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Abstract
DNAmethylation is believed to regulate gene expression during adulthood in response to

the constant changes in environment. The methylome is therefore proposed to be a bio-

marker of health through age. ANGPTL2 is a circulating pro-inflammatory protein that

increases with age and prematurely in patients with coronary artery diseases; integrating

the methylation pattern of the promoter may help differentiate age- vs. disease-related
change in its expression. We believe that in a pro-inflammatory environment, ANGPTL2 is

differentially methylated, regulating ANGPTL2 expression. To test this hypothesis we inves-

tigated the changes in promoter methylation of ANGPTL2 gene in leukocytes from patients

suffering from post-acute coronary syndrome (ACS). DNA was extracted from circulating

leukocytes of post-ACS patients with cardiovascular risk factors and from healthy young

and age-matched controls. Methylation sites (CpGs) found in the ANGPTL2 gene were tar-

geted for specific DNA methylation quantification. The functionality of ANGPTL2methyla-

tion was assessed by an in vitro luciferase assay. In post-ACS patients, C-reactive protein

and ANGPTL2 circulating levels increased significantly when compared to healthy controls.

Decreased methylation of specific CpGs were found in the promoter of ANGPTL2 and

allowed to discriminate age vs. disease associated methylation. In vitro DNAmethylation of

specific CpG lead to inhibition of ANGPTL2 promoter activity. Reduced leukocyte DNA

methylation in the promoter region of ANGPTL2 is associated with the pro-inflammatory

environment that characterizes patients with post-ACS differently from age-matched

healthy controls. Methylation of different CpGs in ANGPTL2 gene may prove to be a reliable

biomarker of coronary disease.
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Introduction
Cardiovascular diseases (CVD) are known to be caused by the prolonged exposure to a growing
list of risk factors such as tobacco use, unhealthy diet, physical inactivity, obesity, hypertension,
dyslipidemia and metabolic disorders [1, 2]. CVD are characterized by a state of low-grade
chronic inflammation through the increased production of pro-inflammatory mediators [3].

Angiopoietin-like 2 (ANGPTL2) is a circulating protein with pro-inflammatory properties
[4–8], which levels increase with aging in the general population [6]. The early involvement of
ANGPTL2 in the pathogenesis of chronic inflammatory diseases in humans is supported by
the elevated plasma ANGPTL2 concentration detected in patients suffering from CVD [4–6,
9], diabetes [5, 10, 11] and obesity [5, 12, 13] alongside other classical markers of inflammation
such as C-reactive protein (CRP) [14, 15]; a positive correlation between serum CRP and
ANGPTL2 has previously been reported in diabetic patients [5]. In line with these previous
findings, recent studies propose that plasma ANGPTL2 is a promising biomarker for inflam-
matory diseases such as various cancers [16–19], atherosclerosis [5, 20], diabetes [5] and heart
failure [21].

The origin of circulating ANGPTL2 is however problematic. Early reports state that
ANGPTL2 is mainly produced from the adipose tissue [5], but its mRNA can also be detected
in other organs [22] such as the skeletal muscle, heart [5] and endothelial cells [4]. Therefore,
ANGPTL2 likely has both systemic and tissue-specific activities depending if it is secreted or
expressed locally. ANGPTL2 has also been found to be expressed in mouse bone marrow
derived macrophages [23], infiltrating mouse [24] and human macrophages [6, 24], as well as
in vitro, in human primary peritoneal macrophages (RAW264.7) [25] and macrophage-like
cell line (THP-1) [26]. Therefore, although ANGPTL2 could be used as a biomarker of inflam-
mation like CRP, it is unlikely that ANGPTL2 is associated with a specific disorder. A more
refined parameter characterizing ANGPTL2 would, therefore, provide more information of the
health status of patients.

In this regards, it is well established that aging [27] and environmental stimuli, including
risk factors for CVD [28], induce epigenetic changes such as DNAmethylation that modify
gene expression. The consequences of DNAmethylation on gene transcription vary with their
locations within the gene and they are highly specific of a cell type [29, 30]. In general, methyla-
tion of the promoter region has been shown to decrease gene expression [31], while in the gene
body, methylation can induce up or down regulation of the expression [32, 33]. In mammalian
cells, methylation is predominantly found on cytosines preceding a guanine called CpG dinu-
cleotide. ANGPTL2 has been shown to be increasingly methylated in ovarian cancer [34] and
myelodysplastic syndrome [35], while ANGPTL2 promoter methylation is decreased in osteo-
sarcoma [36]. Taken together, these studies reveal a potential role of DNA methylation in
ANGPTL2 expression. ANGPTL2methylation has not been studied in CVD, despite consider-
able evidence now showing that DNA methylation is associated with inflammation [37–39]
and atherosclerosis [28, 40]. CVD are associated with both global [41] and gene-specific [40,
42, 43] differentiated methylation profiles, notably in leukocytes. These epigenetic changes are
also linked to known CVD risk factors such as smoking [44–46], hypertension [47, 48] and
obesity [49, 50]. Hence, blood DNAmethylation quantification is emerging as a powerful diag-
nostic tool that has been shown to predict all-cause mortality [51].

The aim of our project was to test whether ANGPTL2methylation in circulating leukocytes
isolated from patients with a recent first cardiovascular event could identify differential methyl-
ation marks compared to age-matched healthy volunteers.
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Materials and Methods

Participants
Fasting blood samples were collected from 33 patients (26 men / 7 women; 62±2 y) with post-
acute coronary syndrome (ACS) who provided written informed consent and were recruited at
the cardiovascular prevention center of the Montreal Heart Institute. Consecutive cases of
post-ACS patients were recruited from September 2011 to December 2013 at the Montreal
Heart Institute. Per day, an average of 3 to 4 patients was studied: 750 patients per year (3
patients x 250 days of recruitment), i.e 1500 cases within 2 years, were evaluated. Among those
cases, only 2–3 patients per week were eligible, and at the end 46 patients were enrolled.
Among these 46 eligible patients, 9 dropped (5 patients stopped the training program that they
were supposed to follow during the study, 1 patient was already involved in another clinical
study, 1 was unfit for the physical training, 1 developed de novo atrial fibrillation, 1 developed a
new ACS during the study). Among the remaining 37 patients, blood was available for
ANGPTL2 quantification only in 33 patients. The mean duration after ACS was 65±7 days
(median of 51 days [25–249]). One patient was enrolled after a period>4 months, 249 days
after the ACS. The study was approved by the Ethical Board of the Montreal Heart Institute.
Post-ACS patients were hypertensive, diabetic, dyslipidemic, obese, smokers (Tables 1 and 2),
and were new members of the cardiovascular prevention center. Baseline characteristics,
comorbidities and the medication of the patients are presented in Table 1.

Blood samples were collected in EDTA and heparin tubes from post-ACS patients and from
20 young (28±1 years) healthy and 20 age-matched (61±2 years) healthy volunteers recruited

Table 1. Baseline parameters of post-ACS patients.

Post-ACS patients (n = 33)

Age (years) 62±2

Men 26 (79%)

Family history 16/33 (49%)

Actual Percutaneous transluminal coronary angioplasty 33/33 (100%)

Actual Myocardial infarction 29/33 (88%)

Actual Unstable angina 4/33 (21%)

Hypertension 21/33 (64%)

Type II diabetes 4/33 (12%)

Dyslipidemia 27/33(82%)

Obesity 21/33 (64%)

Smoking 5/33 (15%)

Ex smoking 19/33 (58%)

Medication

Statins 32/33 (97%)

Aspirin 32/33 (97%)

β-blockers 28/33 (85%)

Angiotensin Converting Enzyme inhibitors 26/33 (79%)

Clopidogrel/Pasugrel 24/33 (73%)

Nitrates 14/33 (42%)

Calcium channel blockers 2/33 (6%)

Angiotensin II receptor antagonists 3/33 (9%)

Data are mean ± SEM of n participants.

doi:10.1371/journal.pone.0153920.t001
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in a previous study [20]. Control healthy volunteers had no comorbidities and no medication;
baseline characteristics, inclusion and exclusion criteria for these healthy volunteers have been
previously reported [20].

Inclusion criteria for the post-ACS patients were the following: 1) men or women aged�18
years; 2) with previous ACS (unstable angina, or non-ST elevation myocardial infarction
(NSTEMI), or ST elevation myocardial infarction (STEMI) with the presence of 2/3 criteria i.e.
typical chest pain, electrocardiographic ischemic change, or elevated troponin T; 3) complete
revascularization defined as no major epicardial coronary artery or bypass graft with a residual
diameter stenosis> 50% and no residual left main stenosis> 40%; 4) left ventricular ejection
fraction> 40%; 5) stable doses of medication during the 4 weeks prior to enrolment (STEMI
patients must be on a stable dose of β-blocker); 6) able to perform a maximal cardiopulmonary
exercise test; 7) capacity and willingness to sign informed consent.

Exclusion criteria for the post-ACS patients were: 1) recent (< 6 months) coronary bypass
surgery; 2) incomplete revascularisation; 3) left ventricular ejection fraction (LVEF)< 40%; 4)
significant valvular heart disease defined as mitral stenosis, grade III-IV mitral insufficiency,
moderate-severe aortic stenosis, moderate-severe aortic insufficiency; 5) uncontrolled hyper-
tension defined as blood pressure>180/110 mmHg; 6) significant resting ECG abnormalities
including left bundle branch block, non-specific intraventricular conduction delay, left ventric-
ular hypertrophy and resting ST-segment depression; 7) chronic atrial fibrillation; 8) pace-
maker or implantable cardioverter defibrillator; 9) low functional capacity on baseline maximal
exercise test (<5 METs); 10) any contra-indication to exercise training or any condition limit-
ing effort to a greater degree than the CAD (such as neurologic disease, peripheral artery dis-
ease, osteoarthritis). The information concerning the presence of inflammatory disorders is not
available.

Table 2. Anthropometric, hemodynamic andmetabolic parameters of participants.

Young healthy controls n Age-matched healthy controls n Post-ACS patients n

Age (years) 28±1 20 61±2 (20) 20 62±2 33

Men 5 4 26

VO2max (ml/min/kg LBM) 54.8±2.4 20 44.6±2.0 20 29.7±1.0 *, a 32

BMI (kg/m2) 21.6±0.4 20 23.8±0.5 20 28.1±0.8 *, a 33

Body fat (%) 17.2±1.5 20 25.2±1.6 * 20 28.2±1.2 * 32

SAP (mm Hg) 112±3 19 118±3 20 122±3 * 33

DAP (mm Hg) 68±2 19 73±1 20 69±1 33

Heart rate (bpm) 67±2 20 65±2 20 65±2 33

Glucose (mM) 4.8±0.1 19 5.0±0.1 19 5.4±0.1 *, a 33

Insulin (pM) 34.7±3.3 19 38.4±3.0 17 79.2±9.4 *, a 33

TG (mM) 0.71±0.07 20 1.04±0.13 19 1.09±0.07 * 33

Total Cholesterol (mM) 4.2±0.1 20 4.8±0.2 * 19 3.0±0.1 *, a 33

LDL (mM) 2.3±0.1 20 2.9±0.2 * 17 1.5±0.1 *, a 33

HDL (mM) 1.6±0.1 20 1.6±0.1 18 1.0±0.1 *, a 33

CRP (mg/L) 0.89±0.25 20 0.99±0.20 15 2.20±0.46 * 31

Data are mean ± SEM of (n) participants.

*: p<0.05 versus Young healthy controls,
a: p<0.05 versus Age-matched controls (Kruskal-Wallis test).

BMI, Body mass index; SAP, Systolic arterial pressure; DAP, Diastolic arterial pressure; TG, Triglycerides; LDL, Low-density lipoprotein; HDL, High-

density lipoprotein; CRP, C-reactive protein.

doi:10.1371/journal.pone.0153920.t002
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The anthropometric, hemodynamic and metabolic parameters of the controls and the post-
ACS patients are summarized in Table 2. The research protocol was approved by the Research
Ethics and New Technology Development Committee of the Montreal Heart Institute. Follow-
ing collection, ice-blood samples were centrifuged at 4°C and plasma was stored at -80°C.
ANGPTL2 concentration was quantified by a commercial enzymatic immunoassay kit, as pre-
viously described [20].

DNA extraction and bisulfite conversion
In all available samples (n = 20 young healthy controls, n = 20 age-matched healthy controls
and n = 33 post-ACS patients) (Fig 1), total DNA was isolated from whole blood using a Qia-
gen DNeasy Blood & tissue kit following the manufacturer’s instructions. No selection of white
blood cells was done, DNA was isolated from the whole white blood cells population. After
extraction, DNA was quantified by NanoDrop (Thermo Scientific NanoDrop products, Wil-
mington, DE). DNA was then converted by bisulfite reaction using the EZ DNAMethylation-
Gold kit (Zymo Research, Irvine, CA) following the manufacturer’s protocol.

DNAmethylation quantification
A genome-wide exploratory DNAmethylation quantification protocol assay was performed on
bisulfite-converted DNA using the Infinium Human Methylation 450 BeadChip Kit (Illumina,
San Diego, CA) to obtain the methylation status of>485 000 CpG sites across the genome, as
previously described [52]. This exploratory approach was performed in a small number of sub-
jects (n = 4 young healthy controls, n = 7 aged healthy controls and n = 5 post-ACS patients)
(Fig 1). We normalized probe intensities using the ARRm software [Fortin JP, Greenwood
CMT, Labbe A: ARRmNormalization: Adaptive Robust Regression normalization for Illumina

Fig 1. Flowchart illustrating the "n" values between groups throughout the study.

doi:10.1371/journal.pone.0153920.g001
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methylation data. In R package 1.0.0 edition; 2013.]. We removed probes that target a genomic
region containing SNPs based on dbSNP version 137 (N = 82,694).

After this genome-wide exploratory DNA methylation quantification, fine mapping DNA
methylation was then quantified by EpiTYPER assay (Sequenom, San Diego, CA), as previ-
ously described [53]. Gene-specific primers required for the assay are presented in Table 3.
These experiments were performed at the McGill University and Génome Québec Innovation
Centre, Montréal, Canada. This targeted approach was performed in all the remaining patients
(n = 16 young healthy controls, n = 13 aged healthy controls and n = 28 post-ACS patients)
(Fig 1). During the targeted approach, some samples showed undetectable methylation ratios
because the maximum level of uncertainty was not met. In other words, any data with an esti-
mated error larger than the uncertainty threshold (which is a value for the maximum amount
of error accepted) was excluded and not displayed: some undetectable data were excluded in
n = 2 young healthy controls, n = 1 aged healthy controls and n = 7 post-ACS patients. The
fine targeted DNA methylation mapping was therefore performed in a total of n = 14 young
healthy controls, n = 12 aged healthy controls and n = 21 post-ACS patients (Fig 1).

Cloning of pCpG free-ANGPTL2 vector
Constructions were done using the CpG free plasmid pCpGfree-promoter (Invivogen, San
Diego, CA) as the backbone to study enhancer methylation. The ANGPTL2 CpG region was
amplified using forward 5’-TAAGCTCCTTCCCACGTGACCTCACAGAGTCG-3’ and reverse
5’-GATCCGACTCTGTGAGGTCACGTGGGAAGGAGCTTATGCA-3’ primers and subse-
quently inserted in the backbone using NsiI and BamHI restriction sites as previously described
[54, 55].

In vitromethylation, transient transfection and luciferase assay
Cloned vectors were isolated by Qiagen QIAprep Spin Miniprep kit (Qiagen). M. SssI CpG
methyltransferase (New England Biolabs, Frankfurt, Germany) was used for in vitromethyla-
tion according to manufacturer’s instructions. Methylated DNA was then purified using the
QIAquick gel extraction kit (Qiagen) and quantified by NanoDrop (Thermo Scientific Nano-
Drop products, Wilmington, DE). Methylation was confirmed by digestion with the methyla-
tion-sensitive restriction enzymes HhaI and HpaII. HEK293 cells grown to confluence on
96-well plates were transfected with the pCpG free-Gpx1 vector using Lipofectamine 2000
(Invitrogen). Twenty-four hours after transfection, luciferase activity was measured with the
QUANTI-Luc reagent (Invivogen, San Diego, CA) by luminescence detection. Promoter activ-
ity was normalized to the total amount of protein measured by a Bradford assay (Biorad, Her-
cules, CA) [54, 55].

Statistical Analysis
Results are presented as mean±SEM of (n) participants. One-way ANOVA (with Bonferonni
post-test) or Kruskal-Wallis test (with Dunn post-test), unpaired t-test or Mann Whitney test
were used where applicable, depending on Gaussian distributions, to test the difference

Table 3. EpiTYPER primer sequences. ANGPTL2-specific bisulfite primers required for PCR amplification.

Primer Sequence

Forward aggaagagagTTTATTTTTAAATTTTGGGGAAAGG

Reverse cagtaatacgactcactatagggagaaggctCTCCAAAATCCTAAACTCAATTCAA

doi:10.1371/journal.pone.0153920.t003
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between groups (Graph Pad Prism). A p-value of p<0.05 was considered statistically
significant.

Results

Increased circulating ANGPTL2 concentration in post-ACS patients
In accordance with our previously published data [4, 20], plasma ANGPTL2 concentration
was higher in post-ACS patients (3.35 ± 0.67 ng/mL, n = 33) when compared to age-matched
controls (1.80 ± 0.42 ng/mL, n = 20) (Fig 2). The post-ACS patients also display higher circu-
lating CRP levels (2.20 ± 0.46 mg/L, n = 31) in comparison to young healthy controls
(0.89 ± 0.25 mg/L, n = 20) (Table 2), illustrating the presence of a pro-inflammatory environ-
ment in these patients with various CVD risk factors (Table 1).

Exploratory discovery of ANGPTL2methylation sites
We selected a total of 16 patients from the young controls (n = 4), age-matched controls
(n = 7) and post-ACS patients (n = 5) for this genome-wide exploratory DNA methylation
analysis. Out of the>485 000 probes included in the genome-wide quantification, only 6
probes were associated with the ANGPTL2 gene: 1 probe (cg09427311) was distributed in the
promoter region of the ANGPTL2 gene, 2 probes (cg08076018 and cg13662634) were distrib-
uted in the 5’ region transcription start site and 3 probes were located in the gene body
(cg11213150, cg14281592 and cg13508369) (Table 4). Significant levels of DNA methylation
were detected in all 6 probes (Fig 3). However, due to the low number of individuals among
each group, no statistical difference was observed between controls and post-ACS groups (data
not shown).

Fine mapping DNA methylation was then quantified by EpiTYPER assay in larger groups;
we chose to proceed with the investigation of probe cg09427311, since it is the only one located
in the promoter region of ANGPTL2 gene and that it is sufficiently far from the other probes to
allow targeting with specific primers for downstream fine mapping analysis.

Fig 2. Increased ANGPTL2 in post-ACS patients. Fasting ANGPTL2 levels in the plasma of patients with
post-acute coronary syndrome (ACS) (n = 33) compared to age-matched (n = 20) and young (n = 20) healthy
controls. Data are mean ± SEM of (n) participants, *: p<0.05 vs Age-matched controls (Kruskal-Wallis test).

doi:10.1371/journal.pone.0153920.g002
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Post-ACS patients have decreased ANGPTL2 methylation
Using a targeted approach, we proceeded to the fine mapping analysis of the unique CpGs
(Fig 4) surrounding the previously identified ANGPTL2methylation site covered by the
selected probe cg09427311.

Of the 6 CpGs found within the 344 bp region amplified by specific primers, 2 CpGs (CpG5
and CpG6) show differential methylation between groups (Fig 5). Methylation of CpG5 was
significantly decreased in post-ACS patients (34.7 ± 1.4%; p< 0.05, n = 21) when compared to
young (45.8 ± 1.5%, n = 14) and aged-matched (40.6 ± 2.3%, n = 12) control groups. However,
no difference was observed between young and age-matched control groups (Fig 5D). Com-
pared to young controls (66.6 ± 0.9%, n = 14), methylation of CpG6 was also lower in post-
ACS (60.4 ± 1.5%; p< 0.05, n = 21), but no significant difference was observed with age-
matched controls (61.4 ± 2.0%, n = 12). Again, methylation of CpG6 was similar between both
control groups (Fig 5E).

These results suggest that CpG5 methylation is sensitive to the disease state since a signifi-
cant hypomethylation is detected in post-ACS patients when compared to both healthy groups.

Table 4. Exploratory probe coordinates. Genomic localisation of probes covering ANGPTL2 CpG sites
analyzed by the Infinium HumanMethylation450 exploratory assay, as provided by the manufacturer.

Probe ID Coordinates

cg08076018 chr9:128924901

cg09427311 chr9:128925551

cg11213150 chr9:128924278

cg13508369 chr9:128923847

cg13662634 chr9:128924769

cg14281592 chr9:128924134

doi:10.1371/journal.pone.0153920.t004

Fig 3. Detectable ANGPTL2methylation profile.Quantification of various methylation sites located in the
ANGPTL2 gene identified following a preliminary genome-wide exploratory assay. DNA samples were
pooled from a small number of participants taken from all three groups. Data are mean ± SEM of a total of 16
patients from the young controls (n = 4), age-matched controls (n = 7) and post-ACS patients (n = 5).

doi:10.1371/journal.pone.0153920.g003
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Conversely, it is unclear which factor regulates CpG6 methylation due to the lack of discrep-
ancy between the post-ACS group and the age-matched controls or between the young and
age-matched controls.

On the other hand, no significant variations in the methylation levels among groups were
detected for CpG1, CpG2 and CpG3 (Fig 5A–5C). The remaining CpG4 could not be analyzed
due to a limitation of this assay: the EpiTYPER technology relies on a mass spectroscopy

Fig 4. Fine mapping of ANGPTL2methylation profile. Identification (CpG1-6) and localization of CpGs targeted for DNAmethylation quantification. The
arrow represents the CpG previously characterized by probe cg09427311 during the exploratory analysis.

doi:10.1371/journal.pone.0153920.g004

Fig 5. Hypomethylation of CpG5 and CpG6 in post-ACS patients.Methylation percentage of the methylation sites (A) CpG1, (B) CpG2, (C) CpG3, (D)
CpG5 and (E) CpG6, previously identified in Fig 4. DNA was isolated from leukocytes of post-ACS patients (n = 21), age-matched (n = 12) and young (n = 14)
healthy controls. Box and whiskers plot of (n) participants, *: p<0.05 (Kruskal-Wallis test).

doi:10.1371/journal.pone.0153920.g005
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analysis of CpG-containing DNA fragments by uracil-specific cleavage and the CpG4 fragment
was too small to be reliably detected by mass spectrometry (data not shown).

ANGPTL2methylation is correlated with CRP levels
Interestingly, CpG5, but not CpG6 methylation negatively correlates (p<0.05) with circulating
CRP levels when all participants were considered (Fig 6), suggesting that ANGPTL2 hypo-
methylation is associated with high levels of CRP, establishing a link between ANGPTL2meth-
ylation and inflammation. For this reason, only CpG5 was considered for further analysis.

In vitromethylation decreases ANGPTL2 promoter activity
To assess the impact of CpG5 methylation on ANGPTL2 expression, we used an in vitrometh-
ylation luciferase assay as previously described [54–56]. A 32 bp promoter sequence containing
CpG5 was inserted into the pCpGfree-basic vector, upstream of a hEF-1α CpG-free promoter.
This construct was then methylated in vitro and subsequently transfected in HEK293 cells
where luciferase activity was measured as an indicator of promoter activity. In vitromethyla-
tion of the construct containing the ANGPTL2 promoter fragment significantly reduced pro-
moter activity as shown by a decrease of 60% (p< 0.05) in luciferase activity (Fig 7A).
Conversely, methylation of the vector lacking the CpG5 sequence did not alter promoter activ-
ity (Fig 7B). These results suggest a potential molecular regulatory role of CpG5 methylation
on ANGPTL2 expression.

Fig 6. CpG5methylation is inversely correlated with CRP concentration. Negative correlation between
plasma CRP concentrations and CpG5 (p = 0.0096, r = -0.395, n = 42) and CpG6 (p = 0.1731, r = -0.214,
n = 42) methylation in all participants (n = 14 young healthy controls, n = 9 age-matched healthy controls,
n = 19 post-ACS patients).

doi:10.1371/journal.pone.0153920.g006
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Discussion
In this study, we show for the first time that ANGPTL2methylation pattern varies in post-ACS
patients and that this methylation pattern is independent of aging. During the course of the
study we also identified a novel regulatory region in the ANGPTL2 promoter, the CpG5, which
is hypomethylated in association with the pro-inflammatory environment in these patients.
We found that in vitromethylation of CpG5 induced a lower transcriptional activity. There-
fore, differential CpG5 methylation pattern may identify patients at risk of a first cardiovascu-
lar event.

Previous studies suggest that ANGPTL2 expression is regulated by DNAmethylation. For
example, hypermethylation of CpGs located in ANGPTL2 gene have been reported in various
ovarian cancer cell lines, where ANGPTL2 is silenced [34] and in bone marrow samples from
patients suffering from primary myelodysplastic syndrome [35]. In contrast, hypomethylation
of ANGPTL2 promoter has been observed in human osteosarcoma cell lines, proportionally
with the increase in ANGPTL2 expression and progression of the disease when these cells were
injected in mice [36]. In our study, we observed a decrease in ANGPTL2methylation in the
CpG5 region in post-ACS patients. In our hands, human leukocytes do not produce detectable
levels of ANGPTL2 and mRNA levels were at the low detection limit (data not shown). None-
theless, our data suggest that methylation of CpG may represent a mechanism of regulation
that could in part account for the elevated circulating levels of ANGPTL2 in these patients.
Indeed, we have demonstrated that two specific methylation sites, CpG5 and CpG6, are less
methylated in diseased patients when compared to young healthy controls. However, only
CpG5 significantly differed from the age-matched control group and significantly correlated
with CRP levels, suggesting that potential methylation sites are differently sensitive to various
stimuli such as age and the disease state. This is also supported by the observation that methyl-
ation in surrounding CpGs (CpG1-3) do not significantly vary in any of our groups. The
amplitudes of the changes in methylation levels observed in our study (>5 to 10%) are in line
with what is typically observed in studies conducted on white blood cells in a pro-inflammatory
context [57, 58]. In addition, a previously published study conducted on cord blood cells in
association with maternal obesity revealed that ANGPTL2methylation differed by less than 5%

Fig 7. In vitromethylation of ANGPTL2 decreases promoter activity. In vitromethylation of ANGPTL2 target region containing CpG5 inhibited
transcriptional activity, as measured by a luciferase reporter assay. Luciferase activity of methylated (M.SssI treated) and unmethylated constructs (A)
containing the CpG5 site or (B) without. The assay was repeated 3 times and data are mean ± SEM. *: p<0.05 versus unmethylated (Unpaired t-test).

doi:10.1371/journal.pone.0153920.g007

ANGPTL2 Gene Methylation as Biomarker of Cardiovascular Diseases

PLOS ONE | DOI:10.1371/journal.pone.0153920 April 21, 2016 11 / 17



across body mass index categories [59]. Aberrant methylation patterns have been extensively
studied in the context on chronic inflammatory diseases. In cancer, global DNA methylation
measured from the blood can be used as a biomarker for cancer risk [60]. In CVD, low-density
lipoproteins exert their effect on endothelial cells through changes in DNAmethylation [61,
62] and atherosclerosis is characterized by a global state of hypomethylation [63]. Therefore, it
could be speculated that changes in methylation patterns could reflect the health status of the
patients and be much more specific of the pathology involved compared to the circulating lev-
els of the protein.

Indeed, as previously mentioned, our group [4, 20] and others [5, 12, 13] have demonstrated
that circulating ANGPTL2 concentration is increased in a pro-inflammatory context in a pro-
portional manner to the severity of the disease. In our study, only a small difference was
observed in Angplt2 plasma concentrations of post-ACS patients when compared to age-
matched healthy controls, reflecting a lesser or shorter cumulative inflammatory burden com-
pared to that of patients with known CVD and a longer history of cardiovascular events [20].
We can hypothesize that in the presence of a more severe inflammatory environment such as
in patients with established CVD, which would be highlighted by higher ANGPTL2 levels,
changes in ANGPTL2methylation may become detectable in other CpGs. Such graded methyl-
ation has been previously reported in cancer: methylation of ANGPTL2 varies proportionally
with tumour metastasis [36].

ANGPTL2 is often associated with markers of inflammation such as CRP [64, 65], IL-6 and
TNF-α [4, 66] and although it is not always clear which comes first, it is acknowledged that
ANGPTL2 participates in a pro-inflammatory loop by being sensitive to inflammation and in
turn, further promotes inflammatory pathways. In our study, ANGPTL2methylation at CpG5
is inversely correlated with CRP. Furthermore, CpG5 and CpG6 methylation is decreased in
leukocytes from post-ACS patients who also happen to have higher levels of circulating
ANGPTL2 and CRP; this suggests that a pro-inflammatory environment may favour the pro-
duction of ANGPTL2 in part by decreasing DNA methylation in the relevant producing cells.
An interesting finding by Sasaki and al. [26] indeed states that ANGPTL2 can act in an auto-
crine manner. Their work shows that treatment of macrophage-like cells with ANGPTL2
increases its own expression in a dose-dependent manner [26]. Taking these results together,
we can hypothesize that in addition of inflammation per se, ANGPTL2 could induce its own
expression through a DNAmethylation mechanism.

Limitations of the study
The present study allows us to observe the methylation changes of ANGPTL2 in a context of
mild inflammatory stress in optimally treated post-ACS patients. Our group has previously
demonstrated that patients with chronic documented coronary artery disease exhibit greater
signs of inflammation through slightly higher circulating ANGPTL2 (3.35 ± 0.67 ng/mL for
post-ACS versus 5.74 ± 0.75 ng/mL for CAD) [20]. It would be interesting to study ANGPTL2
methylation under such conditions.

Following the exploratory experiment aiming to identify methylation candidates, we nar-
rowed our target CpGs down to 6 potential regulatory CpGs. Hence, DNA methylation quanti-
fication approaches covering broader ANGPTL2-related CpGs and regulatory regions should
be considered, especially when considering patients with longer history of risk factors and lon-
ger history of cardiovascular events. Therefore, other regulatory methylation sites previously
characterized by others [34–36] in different pathological contexts could be included in future
studies enrolling patients with CVD. This would allow us to determine how these epigenetic
marks can differ when comparing various types of inflammatory diseases. Based on the limited
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literature on the subject of ANGPTL2methylation, we observe contrasting results; in cancer
cells, researchers have reported a decrease in ANGPTL2methylation resulting in an increased
ANGPTL2 expression with the progression of the disease [36] while others [34, 35] have
shown the opposite. These illustrate how epigenetic mechanisms can vary within the same type
of disease by taking into consideration the cell type.

Leukocytes represent an accessible and reliable way to obtain DNA with little discomfort to
the patient. However, it is a mixed population of cells in which methylation patterns may be
different [67]. Although immune cells express ANGPTL2 [6, 23, 24] and are likely not the
main contributor to the circulating pool of ANGPTL2 [5], further studies should isolate the
mixed leukocytes population.

In conclusion, reduced leukocyte DNAmethylation in the promoter region of ANGPTL2 is
associated with the pro-inflammatory environment that characterizes post-ACS patients differ-
ently from age-matched healthy controls. Importantly, our data suggest that methylation of dif-
ferent CpGs in ANGPTL2may prove to be a reliable biomarker of coronary disease.
Replication of our study in a wider range of CpGs in patients with different combination of
risk factors for CVD and a history of cardiovascular events should validate the usefulness of
methylation patterns in ANGPTL2 as a biomarker for a better risk assessment of future cardio-
vascular events.
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