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Prediction of low cardiac output
syndrome in patients following
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learning
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Xiao Shen1, Xiaochun Song1, Donghai Guan2* and
Cui Zhang1*
1Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Nanjing First Hospital,
Nanjing Medical University, Nanjing, China, 2College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing, China

Background: This study aimed to develop machine learning models to predict

Low Cardiac Output Syndrome (LCOS) in patients following cardiac surgery

using machine learning algorithms.

Methods: The clinical data of cardiac surgery patients in Nanjing First Hospital

between June 2019 and November 2020 were retrospectively extracted

from the electronic medical records. Six conventional machine learning

algorithms, including logistic regression, support vector machine, decision

tree, random forest, extreme gradient boosting and light gradient boosting

machine, were employed to construct the LCOS predictive models with all

predictive features (full models) and selected predictive features (reduced

models). The discrimination of these models was evaluated by the area under

the receiver operating characteristic curve (AUC) and the calibration of the

models was assessed by the calibration curve. Shapley Additive explanation

(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) were used

to interpret the predictive models.

Results: Data from 1,585 patients [982 (62.0%) were male, aged 18 to 88, 212

(13.4%) with LCOS] were employed to train and validate the LCOS models.

Among the full models, the RF model (AUC: 0.909, 95% CI: 0.875–0.943;

Sensitivity: 0.849, 95% CI: 0.724–0.933; Specificity: 0.835, 95% CI: 0.796–

0.869) and the XGB model (AUC: 0.897, 95% CI: 0.859–0.935; Sensitivity:

0.830, 95% CI: 0.702–0.919; Specificity: 0.809, 95% CI: 0.768–0.845) exhibited

well predictive power for LCOS. Eleven predictive features including left

ventricular ejection fraction (LVEF), first post-operative blood lactate (Lac), left

ventricular diastolic diameter (LVDd), cumulative time of mean artery blood

pressure (MABP) lower than 65 mmHg (MABP < 65 time), hypertension history,

platelets level (PLT), age, blood creatinine (Cr), total area under curve above

threshold central venous pressure (CVP) 12 mmHg and 16 mmHg, and blood

loss during operation were used to build the reduced models. Among the
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reduced models, RF model (AUC: 0.895, 95% CI: 0.857–0.933; Sensitivity:

0.830, 95% CI: 0.702–0.919; Specificity: 0.806, 95% CI: 0.765–0.843) revealed

the best performance. SHAP and LIME plot showed that LVEF, Lac, LVDd and

MABP < 65 time significantly contributed to the prediction model.

Conclusion: In this study, we successfully developed several machine learning

models to predict LCOS after surgery, which may avail to risk stratification,

early detection and management of LCOS after cardiac surgery.

KEYWORDS

cardiac surgery, low cardiac output syndrome, machine learning, predictive model,
risk stratification

Introduction

Low Cardiac Output Syndrome (LCOS), a clinical
manifestation of insufficient cardiac output and peripheral
tissue perfusion, was first proposed by Rao et al. (1). Previous
studies have shown that all-cause mortality in LCOS ranges
from 14.8 to 62.5% in the short term (1 month post onset) and
21.4–36.6% in the long term (2 months to 1 year post onset)
(2). LCOS following cardiac surgery not only leads to tissue
malperfusion, but also multiple organ dysfunction of brain,
lung, liver, kidney, and gastrointestinal tract, thereby increasing
health care resource utilization and associated costs (3). More
importantly, LCOS may be a state of reversible cardiac output
(CO) reduction after cardiac surgery and early recognition and
appropriate treatment of LCOS may avoid its progression to
refractory cardiogenic shock and improve clinical outcomes,
with early detection being of great significance (4–9).

The most common definition of LCOS (1) includes a
decrease in the cardiac output index (CI) to < 2.2 L/min/m2

and a systolic blood pressure of < 90 mmHg, in conjunction

Abbreviations: LCOS, low cardiac output syndrome; EMR, electronic
medical records; LR, logistic regression; SVM, support vector machine;
DT, decision tree; RF, random forest; XGB, extreme gradient boosting;
LGB, light gradient boosting machine; AUC, area under the receiver
operating characteristic curve; SHAP, shapley additive explanation; LIME,
local interpretable model-agnostic explanations; LVEF, left ventricular
ejection fraction; CO, cardiac output; CI, cardiac index; PAC, pulmonary
artery catheter; PICCO, pulse indicator continuous cardiac output;
CPB, cardiopulmonary bypass; CABG, coronary artery bypass graft; AD,
aortic dissection; EMR, electronic medical record; LVDd, left ventricular
diastolic diameter; LAD, left atrial diameter; IVSd, interventricular septum
thickness in diastole; LVPWT, left ventricular posterior wall thickness;
PASP, pulmonary artery systolic pressure; WBC, white blood cell count;
NEU, neutrophil ratio; LYM, lymphocyte ratio; PLT, platelets level; Hb,
Hemoglobin; Cr, blood creatinine; BUN, blood urea nitrogen; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; TP, total
protein; TB, total bilirubin; LDL, low density lipoprotein; CKMB, creatine
kinase-MB; T3, triiodothyronine; T4, thyroxine; TSH, thyroid stimulating
hormone; BNP, brain natriuretic peptide; Lac, blood lactate; AO, aortic
occlusion; UO, urine output; MABP, mean arterial blood pressure; CVP,
central venous pressure; MV, mechanical ventilation; AUC, area under
curve; ROC, receiver operating characteristic; SABP, systolic artery blood
pressure; KNN, k-nearest neighbors; LASSO, least absolute shrinkage and
selection operator.

with signs of tissue malperfusion (cold periphery, clammy
skin, confusion, oliguria, elevated lactate level) in the
absence of hypovolemia. Accordingly, it is of necessity to
monitor CO by the pulmonary artery catheter (PAC) or
pulse indicator continuous cardiac output (PICCO). All
these current monitoring technologies, however, are too
costly to be routinely applied in the setting of patients
undergoing cardiac surgery, which consequently increases the
difficulty of early recognition and prevention. Studies showed
that significant independent risk factors for LCOS include
age, preoperative left ventricular ejection fraction (LVEF),
emergency surgery, temperature during cardiopulmonary
bypass (CPB), application of cardioprotective drugs and
echocardiographic parameters (10–12). Nevertheless, there
were few studies on prediction models for LCOS. Therefore,
this study was aimed to apply machine learning to develop
models for the precise prediction of LCOS following cardiac
surgery using preoperative variables and intraoperative time-
series data, with the potential to avail early recognition and
management of LCOS.

Materials and methods

Data sources and study population

This retrospective study was conducted on 1,681
consecutive patients admitted and received cardiac surgery
at Nanjing First Hospital from June 2019 to November
2020. Patients who received cardiac surgery during the
study period were recruited as the study objects, including
but not limited to coronary artery bypass, heart valve
surgery, aortic dissection (AD) repair surgery, etc. Exclusion
criteria: (1) Patients under 18 years of age. (2) Patients
who died or were discharged during or within 48 h after
the operation. (3) Patients with incomplete clinical data,
such as pre-operation echocardiographic measurements or
intraoperative hemodynamic data. Data were collected from
electronic medical records (EMR) database, and approval was
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gained from the Ethics Committee of Nanjing First Hospital
(KY20220518-KS-01).

Definition of low cardiac output
syndrome

According to previous reports (10, 13), the criteria for
LCOS in our study included: (1) Patients with a cardiac index
(CI) reduced to < 2.2 L/min/m2; (2) Patients with systolic
blood pressure < 90 mmHg, in conjunction with signs of
tissue hypoperfusion [oliguria (urine output < 1 ml/kg.h),
elevated lactate level > 3.0 mmol/L]; (3) Patients requiring
mechanical circulatory support or inotropic agents (dopamine
or dobutamine at least 4 µg/kg.min for a minimum of
12 h and/or epinephrine at least 0.2 µg/kg.min and/or
milrinone at least 0.02 µg/kg.min and/or levosimendan
at least 0.05 µg/kg.min) to maintain hemodynamics after
optimizing preload. Patients who received vasoconstricting
medication to increase peripheral vascular resistance
in the presence of normal cardiac output were not
considered to have LCOS.

Data collection and preprocessing of
data

Clinical variables extracted from electronic medical
records (EMR) database included demographics: age,
sex, height, weight; comorbidities: hypertension, diabetes,
myocardial infarction, hyperlipidemia, cerebral vascular
disease, atrial fibrillation, chronic obstructive pulmonary
disease (COPD), congestive heart failure, renal disease, liver
disease; preoperative echocardiographic parameters: left
ventricular diastolic diameter (LVDd), left atrial diameter
(LAD), interventricular septum thickness in diastole (IVSd),
left ventricular posterior wall thickness (LVPWT), pulmonary
artery systolic pressure (PASP), left ventricular ejection fraction
(LVEF); preoperative laboratory results: white blood cell count
(WBC), neutrophil ratio (NEU), lymphocyte ratio (LYM),
platelets level (PLT), hemoglobin (Hb), blood creatinine (Cr),
blood urea nitrogen (BUN), aspartate aminotransferase (AST),
alanine aminotransferase (ALT), total protein (TP), total
bilirubin (TB), low density lipoprotein (LDL), creatine kinase-
MB (CKMB), triiodothyronine (T3), thyroxine (T4), thyroid
stimulating hormone (TSH), brain natriuretic peptide (BNP);
operation information: operation time, cardiopulmonary
bypass (CPB) time, aortic occlusion (AO) time, Emergency
surgery, urine output (UO) during operation, blood loss during
operation, operation type; intraoperative hemodynamics: mean
arterial blood pressure (MABP), central venous pressure (CVP);
postoperative hemodynamics: cardiac output (via pulmonary
artery catheter for some patients), systolic artery blood

pressure (SABP), CVP, inotropes (dopamine, dobutamine,
epinephrine, milrinone, and levosimendan) usage, urine
output and first post-operative blood lactate levels (within
30 min post operation), prognosis variables: mechanical
ventilation (MV) time, ICU stay time and hospital stay
time. Renal disease was defined as preoperative glomerular
filtration rate < 30 ml/min/1.73 m2 (body surface area) (14).
Hyperlipidemia was defined as total cholesterol > 200 mg/dl
and/or triglyceridemic value > 150 mg/dl. Other comorbidities
were identified from diagnosis before operation using the
International Classification of Disease, Tenth edition (ICD-10).
ICD-10 codes used for the identification of comorbidities are
outlined in Supporting Information (Supplementary Table 1).

During operation, MABP and CVP were continuously
monitored using invasive peripheral artery, central
vein or pulmonary artery catheter and saved as time-
series data. Artifactual data were removed according
to previously published criteria (15). Thresholds for
MABP (< 65, < 60, < 55, < 50 mmHg) and CVP
(> 12, > 16, > 20 mmHg) were used to assess the site of
hypotension and central venous congestion occurred during
operation. To comprehensively assess the time-series data,
cumulative time under or above thresholds, total area under
curve under or above threshold (AUT) and time weighted
average (TWA) of MABP and CVP for corresponding threshold
were calculated based on a previous study (16).

Model construction and evaluating

The entire dataset was randomly stratified into the training
and test sets (7:3), meaning that the ratio of patients with
LCOS to those without LCOS was maintained consistent in
both subsets. The training set was applied to train the model
with 10-fold cross-validation and test set was used later to
assess the models’ performance. All variables with a missing
rate > = 10% were excluded from the analysis (Supplementary
Figure 1). Variables with a missing rate < 10% were imputed
by the k-nearest neighbors (KNN) imputation procedure (17).
The low incidence of LCOS and the large number of variables
we included in this study made it typical unbalanced high
dimension data, Synthetic Minority Oversampling Technique
(SMOTE) was applied to overcome this imbalance.

Six conventional machine learning algorithms were
employed to construct the LCOS prediction models will all
variables (full models), including logistic regression (LR),
support vector machine (SVM), decision tree (DT), random
forest (RF), extreme gradient boosting (XGB), and light gradient
boosting machine (LGB).

Boruta and the least absolute shrinkage and selection
operator (LASSO) were used to select the optimal subset of
variables. All variables confirmed as important by the Boruta
algorithm were entered the LASSO regressing. Finally, variables

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.973147
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-973147 August 18, 2022 Time: 21:7 # 4

Hong et al. 10.3389/fmed.2022.973147

identified by LASSO regression were included for constructing
reduced models using the same six machine learning algorithms.

Statistical analyses

Baseline characteristics of patients in the training and test
sets were compared. Measurements conforming to a normal
distribution were described as mean ± standard deviation.
Student’s t-test was employed for comparisons. Measurement
data that did not conform to a normal distribution were
denoted as median [lower quartile-upper quartile]. Wilcoxon
rank-sum tests were performed to draw comparisons. The
enumeration data were represented as frequency and percentage
and compared by performing Pearson χ2 test. Fisher’s exact test
was performed under the expected frequencies of one or more
cells less than 5. The difference was considered with statistical
significance at P < 0.05.

The discriminations of models were evaluated by the area
under curve (AUC) of the receiver operating characteristic
(ROC), accuracy, sensitivity, specificity and calibration of the
models were assessed by the calibration curve and Brier score.
Shapley Additive explanation (SHAP) and Local Interpretable
Model-Agnostic Explanations (LIME) were used to provide
consistent and locally accurate values for each variable within
the prediction models. All analyses were conducted in R (version
3.6.3) and Python (version 3.7).

Results

Overall, the eligibility of 1,681 patients who underwent
cardiac surgery and were admitted to the Cardiovascular ICU
of Nanjing First Hospital, Nanjing Medical University, from
June 2019 to November 2020 was assessed. The excluded
cases were as follows: 35 cases were younger than 18 years
old, 8 patients were dead or discharged within 48 h after
surgery and 53 patients had uncompleted data. Finally, 1585
patients [982 (62.0%) male, 18 to 88 years old] were enrolled
for analyses. Among them, 386 (24.4%) patients received
PAC insertion during the surgery, and the proportion of
PAC use varied by surgery types (Supplementary Table 2).
Among patients with PAC, 61 (15.8%) were diagnosed with
LCOS by CI criterion, and among the other 1,199 patients
without PAC, 151 (12.6%) were diagnosed with LCOS by
other criteria. Overall, 212 (13.4%) patients developed LCOS
postoperatively. Compared to patients without LCOS, patients
with LCOS had prolonged MV time (20.25 [13.08,40.38]
vs. 9.50 [7.00,15.33] hours, P < 0.001), longer ICU stay
time (3.0 [2.0,6.0] vs. 1.0 [1.0,2.0] days, P < 0.001) and
hospital stay time (21.0 [16.0,27.0] vs. 17.0 [14.0,21.0] days,
P < 0.001). There was no significant difference in morbidity
between patients with LCOS diagnosed by CI criterion and

FIGURE 1

Comparison of AUCs among different machine learning models.
LR, logistic regression; DT, decision tree; RF, random forest
classifier; LGB, light gradient boosting machine; XGB, extreme
gradient boosting machine; SVM, support vector machine.

other criteria (15.6 vs. 12.5%, P = 0.127), and patients with
LCOS diagnosed by different criteria had similar prognoses
(Supplementary Figure 2), indicating consistency between the
different criteria.

We randomized 70% of these 1,585 patients into the training
set and the remaining 30% into the test set. The clinical variables
of patients in training and test set are listed in Table 1. There
was no significant difference between patients in training and
test sets for these variables.

The full models were conducted with all variables,
using the six algorithms including LR, DT, SVM, RF,
XGB, and LGB for LCOS predicting, and the AUC,
accuracy, sensitivity, and specificity of each full model
on test set were presented in Figure 1 and Table 2.
Among the full models, the RF model (AUC: 0.909,
95% CI: 0.875–0.943; Sensitivity: 0.849, 95% CI: 0.724–
0.933; Specificity: 0.835, 95% CI: 0.796–0.869) and
the XGB model (AUC: 0.897, 95% CI: 0.859–0.935;
Sensitivity: 0.830, 95% CI: 0.702–0.919; Specificity: 0.809,
95% CI: 0.768–0.845) showed well predictive power
for LCOS. The main parameters of the full RF model
were set as follows: bootstrap = True, criterion = “gini,”
n_estimators = 500, max_depth = None, min_samples_leaf = 1,
min_sample_split = 2. The main parameters of the full
XBG model were set as follows: n_estimators = 200,
learning_rate = 0.1, max_depth = 9, gamma = 0. The calibration
plot and Brier score indicated all the full models have well
calibration (Figure 2).

Feature selection was performed by the following
two steps. First, Boruta algorithm was employed and 35
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TABLE 1 Patient characteristics and clinical variables.

Training set (N = 1,109) Test set (N = 476) P-value

Demographic data

Age (years) 61.26 ± 12.02 60.98 ± 11.47 0.658

Male, n (%) 693 (62.5%) 289 (60.7%) 0.541

Height (cm) 165.38 ± 8.39 165.33 ± 8.64 0.920

Weight (kg) 65.83 ± 11.93 65.94 ± 11.68 0.860

Comorbidities

Hypertension, n (%) 568 (51.2%) 227 (47.7%) 0.218

Diabetes, n (%) 256 (23.1%) 93 (19.5%) 0.135

Myocardial infarction, n (%) 62 (5.6%) 26 (5.5%) 1

Hyperlipidemia, n (%) 233 (21.0%) 87 (18.3%) 0.240

Cerebral vascular disease, n (%) 105 (9.5%) 33 (6.9%) 0.123

Atrial Fibrillation, n (%) 244 (22.0%) 100 (21.0%) 0.709

COPD, n (%) 39 (3.5%) 19 (4.0%) 0.752

Heart failure, n (%) 445 (40.1%) 206 (43.3%) 0.266

Kidney disease, n (%) 78 (7.0%) 29 (6.1%) 0.565

Liver disease, n (%) 39 (3.5%) 11 (2.3%) 0.270

Preoperative ECHO

LVDd (mm) 53.98 ± 9.86 53.78 ± 9.09 0.695

LVPWT (mm) 9.85 ± 2.21 9.74 ± 1.40 0.218

LVEF (%) 59.11 ± 9.08 59.05 ± 8.42 0.906

Laboratory

WBC (109/L) 6.76 ± 2.81 6.64 ± 2.45 0.393

NEU (%) 62.84 ± 10.71 62.13 ± 10.62 0.224

LYM (%) 25.42 ± 9.20 27.13 ± 9.52 0.170

PLT (109/L) 188.90 ± 66.07 183.33 ± 63.05 0.113

Hb (g/L) 131.07 ± 18.69 131.92 ± 19.13 0.413

Cr (mmol/L) 83.83 ± 77.54 80.54 ± 59.35 0.359

BUN (mmol/L) 6.67 ± 2.94 6.66 ± 3.17 0.981

AST (U/L) 22.00 [17.00, 30.00] 22.00 [17.00, 30.00] 0.810

Lac (mmol/L) 2.23 ± 1.80 2.26 ± 1.87 0.745

Operative variables

Operation time (hour) 4.39 ± 1.37 4.38 ± 1.36 0.903

CPB time (min) 101.62 ± 66.24 100.45 ± 54.72 0.714

AO time (min) 69.85 ± 54.37 67.61 ± 38.54 0.351

Emergency surgery, n (%) 117 (10.6%) 41 (8.6%) 0.276

Urine output (ml/kg/h) 3.18 ± 1.99 3.16 ± 2.01 0.869

Blood loss (ml) 1165.90 ± 699.38 1155.65 ± 612.52 0.770

Operation type

CABG only, n (%) 311 (28.0%) 130 (27.3%) 0.813

Valve surgery only, n (%) 420 (37.9%) 188 (39.5%) 0.58

CABG + valve surgery, n (%) 100 (9.0%) 53 (11.1%) 0.224

Congenital surgery, n (%) 70 (6.3%) 24 (5.0%) 0.387

Heart transplant, n (%) 14 (1.3%) 4 (0.8%) 0.640

Aortic dissection repair, n (%) 84 (7.6%) 23 (4.8%) 0.059

Other surgery, n (%) 110 (10.3%) 54 (11%) 0.437

Hemodynamic data

MABP < 65 time (min) 129.87 ± 77.61 128.13 ± 72.32 0.667

MABP < 60 time (min) 94.73 ± 66.78 92.88 ± 60.96 0.592

(Continued)
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TABLE 1 (Continued)

Training set (N = 1,109) Test set (N = 476) P-value

MABP < 55 time (min) 65.72 ± 53.95 63.61 ± 48.11 0.441

MABP < 50 time (min) 41.72 ± 41.44 40.34 ± 35.95 0.503

MABP_AUT_65 (mmHg*min) 1583.54 ± 1235.09 1535.92 ± 1087.10 0.443

MABP_AUT_60 (mmHg*min) 1005.51 ± 899.36 966.54 ± 780.09 0.385

MABP_AUT_55 (mmHg*min) 592.29 ± 617.00 563.21 ± 524.40 0.338

MABP_AUT_50 (mmHg*min) 313.91 ± 393.54 292.96 ± 323.69 0.270

MABP_TWA_65 (mmHg) 11.30 ± 3.87 11.31 ± 3.72 0.938

MABP_TWA_60 (mmHg) 9.54 ± 3.78 9.54 ± 3.42 0.982

MABP_TWA_55 (mmHg) 7.79 ± 3.62 7.80 ± 3.41 0.969

MABP_TWA_50 (mmHg) 6.07 ± 3.39 6.07 ± 3.25 0.995

CVP > 12 time (min) 15.00 [0.00, 65.00] 20.00 [5.00, 60.00] 0.815

CVP > 16 time (min) 0.00 [0.00, 10.00] 0.00 [0.00, 10.00] 0.447

CVP > 20 time (min) 0.00 [0.00, 0.00] 0.00 [0.00, 5.00] 0.129

CVP_AUT_12 (mmHg*min) 50.00 [0.00, 225.00] 67.50 [5.00, 220.00] 0.373

CVP_AUT_16 (mmHg*min) 0.00 [0.00, 50.00] 0.00 [0.00, 60.00] 0.231

CVP_AUT_20 (mmHg*min) 0.00 [0.00, 0.00] 0.00 [0.00, 10.00] 0.081

CVP_TWA_12 (mmHg) 2.22 [0.00, 4.00] 2.27 [1.00, 4.57] 0.122

CVP_TWA _16 (mmHg) 0.00 [0.00, 2.86] 0.00 [0.00, 4.00] 0.081

CVP_TWA _20 (mmHg) 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] 0.053

LCOS

Yes, n (%) 148 (13.3%) 64 (13.4%) 1

ECHO, echocardiography; LVDd, left ventricular diastolic diameter; LVPWT, left ventricular posterior wall thickness; LVEF, left ventricular ejection fraction; WBC, white blood cell count;
NEU, neutrophil properties; Cr, blood creatinine; BUN, blood urea nitrogen; AST, aspartate aminotransferase; Lac, blood lactate; CPB, cardiopulmonary bypass; AO, aortic occlusion;
CABG, coronary artery bypass graft; MABP < 65 time, cumulative time of mean artery blood pressure lower than 65 mmHg; MABP < 60 time, cumulative time of mean artery blood
pressure lower than 60 mmHg; MABP < 55 time, cumulative time of mean artery blood pressure lower than 55 mmHg; MABP < 50 time, cumulative time of mean artery blood pressure
lower than 50 mmHg; MABP_AUT_65, total area under curve below threshold mean artery blood pressure 65 mmHg; MABP_AUT_60, total area under curve below threshold mean
artery blood pressure 60 mmHg; MABP_AUT_55, total area under curve below threshold mean artery blood pressure 55 mmHg; MABP_AUT_50, total area under curve below threshold
mean artery blood pressure 50 mmHg; MABP_TWA_65, time weighted average mean artery blood pressure below threshold 65 mmHg; MABP_TWA_60, time weighted average mean
artery blood pressure below threshold 60 mmHg; MABP_TWA_55, time weighted average mean artery blood pressure below threshold 55 mmHg; MABP_TWA_50, time weighted
average mean artery blood pressure below threshold 50 mmHg; CVP > 12 time, cumulative time of central venous pressure upper than 12 mmHg; CVP > 16 time, cumulative time of
central venous pressure upper than 16 mmHg; CVP > 20 time, cumulative time of central venous pressure upper than 20 mmHg; CVP_AUT_12, total area under curve above threshold
central venous pressure 12 mmHg; CVP_AUT_16, total area under curve above threshold central venous pressure 16 mmHg; CVP_AUT_20, total area under curve above threshold central
venous pressure 20 mmHg; CVP_TWA_12, time weighted average central venous pressure above threshold 12 mmHg; CVP_TWA_16, time weighted average central venous pressure
above threshold 16 mmHg; CVP_TWA_20, time weighted average central venous pressure above threshold 20 mmHg; LCOS, low cardiac output syndrome.

features were confirmed important to the prediction of
LCOS (Supplementary Figure 3). Then, Lasso regression
was applied to select the best subset features from the 35
confirmed important features (Supplementary Figure 4).
Eleven variables were finally selected by Boruta and
LASSO features selection procedure, including LVEF,
lactate (Lac), LVDd, cumulative time of mean artery blood
pressure (MABP) lower than 65 mmHg (MABP < 65
time), hypertension history, PLT, age, blood Cr, AST, total
area under curve above CVP 12 mmHg (CVP_AUT_12),
total area under curve above threshold CVP 16 mmHg
(CVP_AUT_16) and blood loss during operation. Six
reduced models with these eleven variables and the
same six algorithms were then developed. Among the
reduced models, among which, RF model (AUC:0.895,
95% CI: 0.857–0.933; Sensitivity:0.830, 95% CI: 0.702–0.919;
Specificity: 0.806, 95% CI: 0.765–0.843) revealed the best
performance. The main parameters of the reduced RF model

were set as follows: bootstrap = True, criterion = “gini,”
n_estimators = 700, max_depth = None, min_samples_leaf = 1,
min_sample_split = 2. The AUC, accuracy, sensitivity and
specificity of the full and reduced models are presented in
Table 2.

The SHAP summary plot (Figure 3) and dependence
plot (Figure 4) represented the contributions of these eleven
variables to the prediction of the RF model, with SHAP values
above zero indicating an increased risk of developing LCOS
and SHAP values below zero indicating a decreased risk of
LCOS. For example, SHAP values for high LVEF (red) were
usually less than zero, indicating a decreased risk of LCOS in
patients with higher LVEF. In addition, Figure 3A displays
the ranking of the features based on the average absolute
SHAP value. Among the eleven variables, LVEF, Lac, LVDd
and MABP < 65 time were the four variables with the
greatest influence on prediction power. Lower LVEF, higher
Lac, larger LVDd and longer MABP < 65 time indicated
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TABLE 2 The performance of each model.

Model AUC Accuracy Sensitivity Specificity

Full models LR 0.853 (0.803–0.903) 0.761 (0.72–0.798) 0.755 (0.617–0.862) 0.761 (0.718–0.801)

DT 0.794 (0.722–0.866) 0.716 (0.674–0.756) 0.698 (0.557–0.817) 0.719 (0.673–0.761)

RF 0.909 (0.875–0.943) 0.836 (0.800–0.868) 0.849 (0.724–0.933) 0.835 (0.796–0.869)

LGB 0.871 (0.822–0.920) 0.813 (0.775–0.847) 0.755 (0.617–0.862) 0.820 (0.780–0.856)

XGB 0.897 (0.859–0.935) 0.811 (0.773–0.845) 0.830 (0.702–0.919) 0.809 (0.768–0.845)

SVM 0.874 (0.823–0.925) 0.813 (0.775–0.847) 0.774 (0.638–0.877) 0.818 (0.778–0.854)

Reduced models LR 0.815 (0.754–0.877) 0.708 (0.665–0.748) 0.717 (0.577–0.832) 0.707 (0.661–0.75)

DT 0.740 (0.661–0.818) 0.580 (0.534–0.625) 0.774 (0.638–0.877) 0.556 (0.507–0.604)

RF 0.895 (0.857–0.933) 0.809 (0.771–0.843) 0.830 (0.702–0.919) 0.806 (0.765–0.843)

LGB 0.853 (0.800–0.906) 0.767 (0.726–0.804) 0.792 (0.659–0.892) 0.764 (0.72–0.803)

XGB 0.854 (0.803–0.905) 0.752 (0.711–0.790) 0.792 (0.659–0.892) 0.747 (0.703–0.788)

SVM 0.853 (0.800–0.905) 0.775 (0.735–0.812) 0.774 (0.638–0.877) 0.775 (0.733–0.814)

AUC, area under curve of receiver operating characteristic; LR, logistic regression; DT, decision tree; RF, random forest classifier; LGB, light gradient boosting machine; XGB, extreme
gradient boosting machine; SVM, support vector machine.

FIGURE 2

The calibration curves and the Brier score of different machine
learning models. LR, logistic regression; DT, decision tree; RF,
random forest classifier; LGB, light gradient boosting machine;
XGB, extreme gradient boosting machine; SVM, support vector
machine.

an increased possibility of the onset of LCOS. We randomly
selected two patients with LCOS (Figure 5A) and without LCOS
(Figure 5B) and used LIME algorithm to interpret how they
were predicted to be have a 68% possibility of LCOS and
92% possibility without LCOS. The first patient (Figure 5A)
was predicted to be with possibility of prospective LCOS
due to low LVEF (38%), high Lac (2.9 mmol/L), large LVDd
(84 mm), long MABP < 65 time (185 min) and advanced
age (76 years). The second patient (Figure 5B) was predicted
to be without prospective LCOS due to relatively normal
variables: Lac (1.0 mmol/L), LVDd (52 mm), hypertension,
CVP_AUT_16 (0 min), Blood loss (700 ml), CVP_AUT_12

(15 min), age (64 years), MAPB < 65 time (125 min), PLT (256
∗ 10ˆ9/L).

Discussion

Big data and machine learning are enabling the shift from
conventional to customized treatment, which could soon result
in the birth of a new health system (18, 19). To the best of
our knowledge, no machine learning prediction model has been
established to predict the occurrence of LCOS following cardiac
surgery. In the present study, in the cooperation of clinicians and
information technology engineers, we successfully developed
several machine learning models to predict LCOS following
cardiac surgery. Six conventional machine learning algorithms
were employed to construct the LCOS prediction models,
including LR, SVM, DT, RF, XGB, and LGB, indicating that
RF and XGB models exhibited the best performance. RF is
a homologous ensemble algorithm that constructs a great
number of decision trees during training, which helps to build
robust prediction models with able to deal with non-linear
data. XGB is a distributed algorithm with fast operation speed
and high fault tolerance, which could accurately predicts the
outcome of multiple diseases in ICU (20–22). Commendably,
our study demonstrated that the performance of machine
learning models was significantly superior to the traditional
logistic regression models in the prediction of LCOS following
cardiac surgery.

We adopted a dual definition of LCOS, similar to the prior
studies (10, 13), with the CI criterion requiring perioperative
PAC monitoring. However, even in the field of cardiothoracic
surgery, the usage of the PAC has declined over the years.
The most accurate way to evaluate the pulmonary artery
and cardiac output in patients with pulmonary hypertension
and heart failure, however, is through the use of PAC. The
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FIGURE 3

SHAP summary plot of the reduced RF model. The plot showed the importance of each variable (A) and the specific distribution between
variables and Shapely value (B) using SHAP algorithm.

large proportion of PAC usage in various procedures, such
as heart transplant, adult congenital surgery, and challenging
combination CABG + valve surgery, can be attributed to its
potential benefit in patients with a high risk of RV failure (8,
23) (Supplementary Table 2). PAC could continually provide
important hemodynamic measurements like pulmonary
circulation resistance, right heart afterload, cardiac output,
etc. Those measurements are imperative in perioperative
management of critically ill patients after those types of
surgery. However, PAC use was reported to be associated with
a poorer outcome in patients receiving cardiac surgical. As

an invasive hemodynamic monitoring method, the difficulty
of placement and consequent side effects may contribute to
iatrogenic adverse outcomes for patients (24). The similar
prognosis outcome between LCOS patients diagnosed by
CI criterion and other criteria indicated consistency across
different criteria. Importantly, our prediction models could
provide a non-invasive, precious, interpretable way to predict
LCOS, perhaps reducing the need for intrusive monitoring
techniques like PAC.

Low Cardiac Output Syndrome could be corrected by
timely and effective intervention and a variety of therapeutic
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FIGURE 4

SHAP dependence plot of the reduced RF model. ECHO, echocardiography; LVDd, left ventricular diastolic diameter; LVPWT, left ventricular
posterior wall thickness; LVEF, left ventricular ejection fraction; WBC, white blood cell count; NEU, neutrophil properties; Cr, blood creatinine;
BUN, blood urea nitrogen; AST, aspartate aminotransferase; Lac, blood lactate; CPB, cardiopulmonary bypass; AO, aortic occlusion; CABG,
coronary artery bypass graft; MABP < 65 time, cumulative time of mean artery blood pressure lower than 65 mmHg; MABP < 60 time,
cumulative time of mean artery blood pressure lower than 60 mmHg; MABP < 55 time, cumulative time of mean artery blood pressure lower
than 55 mmHg; MABP < 50 time, cumulative time of mean artery blood pressure lower than 50 mmHg; MABP_AUT_65, total area under curve
below threshold mean artery blood pressure 65 mmHg; MABP_AUT_60, total area under curve below threshold mean artery blood pressure
60 mmHg; MABP_AUT_55, total area under curve below threshold mean artery blood pressure 55 mmHg; MABP_AUT_50, total area under
curve below threshold mean artery blood pressure 50 mmHg; MABP_TWA_65, time weighted average mean artery blood pressure below
threshold 65 mmHg; MABP_TWA_60, time weighted average mean artery blood pressure below threshold 60 mmHg; MABP_TWA_55, time
weighted average mean artery blood pressure below threshold 55 mmHg; MABP_TWA_50, time weighted average mean artery blood pressure
below threshold 50 mmHg; CVP > 12 time, cumulative time of central venous pressure upper than 12 mmHg; CVP > 16 time, cumulative time of
central venous pressure upper than 16 mmHg; CVP > 20 time, cumulative time of central venous pressure upper than 20 mmHg; CVP_AUT_12,
total area under curve above threshold central venous pressure 12 mmHg; CVP_AUT_16, total area under curve above threshold central venous
pressure 16 mmHg; CVP_AUT_20, total area under curve above threshold central venous pressure 20 mmHg; CVP_TWA_12, time weighted
average central venous pressure above threshold 12 mmHg; CVP_TWA_16, time weighted average central venous pressure above threshold
16 mmHg; CVP_TWA_20, time weighted average central venous pressure above threshold 20 mmHg; LCOS, low cardiac output syndrome.
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FIGURE 5

LIME plot for individual case explanation on two random patients for the test set of the reduced RF model. LIME plot included one patient with
LCOS (A) and one patient without LCOS (B), explained by LIME algorithm. ECHO, echocardiography; LVDd, left ventricular diastolic diameter;
LVPWT, left ventricular posterior wall thickness; LVEF, left ventricular ejection fraction; WBC, white blood cell count; NEU, neutrophil properties;
Cr, blood creatinine; BUN, blood urea nitrogen; AST, aspartate aminotransferase; Lac, blood lactate; CPB, cardiopulmonary bypass; AO, aortic
occlusion; CABG, coronary artery bypass graft; MABP < 65 time, cumulative time of mean artery blood pressure lower than 65 mmHg;
MABP < 60 time, cumulative time of mean artery blood pressure lower than 60 mmHg; MABP < 55 time, cumulative time of mean artery blood
pressure lower than 55 mmHg; MABP < 50 time, cumulative time of mean artery blood pressure lower than 50 mmHg; MABP_AUT_65, total
area under curve below threshold mean artery blood pressure 65 mmHg; MABP_AUT_60, total area under curve below threshold mean artery
blood pressure 60 mmHg; MABP_AUT_55, total area under curve below threshold mean artery blood pressure 55 mmHg; MABP_AUT_50, total
area under curve below threshold mean artery blood pressure 50 mmHg; MABP_TWA_65, time weighted average mean artery blood pressure
below threshold 65 mmHg; MABP_TWA_60, time weighted average mean artery blood pressure below threshold 60 mmHg; MABP_TWA_55,
time weighted average mean artery blood pressure below threshold 55 mmHg; MABP_TWA_50, time weighted average mean artery blood
pressure below threshold 50 mmHg; CVP > 12 time, cumulative time of central venous pressure upper than 12 mmHg; CVP > 16 time,
cumulative time of central venous pressure upper than 16 mmHg; CVP > 20 time, cumulative time of central venous pressure upper than
20 mmHg; CVP_AUT_12, total area under curve above threshold central venous pressure 12 mmHg; CVP_AUT_16, total area under curve above
threshold central venous pressure 16 mmHg; CVP_AUT_20, total area under curve above threshold central venous pressure 20 mmHg;
CVP_TWA_12, time weighted average central venous pressure above threshold 12 mmHg; CVP_TWA_16, time weighted average central venous
pressure above threshold 16 mmHg; CVP_TWA_20, time weighted average central venous pressure above threshold 20 mmHg; LCOS, low
cardiac output syndrome.
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strategies can be applied to the treatment of LCOS, when
it is early recognized, including optimization of ventricular
preload and afterload; inotropic agents; positive pressure
ventilation; heart rhythm and rate control; metabolic and
hormonal disorders correction; and in extreme circumstances
mechanical circulatory support (8, 9, 25, 26). Most features
we included in the full and reduced models were preoperative
clinical and intraoperative hemodynamic variables. Our
prediction model could be integrated into the EMR system
for use in everyday practice, and the HER database could
automatically provide the model with the data it needs.
In the very early phase after surgery, LCOS models could
provide LCOS risk prediction and shed a light on further
strategies for postoperative management and initiation of
individualized therapy.

The present study showed that LVEF, Lac, LVDd,
MABP < 65 time, hypertension, PLT, age, Cr, CVP_AUT_16,
CVP_AUT_12, and blood loss significantly contributed to
the prediction. The reduced RF model using these features
also showed little discrimination loss in the prediction
of LCOS (AUC:0.895 vs. 0.909) but it could significantly
increase the efficiency and convenience, which may
contribute to risk stratification and short-term decision
making for LCOS.

Traditionally, machine learning models have been less
interpretable when compared to traditional regression models.
This black-box behavior has hindered their application in
clinical settings. To enhance the interpretability of machine
learning, we utilized SHAP and LIME interpreter techniques
to visualize how features affect the prediction of LCOS,
both globally and individually accordingly. SHAP summary
plot revealed that LVEF, Lac, LVDd and MABP < 65 time
were the most significant predictors of LCOS, with lower
LVEF, higher Lac, larger LVDd and longer MABP < 65
time indicating increased possibility of the prospective onset
of LCOS. LVEF is the most widely used estimate of left
ventricular systolic function and a decreased LVEF is an
independent risk factor for LCOS (27, 28). Serum lac is a
well-recognized biomarker of tissue perfusion, and elevated
lac can serve as a sensitive indicator of LCOS. Ventricular
dilatation is a common compensatory response to decreased
myocardial contractility (29), which can explain the association
between enlarged LVDd and the risk of LCOS. MABP < 65
time also serves as a surrogate for a hypotension state
subsequent to reduced cardiac output. We tried multiple
thresholds of MABP (< 65, < 60, < 55, < 50 mmHg) and
MABP < 65 mmHg showed a better predictive value than
other thresholds, suggesting 65 mmHg was a good MABP
threshold regarding maintenance of tissue perfusion (30).
In our study, patients with a history of hypertension were
less likely to develop LCOS after cardiac surgery, which is
consistent with a previous study (3). Hypertension is usually
associated with myocardial hypertrophy and is accompanied

by enhanced myocardial contractility. Notably, hypertension
patients were also reported to have higher mortality after
the onset of LCOS, because myocardial hypertrophy would
exacerbate the deficiency of oxygen supply subsequent to
LCOS (31).

Our study had several advantages when compared to
previous studies. Firstly, our study included comprehensive
variables including demographics, commodities,
echocardiographic and laboratory measurements and operation
related information including intraoperative hemodynamic
data, which could reflect the patient’s profile in multiple
dimensions. Secondly, we incorporated various hemodynamic
time-series features that were considered difficult to incorporate
in prediction models (32–34). In our previous study, we
demonstrated an association between hemodynamic time-series
data and postoperative organ dysfunction (35). It is well known
that intraoperative hypotension and venous congestion may
be a reflection of LCOS. We examined cumulative time, total
area under curve and time weighted average under or above
pre-specified thresholds other than using static measures as in
other studies (36). In this way, we could assess both the duration
and severity of hypotension and venous congestion, so as to
better contribute to the prediction of LCOS.

Thirdly, we analyzed the predictive value of all features
and selected features for LCOS prediction. Some studies made
feature selection only based on linear regression or stepwise
logistic regression, which may exclude features that were not
statistically significant but have causal effects on the output
variable due to non-linear relationships or interactions between
the variables and outcomes (37). As a wrapper built around
the random forest classification algorithm, Boruta performed
classification by voting on multiple unbiased weak decision
trees (38), which could deal with non-linear and complex
relationships between the features and the outcome. Thus,
our approach reduced the possibility of missing important or
previously unreported features.

This study was subject to some limitations. First, we did not
compare the performance of our models with previous LCOS
risk scores because some of the variables required in the risk
scores were not available. Second, the models have not been
verified in the external validation queue. Third, this is a single
center retrospective study. Further multi-center studies with
external validation are needed to further verify our findings and
prospective studies could be of more importance in assessing the
performance of our predictive models.

Conclusion

In the present study, we successfully developed several
machine learning models to predict LCOS following cardiac
surgery, which may avail to risk stratification, early detection
and management of LCOS following cardiac surgery.
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