); the result is a score between 0 and 17, which takes into consideration the following

patient data: neck circumference (4 points if� 40 cm), BMI (5 points if� 30), snoring (2

points if present), age (4 points if� 55 years), and gender (2 points if male). NoSAS is able to

identify a significant risk of OSAS, if the score is bigger than the threshold value (i.e.� 8).

NoSAS score was also applied on an Asian cohort, briefly after its publication in 2016, using

a sample of 242 subjects from Singapore [33]. The same subjects were given the Berlin and

STOP-Bang questionnaires before the study began. The results for predicting severe OSAS

(defined as� 30 events/h) indicate a sensitivity of 0.69 and a specificity of 0.73 for NoSAS.

The AUC values were similar for all three questionnaires (within the interval 0.68-0.75). The

authors conclude that NoSAS performed similarly to the STOP-Bang and Berlin question-

naires in a multi-ethnic Asian cohort [33], with no noticeable distinction in NPV or AUC.

This study confirms that further improvements for OSAS prediction scores are required.

Overall, NoSAS is proven to have a good accuracy (AUC, sensitivity) compared to the other

questionnaires (i.e. Berlin and STOP-Bang). Similarly to our proposed SASscore, it is estimated

that NoSAS algorithm can be used for OSAS/SDB screening in larger cohorts where polysom-

nography is too expensive or time consuming.

SASscore development

To develop the original SASscore, we employed a two-step Machine Learning approach, as fully

detailed in [29]. First, we performed dual clustering (unsupervised learning) on a complex net-

work of OSAS patients using a relevant population of 1371 consecutive patients. In our com-

plex network, nodes represent OSAS patients and links represent disease compatibility

relationships that were defined according to a set of objective, easy-to-measure clinical and

anthropometric parameters (their distributions are provided in S1 Table and S1 Fig). The

processed network has 8 topological clusters, which we interpret as a set of 8 distinct OSAS-

acquiring patterns (i.e. phenotypes). Then, we employed supervised learning to obtain a deci-

sion tree which assigns any new patient to one of the 8 discovered phenotypes. Subsequent sta-

tistical analysis is performed on each cluster/phenotype to render SASscore according to each

parameter’s cluster averages.

In this paper, we develop a new version of SASscore, in order to make it handy for clinical

practitioners. As such, we propose a simplified method for computing SASscore that does not

require dedicated software tools, computers or smartphones. We also validate the new SASscore
on a cohort of 2595 patients from Western Romania, and provide a fair and consistent

Obstructive sleep apnea monitoring with SAS score
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statistical comparison with state of the art questionnaires, by applying all scores/questionnaires

on the same OSAS patients database.

Originally, SASscore was created in such a way that, for every new patient, computer-based

algorithmic processing is required to insert the patient into our curated apnea patient network.

Then, the patient is automatically assigned to one of the 8 graph clusters (phenotypes); after

performing this assignment, the patient’s SASscore is computed with the following equation:

SASscore ¼
BMI

BMIcluster
þ

NC
NCcluster

þ
SysBP

SysBPcluster
þ

ESS
ESScluster

ð1Þ

In Eq 1 the index of the assigned cluster is cluster 2 {1..8}. Each cluster has a set of precom-

puted average measures: BMIcluster (for body-mass index), NCcluster (neck circumference),

SysBPcluster (systolic blood pressure), and ESScluster (Epworth Sleepiness Scale [34]). Thus, the

new patient’s anthropometric and clinical parameters BMI, NC, SysBP, and ESS are normalized

towards the cluster’s average values, so that his/her SASscore represents a relative risk as com-

pared to the cluster average. Such an approach is owing to the normal/Gaussian distribution

that was identified in all relevant parameters and anthropometrics [29].

However, the computational steps entailed by calculating the original SASscore require spe-

cialized, computer-based software tools. Therefore, while maintaining our initial focus on

building a high specificity and sensitivity OSAS monitoring tool, we simplify Eq 1 according to

the following principles:

• We take into consideration all relevant parameters that were rendered by the combined

complex network and machine learning approach from [29]: BMI, NC, SysBP, and ESS.

• The difference from our original SASscore from Eq 1 is that, instead of performing machine

learning for cluster assignment followed by the dynamical adjustment of cluster-specific

averages, we use fixed average values for the considered parameters.

Therefore, in Eq 2 the fixed average values for BMI, NC, SysBP, and ESS are standard values

that can be found in literature and that are used in clinical practice. Over time, if other stan-

dard values will be embraced by clinicians and researchers, these fixed averages for BMI, NC,

SysBP, and ESS can be updated. As a remark to Eq 2, the patient’s NC is divided by 40 cm for

females (♀), or by 43 cm for males (♂).

SASscore ¼

BMI
30
þ
NC
40
þ
SysBP
140

þ
ESS
11

;♀

BMI
30
þ
NC
43
þ
SysBP
140

þ
ESS
11

;♂

8
>>><

>>>:

ð2Þ

With Eq 2, the computation of SASscore on any new patient becomes a straightforward task.

To provide an offline support for our method, any clinical practician, family doctor, or patient,

may use the charts plotted in Fig 1.

The resulted score is a rational number with no strict lower or upper bound. Nevertheless,

due to specific limits of anthropometric and physiological measures, we found that scores

mainly range within the [2, 7] interval. Because the score is consistently proportional with the

patient’s AHI, we also provide a direct risk classification which corresponds to the AHI-based

Obstructive sleep apnea monitoring with SAS score
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risk groups:

SASRisk ¼

Low if SASscore < 3

Mild if 3 � SASscore < 3:5

Moderate if 3:5 � SASscore < 4

High if 4 � SASscore < 5

Very high if SASscore�5

8
>>>>>>><

>>>>>>>:

ð3Þ

The four sub-scores in Fig 1 are the four components of SASscore, which have to be added

together. For example, suppose we have a male patient with BMI = 39, NC = 46, SysBP = 140,

and ESS = 8. Using a printed copy of Fig 1, one could note the approximate values on the y-axis

that correspond to each measure found on the x-axis. As such, the sub-score for BMI, corre-

sponding to x-axis value 39, is the y-axis value of 1.3; the sub-score for NC is 1.1; the sub-score

for SysBP is 1; the sub-score for ESS is 0.75. Adding these four values, we obtain SASscore = 1.3 +

1.1 + 1 + 0.75 = 4.15, which corresponds to a high risk of OSAS, according to Eq 3.

To further enhance the usability of SASscore, we propose an OSAS severity scorecard as pre-

sented in Fig 2. The scorecard fosters quick diagnosis for any new patient, which can be a very

helpful tool for family doctors, or even for population-wide self assessment.

Fig 1. XY calculation plots for the sub-score of each of the four components within SASscore:
BMI
30 , NC

40 for females and NC
43 for males,

SysBP
140 , ESS

11 . Each plot highlights with

black lines the parameter value for which the respective sub-score equals 1.

https://doi.org/10.1371/journal.pone.0202042.g001
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Results

The clinical parameters, demographic and anthropometric data for the 2595 participants in

our WestRo study cohort are shown in Table 1, alongside standard deviation (SD) or percent-

age (%) values.

Our study group consists mainly of male patients (69.2%) with increased clinical signs of

severe OSAS (64.4% have AHI > 30/h). As such, because our cohort mostly includes sick

patients, the overall sensitivity of our results is higher and the measured specificity is lower

than one would expect in a random population.

The performance results of our score is presented in Table 2. The prevalences of OSAS in

the cohort, as can be defined by adopting different AHI cut-off values (the exact AHI values

Fig 2. The sleep apnea syndrome severity scorecard that provides an approximation for SASscore, based on patient sex, BMI, neck circumference, systolic and

diastolic blood pressure, and daytime sleepiness.

https://doi.org/10.1371/journal.pone.0202042.g002
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were measured under medical supervision) are as follows: 2519 (97.1%) for AHI� 5, 2390

(92.1%) for AHI� 10, 2238 (86.2%) for AHI� 15, 2033 (78.3%) for AHI� 20, 1671 (64.4%)

for AHI� 30, and 1093 (42.1%) for AHI� 45. Table 2 provides the performance comparisons

for the AHI = 30 cut-off.

Overall, we notice that the prevalence according to the SASscore (76.2%) is the closest to the

real one (64.4%)—as obtained after rigorous polysomnography—and the AUC has the highest

value (0.73) for SASscore. In terms of sensitivity, SASscore performs marginally weaker (0.829),

yet it offers the best specificity among the three scores (0.359). These results mean that SASscore
obtains a specificity that is 140.9% higher than that of STOP-Bang.

In Table 3 we provide the values for true/false positives/negatives obtained by applying

the three scores on the WestRo dataset. Again, we notice that SASscore attains a better patient

filtering. For example, when analysing the true negative rate of STOP-Bang, we estimate that

the diagnosis finds 138 healthy patients out of 924 (14.9%), while SASscore finds 331 healthy

patients out of the 924 healthy ones (35.9%). Moreover, in terms of false positive rate, STOP-

Table 1. Demographic, anthropometric data, and clinical parameters of the WestRo patient cohort (N = 2595).

Mean/n SD/%N
Age (years) 52.2 ±13.25

Gender (male) 1795 69.2%

Body-mass index (kg/m2) 33.73 ±7.11

Obesity (BMI> 30) 1737 66.9%

Neck circumference (cm) 43.15 ±5.25

Abdominal circumference (cm) 115.76 ±17.07

Hypertension 1752 67.5%

Snoring 2024 78.0%

AHIs� 30/h 1671 64.4%

Mean AHI 43.54 ±26.57

Obstructive apneas 23.91 ±23.86

Central apneas 3.06 ±5.42

Mixed apneas 3.39 ±6.38

Hypopnea 13.40 ±9.91

Epworth sleepiness score ESS (0-24) 11.16 ±5.40

Sleepiness (ESS� 11) 1712 65.9%

STOP-Bang score� 3 2404 92.6%

NoSAS score� 8 2157 83.1%

The values in Table 1 represent means (accompanied by standard deviation σ), or counts n (accompanied by

percentage % of total N). Hypertension is defined as systolic blood pressure of� 140 mmHg or diastolic blood

pressure� 90 mmHg.

https://doi.org/10.1371/journal.pone.0202042.t001

Table 2. Performance of STOP-Bang, NoSAS, and SASscore in the WestRo cohort (N = 2595) when AHI� 30 events/h is considered the diagnosis criteria.

Prevalence AUC Sensitivity Specificity PPV NPV

STOP-Bang 2404 (92.6%) 0.69 (0.66-0.73) 0.968 0.149 0.673 0.723

NoSAS 2157 (83.1%) 0.66 (0.63-0.68) 0.901 0.294 0.698 0.621

SASscore 1977 (76.2%) 0.73 (0.71-0.75) 0.829 0.359 0.701 0.537

The data within parentheses (from the ‘AUC’ column) represent 95% confidence intervals. AUC = area under the curve. PPV = positive predictive value.

NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0202042.t002
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Bang falsely diagnoses 786 patients (85.1% of the healthy population); SASscore falsely predicts

only 591 (63.9%) patients.

We also present a cross-validation analysis of our SASscore, using an independent dataset,

which we refer to as the CPAP cohort (provided in S2 Dataset). This independent dataset

includes relevant data for NCPAP = 231 patients, gathered during autumn 2013, by following

the same procedure as our WestRo cohort (with NWestRo = 2595 patients). The CPAP cohort

data was gathered in a sleep laboratory in Timisoara, Romania, where overnight CPAP treat-

ment was performed. Considering only the data that is relevant to our current study, we

are able to measure SASscore for each patient, and then determine the corresponding AUC, sen-

sitivity and specificity for the entire CPAP dataset. In Table 4 we present the anthropometric

data of the CPAP cohort. The statistical results for SASscore in the CPAP cohort are very similar

to the results obtained for WestRo: OSAS prevalence of 171 (74.0%) where real prevalence is

157 (67.9%); AUC of 0.70 (CI 0.68-0.72), sensitivity of 0.803, specificity of 0.392, PPV of 0.737,

and NPV of 0.483. Indeed, the cross-validation proves that SASscore is an accurate and robust

predictor of OSAS.

All the discussed results are obtained by considering the cut-off value of 3 for our SASscore.
According to Eq 3, this value of 3 coincides with the threshold between Low (no) risk and Mild
risk of OSAS. To further explore the consequences of modifying the threshold value, we repre-

sent sensitivity and specificity that are obtained by increasing the value of SASscore cut-off, start-

ing from 2.5 up to 6 (see Fig 3).

By changing the value of SASscore cut-off we can simply alter the diagnosis outcome—from

a very permissive score (i.e., low cut-off translates to high sensitivity, similar to STOP-Bang),

to a very strict one (i.e., high cut-off translates to high specificity). As shown in Fig 3, it is not

Table 3. Correct classification and missed diagnosis for the WestRo cohort (N = 2595).

STOP-Bang NoSAS SASscore

Positive Negative Positive Negative Positive Negative

AHI� 30 events/h (positive) 1618 (62%) 53 (2%) 1505 (58%) 166 (6%) 1386 (53%) 285 (11%)

AHI < 30 events/h (negative) 786 (30%) 138 (5%) 652 (25%) 272 (10%) 591 (23%) 331 (13%)

Data are n (%). AHI = apnoea-hypopnoea index. Prevalence of OSAS by polysomnography is 64.4%.

https://doi.org/10.1371/journal.pone.0202042.t003

Table 4. Demographic, anthropometric data, and clinical parameters of the CPAP patient cohort (N = 231).

Mean/n SD/%N
Age (years) 52.01 ±13.61

Gender (male) 167 72.3%

Body-mass index (kg/m2) 32.72 ±7.39

Obesity (BMI> 30) 154 66.7%

Neck circumference (cm) 42.64 ±5.11

Hypertension 150 64.9%

AHIs� 30/h 157 67.9%

Mean AHI 44.39 ±26.13

Epworth sleepiness score ESS (0-24) 11.38 ±5.19

Sleepiness (ESS� 11) 127 54.9%

The values in Table 4 represent means (accompanied by standard deviation σ), or counts n (accompanied by

percentage % of total N). Hypertension is defined as systolic blood pressure of� 140 mmHg or diastolic blood

pressure� 90 mmHg.

https://doi.org/10.1371/journal.pone.0202042.t004
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possible to keep high levels for both sensitivity and specificity, therefore we try to find a bal-

ance between the two. As our study goal is to attain a higher specificity, we adopt the SASscore
cut-off value of 3.7 according to the empirical results from Fig 3. In other words, a patient is

considered at risk of OSAS, if his or her SASscore � 3.7.

As such, depending on the actual clinical context, the cut-off value may be considered too

small for preoperative diagnosis (which we further refer to as case A), or too high for popula-

tion monitoring (case B). In case A, one could use a cut-off value of 2.5-2.75, thus obtaining a

score that is similar to NoSAS in terms of sensitivity (0.913-0.876) and specificity (0.211-

0.277). In case B, one could use a cut-off value of 4-4.5, to obtain a lower sensitivity (0.494-

0.268), but a significantly improved specificity (0.727-0.894).

For better understanding the impact of the cut-off value, we compare SASscore with cut-offs

3 and 3.7 against both STOP-Bang and NoSAS; Fig 4 plots the performances of the three scores

accordingly. Note that the reference results for STOP-Bang and NoSAS remain the same in the

two panels of Fig 4, because they are independent of our score’s customization.

Discussion

Our results show that, using patient measurements that are easily available in primary care

practice, the customizable SASscore allows for reliable determination of clinically significant

OSAS, with a high and adjustable specificity, ranging from 0.359 to 0.607. Compared with

existing state of the art screening scores, such as STOP-Bang (0.149 specificity) and NoSAS

(0.294 specificity), SASscore is indeed the most appropriate for monitoring large populations.

The task of developing an ideal OSAS screening score is cumbersome, because of the several

possible application contexts [4]. For instance, in a clinical context involving preoperative

phases, a score should mainly have a high sensitivity to avoid the potentially catastrophic con-

sequences of false-negative results. Conversely, in a primary care context, the score should

additionally be specific enough to avoid referral of low-risk patients for costly and time-con-

suming polysomnography. In a population-wide context, including family doctors and self-

assessment of SDB, the score should mainly focus on specificity in order to avoid high false-

Fig 3. State space exploration of cut-off values for the SASscore to observe the sensitivity-specificity interplay. The

point of intersection between sensitivity and specificity gives the cut-off value of 3.7.

https://doi.org/10.1371/journal.pone.0202042.g003
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positive rates. Moreover, specificity is especially important for low prevalence populations [5,

6, 35]. Currently, there exist relatively good solutions for the first two exemplified contexts,

namely the Berlin, STOP-Bang, and NoSAS scores. However, an efficient tool for the third

mentioned context (i.e. population-wide) is yet to be developed. As suggested by its higher

AUC and correct classification proportion (with respect to the other scores), our SASscore has

the potential of representing a better compromise between sensitivity and specificity, allowing

clinically significant SDB to be reliably ruled out, without yielding too many unnecessary sleep

investigations.

To achieve time efficiency, a screening score should entail a small number of measures. At

the same time, such measures must be related to easily available and objective patient variables

[36]. Similar to the NoSAS score, SASscore uses anthropometric measures, such as BMI and sys-

tolic blood pressure (which are part of any standard clinical assessment), as well as neck cir-

cumference and Epworth score [34], which can be easily measured and assessed respectively.

As SASscore is based on a previously developed classifier [29] developed through means of

machine learning and network science, the main aim of this paper is to develop an easy-to-

apply, yet reliable score. Therefore, we try to limit the number of subjective variables, such as

witnessed sleep apneas, or snoring severity and frequency, which require the subjective obser-

vation of a third party, thus affecting the robustness of the score.

Compared with the 8 questionnaire items required for STOP-Bang, the 9-11 questions of

the Berlin questionnaire, or the 5 items of the NoSAs score, this new version (i.e. not com-

puter-based) of SASscore only requires 4 items, thus being very appropriate for clinical practice.

Fig 4. SASscore performance compared with STOP-Bang and NoSAS scores in terms of sensitivity and specificity over different AHI cut-off values. The upper panel

corresponds to a SASscore with cut-off value 3.0, while the lower panel corresponds to the empirically determined optimal cut-off value of 3.7.

https://doi.org/10.1371/journal.pone.0202042.g004
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Indeed, SASscore may be easily computed by hand, with a tablet, or a smartphone. We have also

developed a website (sasscore.appspot.com) which produces the calculations on demand, as

well as a smartphone application, currently available on the Android platform (Morpheus:

Sleep Apnea Syndrome app on Google Play: https://play.google.com/store/apps/details?id=

aerscore.topindustries.aerscore&hl=en).

SASscore assessment limitations

The robustness of SASscore relies on the accuracy of measuring the involved parameters, such

as BMI, systolic blood pressure, ESS, etc. In some cases, measuring these parameters may lead

to inaccurate results, thus affecting our score’s reliability. At the same time, the accuracy of

parameter measurements depends on the context in which the assessment is made: self-assess-

ment at home or medical assessment in primary care units.

BMI varies over time, mostly because of weight variation. In our WestRo cohort, all the

patients were measured under medical supervision (at every visit) with a standardized and val-

idated scale for weight, height (thus rendering a reliable BMI), and for neck circumference.

Indeed, these anthropometric measurements can be performed reliably in primary care units.

For our WestRo dataset, systolic and diastolic blood pressure were measured with a stan-

dard blood pressure monitor under medical supervision. The diagnostic of systemic high

blood pressure was made by considering blood pressure measurements as well as patient’s

medical history. However, primary care doctors should be aware of potential problems such as

the white coat hypertension; if they suspect such cases, medical doctors can decide on future

recurrent assessments.

ESS alone has considerable limitations, due to its low predictive value for patients with sub-

jective excessive daytime sleepiness. However, ESS is still the most used sleepiness score in

clinical practice worldwide; for better efficiency, as we did for our SASscore, it is usually com-

bined with other objective measurements [37].

Both self-assessment and primary care assessment have advantages and disadvantages in

terms of reliably measuring the relevant parameters. However, we recommend the more

dependable alternative, namely assessing SASscore in primary care. Our score can be deter-

mined by self-assessment also, but merely as an indicator which is intended to make people

aware of OSAS and its consequences; if the SASscore value measured by self-assessment would

suggest a high risk, then we recommend referring to a primary care unit.

Potential SASscore applications

Our score can be a useful tool for OSAS/SDB screening in large population categories such as

professional drivers, because, from January 2016, the new 2014/85/EU directive [38] targeting

professional drivers is recommended across the entire European Union (Commission Direc-

tive 2014/85/EU of 1 July 2014 amending Directive 2006/126/EC—European Parliament and

the Council on driving licences).

To this end, as presented in the previous subsection, we recommend that the score assess-

ment be performed by primary care physicians, to ensure the accuracy of parameter measure-

ments. If the SASscore determined by the primary care physician indicates a low risk (according

to Eq 3), then the subject can be ruled out from the suspicion of OSAS. If SASscore indicates a

very high risk, then the subject is diagnosed with OSAS; in some cases, simpler devices such as

portable respiratory polygraphs (for home usage) may be employed to confirm the diagnosis.

However, low and very high risk are the clear-cut cases. If the physicians are dealing with bor-

derline cases (i.e. mild, moderate, and high risk), then full fledged hospital polysomnography

is recommended to provide a more accurate assessment.
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Conclusion

In this paper we present the optimized SASscore, which proves to be more efficient than existing

scores such as STOP-Bang or NoSAS when monitoring OSAS in large populations. In compar-

ison with NoSAS, SASscore provides only marginally lower sensitivity, but achieves a much

desired higher specificity. Furthermore, SASscore’s diagnosis cut-off value can be customized to

increase either sensitivity or specificity, while maintaining the AUC value in an optimal bal-

ance. The applicability of our proposed tool is wide, and represents a timely advancement in

the field of OSAS monitoring.
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