

Cytotoxic and Optically Active Pyrisulfoxins From the Endophytic *Streptomyces albolongus* EA12432

Yuqi Du ^{1†}, Chen Wang ^{1†}, Guodong Cui ^{1†}, Yiwen Chu², Qian Jia ¹, Yi Wang ^{1*} and Weiming Zhu ^{1,3*}

¹ Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China, ² Sichuan Industrial Institute of Antibiotics, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China, ³ Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China

OPEN ACCESS

Edited by:

Huiming Ge, Nanjing University, China

Reviewed by:

Hongbo Huang, South China Sea Institute of Oceanology (CAS), China Basem Moosa, KAUST Catalysis Center (KCC), Saudi Arabia

*Correspondence:

Yi Wang wangyi0213@ouc.edu.cn Weiming Zhu weimingzhu@ouc.edu.cn

[†]These authors have contributed equally to this work

Specialty section:

This article was submitted to Organic Chemistry, a section of the journal Frontiers in Chemistry

Received: 24 January 2020 Accepted: 16 March 2020 Published: 06 May 2020

Citation:

Du Y, Wang C, Cui G, Chu Y, Jia Q, Wang Y and Zhu W (2020) Cytotoxic and Optically Active Pyrisulfoxins From the Endophytic Streptomyces albolongus EA12432. Front. Chem. 8:248. doi: 10.3389/fchem.2020.00248

R-Pyrisulfoxin C (1), S-pyrisulfoxin D [(+)-2], R-pyrisulfoxin D [(-)-2], pyrisulfoxin E (13), S-pyrisulfoxin F [(+)-14], and R-pyrisulfoxin F [(-)-14], six new caerulomycin derivatives with a 2,2'-bipyridine skeleton, were obtained from the cultures of the endophytic Streptomyces albolongus EA12432 with Aconitum carmichaeli (Ranunculaceae). Additionally, the racemic pyrisulfoxins A $[(\pm)-3]$ and B $[(\pm)-4]$ were further purified as optically pure compounds and identified the configurations for the first time. The racemic pyrisulfoxin D [(±)-2] displayed significant cytotoxicity against a series of cancer cell lines with IC₅₀ values ranging from 0.92 to 9.71 μ M. Compounds 7, 8, and (±)-3 showed cytotoxicity against the HCT-116, HT-29, BXPC-3, P6C, and MCF-7 cell lines. Notably, compounds 7 and 8 have a strong inhibition both on the proliferation of human colon cancer cells HCT-116 and HT-29 with IC₅₀ values ranging from 0.048 to $0.2 \,\mu$ M (doxorubicin, 0.21 and $0.16 \,\mu$ M), and compound **1** showed a selective inhibition on the proliferation of the gastric carcinoma cell lines, N87, with an IC50 value of 8.09 μ M. Optically pure compounds R(-)-14 and S(+)-14 showed weak cytotoxicity against HCT-116 and MCF-7 cell lines with the IC₅₀ values of 14.7 μ M and 10.4 μ M, respectively. Interestingly, compounds 1 and (\pm) -2 didn't show cytotoxic activity against two human normal cell lines, HEK-293F and L02, with IC₅₀ values $>100 \mu$ M.

Keywords: 2,2'-bipyridine, cytotoxicity, endophyte, Streptomyces albolongus, Aconitum carmichaeli

INTRODUCTION

Caerulomycin A is an alkaloid with a 2,2'-bypyridine core, firstly discovered from the cultures of strain *Streptomyces caeruleus* in 1959 (Funk and Divekar, 1959). Since then, large amounts of its analogs or derivatives have been isolated from both wild and mutant actinomycetes, such as caerulomycins (CAEs) (Gomi et al., 1994), collimycins (COLs) (Shindo et al., 1994), and pyrisulfoxins (PYRs) (Tsuge et al., 1999). All of these compounds consist of a 2-substituted pyridine and a tri- or tetra-substituted pyridine ring system, which were also called 2,2'-bipyridine derivatives are well-known for their antibacterial (Ambavane et al., 2014; Bu et al., 2014), immunosuppressant (Gurram et al., 2014; Kujur et al., 2015, 2017), and cytotoxic activities (Fu et al., 2011a, 2014; Mei et al., 2019). Our group has reported cytotoxic CAE compounds, cyanogrisides A–N (Fu et al., 2011a, 2014; Mei et al., 2019), CAEs F–K (Fu et al., 2011b), and CAEs T–W (Mei et al., 2019) against several tumor cells, from *Actinoalloteichus*

1

cyanogriseus WH1-2216-6. In our ongoing research, we identified three new PYRs containing a methyl sulfoxide group, pyrisulfoxin C (1), (+)-pyrisulfoxin D [(+)-2], and (-)-pyrisulfoxin D [(-)-2], along with the known analogs 3-11 and their biosynthetic precursor, picolinic acid (12) (Tables S1, S2) (Mehler, 1956), from a rice culture of the endophytic Streptomyces albolongus EA12432 isolated from Aconitum carmichaeli (Ranunculaceae), a famous Chinese medicinal plant (Yin et al., 2016). When the culture time was extended to 90 d, apart from the isolated compounds 1 and 3-11 from 30 d cultures, three new different PYRs, pyrisulfoxin E (13), (+)-pyrisulfoxin F [(+)-14], and (-)-pyrisulfoxin F [(-)-14], were identified (Figure S53). The known analogs included (\pm) pyrisulfoxins A $[(\pm)-3]$ and B $[(\pm)-4]$ (Tsuge et al., 1999; Lee et al., 2017), which were further chirally resolved as their optically pure isomers for the first time, N-[(4-hydroxy-5-methylthio-2,2'bipyridin-6-yl)methyl] acetamide (5) (Tables S1, S2) (Ignacio et al., 2012) and SF2738 A-F (6-11) (Tables S1-S3) (Gomi et al., 1994; Yin et al., 2016). The absolute configurations of pyrisulfoxin C (1), S(+)-2, S(+)-3, S(+)-4, R(-)-2, R(-)-3, and R(-)-4 were determined by experimental and calculated electronic circular dichroism (ECD) spectra. Compounds 1, (\pm) -2, (\pm) -3, 7, and 8 displayed significant cytotoxicity against cancer cells with the IC₅₀ values ranging from 0.048 to 9.71 μ M. Compounds R(-)-14 and S(+)-14 showed inhibitory activity against HCT-116 and MCF-7 cancer cell lines with the IC₅₀ values of 14.7 and 10.4 µM, respectively.

Notably, compounds 1–4 all bare a methyl sulfoxide group in the 2,2'-bypyridine nuclei. By searching the key words of "natural products (NPs) with sulfoxide" in SciFinder database, about 136 NPs baring sulfoxide group were reported. Apart from numerous sulfoxide-containing NPs from allium plants (Nohara et al., 2012, 2013; Edmands et al., 2013; Radulović et al., 2015; Fukaya et al., 2017), some sulfoxide-containing peptides and β -carboline derivatives, were isolated from marine sponge and ascidian, respectively. The methyl sulfoxide-containing peptides include cytotoxic haligramides A and B (Rashid et al., 2000), hymenamide F (Kobayashi et al., 1996), ciliatamide D (Imae et al., 2013; Takada et al., 2017), waiakeamide (Mau et al., 1996) and its sulfone derivative (Sera et al., 2003), as well as polytheonamides A and B (Hamada et al., 2005). The methyl sulfoxide-containing β carboline derivatives include eudistomin E (Murata et al., 1991), didemnolines C and D (Schumacher and Davidson, 1995), and eudistomin K sulfoxide with antiviral activity (Lake et al., 1988). Also, a series of sulfoxides with potent cytotoxicity were isolated from microorganisms, including leinamycin (Kara et al., 1989), apratoxin A sulfoxide (Thornburg et al., 2013), and quinomycin derivatives RK-1355 A and B (Lim et al., 2014).

MATERIALS AND METHODS

General Experimental Procedures

Melting points were obtained on X-4 digital display micromelting point measuring instrument. Optical rotations were measured with POLAX-L polarimeter. Ultraviolet (UV) spectra were recorded on a Thermo Fisher Scientific NanoDrop One micro-spectrophotometer. IR spectra were taken on a Nicolet Nexus 470 spectrophotometer using KBr pellets. ECD spectra were measured on a JASCO-815 spectrometer (JASCO, Tokyo, Japan). Nuclear magnetic resonance (NMR) spectra of compounds 1, 2, and 4-13 were recorded on a Bruker Avance 500 MHz spectrometer while 2a, 3, and 14, were measured on a JEOL JNM-ECP 600 spectrometer with TMS as an internal standard. Chemical shift (δ) was expressed in ppm with reference to the solvent signals. Mass spectra were recorded on an Agilent 6200 Q-TOF MS system. Thin layer chromatography (TLC) was performed on plates precoated with silica gel GF₂₅₄ (10-40 µm). Column chromatography (CC) was performed on silica gel (100-200 mesh, 200-300 mesh, 300-400 mesh, Qingdao Marine Chemical Ltd., Qingdao, People's Republic of China), RP-18 gel (20-45 µm), and Sephadex LH-20 (Amersham Biosciences). Medium-pressure liquid chromatography (MPLC) was performed on a LC3000 equipped with a P3000A pump modules, and columns packed with RP-18 gel. Semipreparative high-performance liquid chromatography (HPLC) was performed using an octadecyl silica (ODS) column [YMCpack ODS-A, 10×250 mm, 5μ m, 4 ml/min].

Actinobacterial Material

The endophytic actinobacterium strain EA12432 was isolated from *Aconitum carmichaeli* (Ranunculaceae) and identified as *Streptomyces albolongus* by 16S rRNA gene sequence and morphological characteristics (Yin et al., 2016).

Fermentation and Extraction

Spores were inoculated into 500 ml Erlenmeyer flasks containing 150 ml liquid medium that was prepared by dissolving soluble starch (20 g), KNO₃ (1 g), K₂HPO₄·3H₂O (0.5 g), MgSO₄·7H₂O (0.5 g), FeSO₄ (0.01 g), and NaCl (0.5 g) in sea water (1L). The flasks were incubated at 180 rpm and 28°C for 5 days as seed culture (OD₆₀₀ 1.375), which was then inoculated into 200 × 1,000 ml Erlenmeyer flasks, each containing 80 g rice and 40 ml sea water. All the media were statically cultured at 28°C for 30 d. The culture broth was extracted with ethyl acetate (EtOAc) four times (30 L each). The EtOAc extracts were concentrated under reduced pressure to yield a dark brown gum 30 (40.2 g).

Spores were inoculated into 500 ml Erlenmeyer flasks containing 150 ml liquid medium that was prepared by dissolving soluble starch (20 g), KNO₃ (1 g), $K_2HPO_4 \cdot 3H_2O$ (0.5 g), MgSO₄·7H₂O (0.5 g), FeSO₄ (0.01 g), and NaCl (0.5 g) in sea water (1L). The flasks were incubated at 180 rpm and 28°C for 5 days as seed culture (OD₆₀₀ 1.504), which was then inoculated into 1,000 ml Erlenmeyer flasks containing 80 g rice and 40 ml sea water. The flasks were incubated at room temperature for 90 d. The culture broth was soaked and extracted with ethyl acetate (EtOAc) four times (30 L each). The EtOAc extracts were concentrated under reduced pressure to yield a dark brown gum 90 (10 g).

Isolation

The gum 30 (40.2 g) was separated on silica gel using stepwise gradient elution with ethyl acetate/petroleum ether (0-100%) followed by MeOH/CH₂Cl₂ (0-10%) to yield 12 fractions (30 Fr.1-30 Fr.12). 30 Fr.8 (4.46 g) was separated by column chromatography on silica gel using stepwise gradient elution with CH₂Cl₂/MeOH (300:1-1:1) to yield eight fractions (30 Fr.8-1-30 Fr.8-8) and 7 (97 mg). 30 Fr.8-1 (818.8 mg) was further separated into three subfractions on Sephadex LH-20, eluting with CH₂Cl₂/MeOH (1:1). 30 Fr.8-1-2 (539 mg) was separated on an ODS column eluting with MeOH/H₂O (10-100%) to give 8 (17.4 mg) and 9 (90.6 mg). 30 Fr.8-1-3 (86.8 mg) was subjected to an ODS column eluting with MeOH/H2O (10-100%) to give compound 12 (57.1 mg). 30 Fr.8-8 (60.7 mg) was purified by semi-preparative HPLC on an ODS column (65% MeOH/H₂O) to yield 10 (32.6 mg, $t_{\rm R}$ 11.5 min) and 11 (14.2 mg, $t_{\rm R}$ 16.5 min). Fr.10 (2.54 g) was subjected to Sephadex LH-20 using MeOH to afford six subfractions (30 Fr.10-1-30 Fr.10-6). 30 Fr.10-5 (958.9 mg) was further separated by VLC on silica gel eluting with petroleum ether/ethyl acetate (10:1-1:1). 30 Fr.10-5-7 (266.2 mg) was further separated into six subfractions (30 Fr.10-5-7-1-30 Fr.10-5-7-6) on silica gel using stepwise gradient elution with petroleum ether/EtOAc (3:1-1:1). 30 Fr.10-5-7-2 (182 mg) was separated on Sephadex LH-20, eluting with CH₂Cl₂/MeOH (1:1), among which the second subfraction, 30 Fr.10-5-7-2-2 (70.3 mg) was purified by a preparative MPLC over an ODS column (25% MeCN/H₂O) to yield 1 (48.3 mg, $t_{\rm R}$ 4.0 min), (\pm) -4 (2.1 mg, t_R 8.5 min), and 6 (7.2 mg, t_R 12.5 min). (\pm) -4 was further separated into (+)-4 (0.9 mg, $t_{\rm R}$ 10.8 min) and (-)-4 (1.7 mg, $t_{\rm R}$ 12.0 min) on a ChiralPak IA analytical column (40% EtOH/*n*-hexane). 30 Fr.10-5-8 (700 mg) were separated on Sephadex LH-20, eluting with CH₂Cl₂/MeOH (1:1). Fr.10-5-8-2 (450 mg) was separated into 10 subfractions (30 Fr.10-5-8-2-1-30 Fr.10-5-8-2-10) on silica gel using stepwise gradient elution with CH₂Cl₂/MeOH (40:1-1:1). 30 Fr.10-5-8-2-4 (151.7 mg) was then purified by semi-preparative HPLC (20% MeCN/H₂O) to yield (\pm)-3 (6.5 mg, $t_{\rm R}$ 23.0 min), which was further separated into (+)-3 (2.1 mg, $t_{\rm R}$ 8.0 min) and (-)-3 (1.6 mg, $t_{\rm R}$ 9.5 min) on a ChiralPak IA analytical column (35% EtOH/n-hexane). 30 Fr.10-5-8-2-5 (85.1 mg) was purified by MPLC (20% MeCN/H₂O, ODS-A C18 column) to yield (\pm) -2 (10 mg, $t_{\rm R}$ 4.5 min), along with 5 (25.1 mg, t_R 7.8 min). (±)-2 was further separated into (+)-2 (1.3 mg, t_R 21.0 min) and (-)-2 (1.7 mg, $t_{\rm R}$ 24.0 min) on a Chiral tris(3,5-dimethylphenylcarbamate) immobilized cellulose (INB) analytical column (20% EtOH/n-hexane/Et2NH).

The gum 90 (10 g) was subjected to a silica gel column, eluted by stepwise gradient of ethyl acetate/petroleum ether (0–100%) followed by MeOH/CH₂Cl₂ (0–10%) to yield 13 fractions (90 Fr.1–90 Fr.13). 90 Fr.11 (300 mg) was separated on a Sephadex LH-20 column eluted by MeOH to give five subfractions, 90 Fr.11-1–90 Fr.11-5. 90 Fr.11-2 (40 mg) was further separated by semi-preparative HPLC (65% MeOH/H₂O, YMC-ODS column) to yield compound **13** (2.5 mg, t_R 9.0 min). 90 Fr.12 (400 mg) was separated on a Sephadex LH-20 column eluted by MeOH to provide three subfractions, 90 Fr.12-1–90 Fr.12-3. 90 Fr.12-2 (100 mg) was further separated by semi-preparative HPLC (60% MeOH/H₂O, YMC-ODS column) to yield (±)-**14** (3.0 mg, t_R 8.0 min), which was resolved into (+)-**14** (1.2 mg, t_R 22.0 min) and (–)-**14** (1.1 mg, t_R 16.0 min) on a ChiralPak IA analytical column (30% *i*-PrOH/*n*-hexane).

R-Pyrisulfoxin C (1): white amorphous powder; $[\alpha]_D^{13} - 33.4$ (*c* 0.5, MeOH); UV(MeOH) λ_{max} (log ε) 249 (3.57), 289 (3.81) nm; IR (KBr) ν_{max} 3,346, 2,922, 1,569, 1,464, 1,422, 1,374, 1,039, 957, 798 cm⁻¹; ECD (0.90 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 216 (+5.5), 243 (+2.9), and 291 (-3.9) nm; ¹H NMR and ¹³C NMR, see **Tables 1**, **3**. High Resolution Electrospray Ionization Mass Spectroscopy (HRESIMS) *m*/*z* 279.0795 [M + H]⁺ (calcd for C₁₃H₁₅N₂O₃S, 279.0798).

S-Pyrisulfoxin D [(+)-2]: white amorphous powder; $[\alpha]_D^{13}$ +14.2 (*c* 0.5, MeOH); UV(MeOH) λ_{max} (log ε) 242 (4.49), 282 (4.28) nm; IR (KBr) ν_{max} 3,260, 3,053, 2,922, 1,631, 1,572, 1,493, 1,383, 1,290, 1,029, 794 cm⁻¹; ECD (0.82 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 221 (-12.8), 250 (+9.4), and 300 (+5.3) nm; ¹H NMR and ¹³C NMR, see **Tables 1**, 3. HRESIMS *m*/*z* 306.0916 [M + H]⁺ (calcd for C₁₄H₁₆N₃O₃S, 306.0907).

R-Pyrisulfoxin D [(-)-2]: white amorphous powder; $[\alpha]_D^{13}$ -16.6 (*c* 0.5, MeOH); UV(MeOH) λ_{max} (log ε) 242 (4.49), 282 (4.28) nm; IR (KBr) ν_{max} 3,260, 3,053, 2,922, 1,631, 1,572, 1,493, 1,383, 1,290, 1,029, 794 cm⁻¹; ECD (0.82 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 220 (+9.7), 250 (-7.7), and 300 (-3.4) nm; ¹H NMR and ¹³C NMR, see **Tables 1**, 3. HRESIMS *m*/*z* 306.0916 [M + H]⁺ (calcd for C₁₄H₁₆N₃O₃S, 306.0907).

S-Pyrisulfoxin A [(+)-3]: white amorphous powder; $[\alpha]_D^{15}$ +51.5 (*c* 1, MeOH); UV(MeOH) λ_{max} (lg ε) 243 (4.37), 287 (4.13) nm; ECD (0.86 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 207 (-17.2), 244 (-4.6), and 296 (+5.4) nm; ¹H NMR and ¹³C NMR, see **Tables 2, 3, Figures S33, S34**. HRESIMS *m*/*z* 292.0754 [M + H]⁺ (calcd for C₁₃H₁₄N₃O₃S, 292.0750) (**Figure S31**).

No.	1 (CD ₃ OD)	(±)-2 (DMSO-d ₆)	(±)-2 (CD ₃ OD)	(±)-2 ^a (DMSO-d ₆)	(±)-2a ^b (DMSO- d_6)
	δ _H (J in Hz)	δ _H (J in Hz)	δ _H (J in Hz)	δ _H (J in Hz)	δ _H (J in Hz)
3	8.01, s	7.38, s	7.15, s	7.36, s	8.03, s
4	-	-	-	-	-
4-OCH ₃	4.05, s	-	-	-	4.04, s
5	-	-	-	-	-
5-SOCH ₃	3.06, s	3.03, s	3.16, s	3.01, s	3.03, s
6	-	-	-	-	-
7	4.96, d (15.0) 4.92, d (15.0)	4.71, m	4.91, m	4.72, m	4.65, dd (5.3, 15.8) 4.85, dd (6.0, 15.8)
NHCOCH ₃	-	1.92, s	2.07, s	1.92, s	1.92, s
3′	8.46, dd (7.7)	8.32, d (7.8)	8.14, d (7.7)	8.31, d (7.1)	8.52, d (7.7)
4′	7.92, dd (7.7, 7.5)	7.96, dd (7.8, 7.5)	7.99, dd (7.7, 7.0)	7.98, dd (7.1, 6.0)	8.03, m
5′	7.42, dd (7.5, 4.4)	7.49, dd (7.5, 4.0)	7.54, dd (7.0, 4.0)	7.50, brs	7.53, dd (7.5, 5.0)
6′	8.64, d (4.4)	8.69, d (4.0)	8.75, d (4.0)	8.70, brs	8.73, brs
NH	-	8.49, brs	-	8.46, brs	8.33, brs

^aSynthetic compound; ^bRecorded at 600 MHz.

TABLE 2 | ¹H NMR data of compounds (±)-3, (±)-4, 13, and (±)-14 at 500 MHz.

No.	(±)-3 ^a (CD ₃ OD)	(±)-4 (CDCl ₃)	13 (CDCI ₃)	(±)-14 ^{<i>a,b</i>} (CDCl ₃)
	δ_{H} (J in Hz)	δ_{H} (J in Hz)	δ_{H} (J in Hz)	δ _H (J in Hz)
3	8.14, s	8.31, s	8.01, s	8.05, s
4	_	_	_	-
4-OCH ₃	4.15, s	4.17, s	4.10, s	4.12, s
5	_	_	_	-
5-SO/S-CH3	3.15, s	3.11, s	2.38, s	2.44, s
6	_	_	_	-
7	8.44, s	_	6.09, s	6.36, s
7-OCH ₃	_	_	3.56, s	3.56, s
NHCOCH ₃	_	_	_	-
3′	8.49, d (8.0)	8.52, dd (8.0, 1.2)	8.56, d (8.0)	8.33, dd (7.8, 1.5)
4′	7.95, dd (8.0, 7.8)	7.89, ddd (8.0, 7.8, 1.8)	7.80, dd (8.0, 7.8)	7.80, ddd (7.8, 7.8, 1.5)
5′	7.49, dd (7.8, 5.0)	7.43, ddd (7.8, 4.6, 1.2)	7.31, dd (7.8, 4.8)	7.30, m (overlap)
6′	8.67, brs	8.68, dd (4.6 1.8)	8.65, d (4.8)	8.62, dd (4.5, 1.5)

^a Recorded at 600 MHz; ^bThe δ_H values of H-8, H-12, and H-13–H-16 were 6.82 (brs, H-8), 5.22 (brs, H-12), 6.78 (dd, J = 7.5, 1.2 Hz, H-13), 7.32 (m, overlap, H-14), 6.90 (ddd, J = 7.9, 7.5, 1.2 Hz, H-15), and 7.96 (dd, J = 7.9, 1.1 Hz, H-16), respectively.

R-Pyrisulfoxin A [(-)-3]: white amorphous powder; $[\alpha]_D^{15}$ -40.7 (*c* 1, MeOH); UV(MeOH) λ_{max} (lg ε) 243 (4.37), 287 (4.13) nm; ECD (0.86 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 207 (+11.7), 244 (+3.1), and 296 (-3.6) nm; ¹H NMR and ¹³C NMR, see **Tables 2**, 3, **Figures S33, S34**. HRESIMS *m*/*z* 292.0752 [M + H]⁺ (calcd for C₁₃H₁₄N₃O₃S, 292.0750) (**Figure S32**).

S-Pyrisulfoxin B [(+)-4]: white amorphous powder; $[\alpha]_D^{14}$ +22.4 (*c* 0.25, MeOH); UV(MeOH) λ_{max} (lg ε) 240 (3.58), 289 (3.47) nm; ECD (0.92 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 214 (-2.9), 243 (-2.1) and 293 (+1.8) nm; ¹H NMR and ¹³C NMR, see **Tables 2**, **3**, **Figures S37, S38**. HRESIMS *m*/*z* 274.0650 [M + H]⁺ (calcd for C₁₃H₁₂N₃O₂S, 274.0645) (**Figure S35**). *R*-Pyrisulfoxin B [(-)-4]: white amorphous powder; $[\alpha]_{14}^{1b}$ -15.2 (*c* 0.25, MeOH); UV(MeOH) λ_{max} (lg ε) 240 (3.58), 289 (3.47) nm; ECD (0.92 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 214 (+5.3), 243 (+4.0) and 293 (-3.6) nm; ¹H NMR and ¹³C NMR, see **Tables 2**, **3**, **Figures S37, S38**. HRESIMS *m*/*z* 274.0650 [M + H]⁺ (calcd for C₁₃H₁₂N₃O₂S, 274.0645) (**Figure S36**).

Pyrisulfoxin E (13): white amorphous powder; UV(MeOH) λ_{max} (log ε) 226 (3.49), 287 (3.36) nm; ¹H NMR and ¹³C NMR, see **Tables 2**, **3**. HRESIMS *m*/*z* 307.1118 [M + H]⁺ (calcd for C₁₅H₁₉N₂O₃S, 307.1111).

S-Pyrisulfoxin F [(+)-14]: white amorphous powder; $[\alpha]_D^{25}$ +14.5 (*c* 0.5, MeOH); UV(MeOH) λ_{max} (log ε) 221 (2.49), 282

No.	1 (CD ₃ OD)	(±)-2 (DMSO-d ₆)	(±)-2 (CD ₃ OD)	(±)-2 ^a (DMSO-d ₆)	(±)-2a ^b (DMSO-d ₆)	(±)-3 ^b (CD ₃ OD)	(±)-4 ^a (CDCl ₃)	13 (CDCl ₃)	(±)-14 ^{b,c} (CDCl ₃)
	$\delta_{ m C}$	$\delta_{ m C}$	δc	δς	δc	$\delta_{ m C}$	$\delta_{\rm C}$	$\delta_{\rm C}$	$\delta_{\rm C}$
2	160.2, C	Absent	Absent	Absent	158.3, C	160.9, C	161.7, C	absent	158.0, C
3	105.2, CH	111.3, C ^d	114.1, C	111.1, C	103.6, CH	105.6, CH	107.0, CH	103.4, CH	103.8, CH
4	166.9, C	Absent	Absent	Absent	164.9, C	167.8, C	165.1, C	168.1, C ^d	167.9, C
4-OCH ₃	57.1, CH ₃	-	-	-	57.2, CH ₃	57.1, CH ₃	57.4, CH ₃	56.4, CH ₃	56.7, CH ₃
5	126.0, C	125.3, C ^d	127.1, C ^d	Absent	126.5, C	127.5, C	132.2, C	120.7, C ^d	118.6, C
5-SO/S-CH3	38.8, CH ₃	38.6, CH ₃	39.0, CH ₃	38.9, CH ₃	38.9, CH ₃	38.5, CH3	40.4, CH ₃	18.3, CH ₃	18.2, CH ₃
6	161.0, C	154.8, C ^d	absent	Absent	157.4, C	152.9, C	133.3, C	absent	156.6, C
7	64.6, CH ₂	41.4, CH ₂ ^d	37.7, CH ₂ ^d	Absent	41.5, CH ₂	148.3, CH	114.9, C	101.7, CH	65.7, CH
NHCOCH ₃	-	22.5, CH ₃ 170.4, C ^d	22.3, CH ₃ 174.9, C ^d	22.4, CH ₃ 170.5, C	23.4, CH ₃ 169.9, C	-	-	-	-
7-OCH ₃	-	-	-	-	-	_	-	54.8, CH ₃	
2′	155.6, C	absent	absent	absent	154.5, C	155.6, C	153.3, C	155.7, C ^d	154.9, C
3′	123.1, CH	121.1, CH	122.3, CH	121.1, CH	121.7, CH	123.2, CH	122.6, CH	122.2, CH	121.9, CH
4′	138.7, CH	137.6, CH	139.2, CH	137.7, CH	138.2, CH	138.8, CH	137.8, CH	137.1, CH	137.3, CH
5′	126.2, CH	125.0, CH	126.8, CH	125.1, CH	125.5, CH	126.3, CH	126.0, CH	124.2, CH	124.6, CH
6′	150.3, CH	149.3, CH	150.7, CH	149.3, CH	149.8, CH	150.3, CH	149.7, CH	149.0, CH	149.1, CH

TABLE 3 | ¹³C NMR data of compounds **1–4**, (±)-**2a**, **13**, and (±)-**14** at 125 MHz.

^aSynthetic compound; ^bRecorded at 150 MHz; ^cThe δ_C values of C-9–C-11 and C-13–C-16 were 165.2 (C, C-9), 117.4 (C, C-10), 147.2 (C, C-11), 115.6 (CH, C-13), 133.8 (CH, C-14), 119.9 (CH, C-15), and 128.6 (CH, C-16), respectively; ^dAbsent in 1D NMR but present in 2D NMR.

(2.15) nm; ECD (1.3 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 214 (+3.14), 230 (-2.42), 251 (-2.72), 269 (+0.09), 290 (-2.51), and 325 (+1.31) nm; ¹H NMR and ¹³C NMR, see **Tables 2**, **3**. HRESIMS *m*/*z* 379.1222 [M + H]⁺ (calcd for C₂₀H₁₉N₄O₂S, 379.1223).

R-Pyrisulfoxin F [(-)-**14**]: white amorphous powder; $[\alpha]_{25}^{25}$ -16.9 (*c* 0.5, MeOH); UV(MeOH) λ_{max} (log ε) 221 (2.49), 282 (2.15) nm; ECD (1.3 *m*M, MeOH) λ_{max} ($\Delta\varepsilon$) 212 (-2.81), 230 (+1.48), 251 (+1.66), 269 (-0.18), 290 (+1.77), and 325 (-0.95) nm; ¹H NMR and ¹³C NMR, see **Tables 2**, **3**. HRESIMS *m*/*z* 379.1222 [M + H]⁺ (calcd for C₂₀H₁₉N₄O₂S, 379.1223).

Oxidation of Compound 5 to (±)-2

Compound 5 (9.0 mg) was dissolved into 2.25 ml of THF and 0.45 ml of water. The mixture was cooled in an ice bath, and 120 μ l of aqueous solution of potassium peroxomonosulfate (Oxone) (0.1 g/ml) was added dropwise. The resulting mixture was stirred at 0°C for 2.5 h. Then, 1 ml of aqueous solution of NaHCO₃ (pH 8) was added to quench the reaction. The reaction product was extracted by *n*-BuOH to afford 9.2 mg (96.8% yield) of (±)-2, which was identified by the same MS (**Figure S22**) and co-HPLC retention time ($t_{\rm R}$ 10.5 min, **Figure S39**) and NMR (**Figures S23, S24, Tables 1, 3**) to those of natural one.

Methylation of (±)-2 With TMS-CHN₂

Five milligram of (\pm) -2 was dissolved in anhydrous MeOH (5 ml), and then 0.9 ml of TMS-CHN₂ (2.0 M in *n*-hexane) was added. After stirring for 2.5 h at room temperature (about 20°C), the reaction mixture was evaporated to dryness and prepared by semi-preparative HPLC on an ODS column (10%–100% MeCN-H₂O with 0.5‰ CF₃CO₂H) to yield (\pm)-2a (2.5 mg, t_R 5.36 min, 43.5% yield). (\pm)-2a was further separated into (+)-2a (1.0 mg,

 $t_{\rm R}$ 10.8 min) and (–)-**2a** (1.0 mg, $t_{\rm R}$ 14.0 min) on a Chiral INC 5 u analytical column (35% EtOH/*n*-hexane).

4-O-Methylpyrisulfoxin D [(\pm)-**2a**]: white amorphous powder; UV(MeOH) λ_{max} (log ε) 221 (3.05), 248 (2.81), 289 (3.00) nm; IR (KBr) ν_{max} 3,444, 1,683, 1,574, 1,428, 1,383, 1,205, 1,136, 1,056, 800 cm⁻¹; ¹H NMR (600 MHz) and ¹³C NMR (150 MHz), see **Tables 1**, **3**, **Figures S26–S30**. HRESIMS *m*/*z* 320.1070 [M + H]⁺ (calcd for C₁₅H₁₈N₃O₃S, 320.1063) (**Figure S25**).

S-4-O-Methylpyrisulfoxin D [(+)-2a]: $[\alpha]_D^{25}$ +44.6 (*c* 0.5, MeOH); ECD (1.57 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 217 (-7.8), 245 (-3.8) and 293 (+6.1) nm.

R-4-O-Methylpyrisulfoxin D [(-)-2a]: $[\alpha]_D^{25}$ -41.4 (*c* 0.5, MeOH); ECD (1.57 *m*M, MeOH) λ_{max} ($\Delta \varepsilon$) 217 (+6.2), 245 (+2.9) and 293 (-4.8) nm.

ECD Calculation

The calculations were performed by using the density functional theory (DFT) as carried out in the Gaussian 09 (Frisch et al., 2010). The preliminary conformational distributions search was performed by HyperChem 8.0 software. All groundstate geometries were optimized at the B3LYP/6-31G(d) level (Stephens et al., 2007) (Tables S4-S6). Time-dependent DFT (TDDFT) at B3LYP/6-31G(d) was employed to calculate the electronic excitation energies and rotational strengths in MeOH (Casida, 1995) (Tables S7-S9). The overall calculated ECD curves were weighted by Boltzmann distribution with a halfbandwidth of 0.30 eV and UV corrections of compounds (S)-2, (R)-3, and (S)-14 were -15, 0, and 0 nm, respectively. The calculated ECD spectra were produced by SpecDis 1.70.1 software (Bruhn et al., 2017). Solvent effects of MeOH were evaluated at the same DFT level by use of the SCRF/PCM method (Cammi and Tomasi, 1995).

Cytotoxic Assays

The cytotoxic activities of compounds 1 and (\pm) -2 were detected by CellTiter-Glo[®] (CTG) assay (He et al., 2019) against human colon carcinoma cell lines (HCT-116), lung cancer cell lines (A549, H1975, H1299, SPC-A1, H2228), breast cancer cell lines (MCF-7, BT474, MDA-MB-231, MDA-MB-468), glioblastoma cell line (U87, U251), leukemia cell lines (HL-60, MV-4-11, K562), ductal carcinoma cell line (HCC1954, HUCCT1), gastric cancer cell line (MKN-45), epidermoid carcinoma cell line (A431), liver cancer cell line (Hep3B), prostate cancer cell line (DU145), gastric carcinoma cell line (N87), rhabdomyoma cell line (A673), bone osteosarcoma cell line (143B), T cell lymphoma cell line (Karpass299), B16F10 (highly metastatic mouse melanoma cell line), as well as the human embryonic kidney-293F cell line (HEK-293F) and normal liver cell line (L02). Cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin solution under a humidified atmosphere of 95% air and 5% CO2 at 37°C. Ninety microliter of culture solution (containing fetal bovine serum) and 100 µl of cell suspension at a density of 2×10^3 cell/ml was plated in 96-well microtiter plates, allowed to attach overnight, and then exposed to $10 \,\mu$ l of drugs for 72 h within the final concentrations of 0.032, 0.16, 0.8, 4, 20, and 100 µM, respectively. Hundred microliter of the CTG solution was then added to each well and incubated for 10 min, and the absorbance was read at 500 nm on a Spectra Max Plus plate reader. Adriamycin was used as the positive control.

The cytotoxicities of compounds 3-12 against Jurkat, K562, MCF-7, and P6C cell lines were assayed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method (Mosmann, 1983). MCF-7 and P6C cell lines were grown in RPMI-1640 supplemented with 10% Fetal Bovine Serum (FBS) under a humidified atmosphere of 5% CO_2 and 95% air at 37°C, respectively. Cell suspension, 200 μ l, at a density of 5 \times 10⁴ cell/ml was plated in 96-well microtiter plates and incubated for 24 h. Then, the samples to be tested (final concentration, $10 \,\mu$ M) were added to each well and further incubated for 72 h. Twenty microliter of MTT solution (5 mg/ml in IPMI-1640) was then added to each well and incubated for 4 h. Old medium containing MTT (150 µl) was then gently replaced by DMSO and pipetted to dissolve any formazan crystals formed. Absorbance was then determined on a Spectra Max Plus plate reader at 570 nm. Jurkat and K562 cell lines were grown in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 g/ml streptomycin under a humidified atmosphere of 5% CO2 at 37°C. The cells in the logarithmic growth phase were seeded in 96-well plates at 8,000 cells/well (180 ml/well). After 24 h at 37°C and 5% CO2, the samples to be tested were added (final concentration, $10 \,\mu$ M) and three replicate wells were set for each concentration. The solvent control Dimethyl Sulfoxide (DMSO) was used in an amount of 0.1% of the maximum dose used in the test group. After 72h of drug treatment at 37°C and 5% CO2, 20 µl of MTT (5 mg/ml) was added and incubated for another 4 h. Then, 100 µl mixture of 10% SDS, 5% isopropanol and 12 mM HCl was added and incubated for 12-20 h. The optical density of each well at 570 nm was read by a microplate reader.

The cytotoxicities of compounds **3–12** against HT29, HCT-116, and BXPC-3 cell lines were assayed by SRB method (Skehan et al., 1990). They were cultured as K562 and Jurkat cell lines described above. The cells in the logarithmic growth phase were seeded in 96-well plates at 8,000 cells/well (180 ml/well). After 24 h in 5% CO₂ and 37°C, the samples to be tested were added (final concentration, 10 μ M) and three replicate wells were set for each concentration. The solvent control DMSO was used in an amount of 0.1% of the maximum dose used in the test group. After 72 h of drug treatment at 37°C and 5% CO₂, 50% (m/v) ice-cold trichloroacetic acid was added to each well to fix the cells. After SRB staining, 150 μ l/well of Tris solution was added and the optical density of each well at 540 nm was read in a microplate reader.

RESULTS AND DISCUSSION

Identification of Compounds

Pyrisulfoxin C (1) was obtained as white amorphous powder. The molecular formula of 1 was determined to be C13H14N2O3S by HRESIMS (Figure S5) with one more oxygen atom than compound 9. Analysis of the ¹H NMR data (Table 1, Figure S6) for 1 and comparison with reported data showed four signals at 8.46 (H-3', d, J = 7.7 Hz), 7.92 (H-4', dd, J = 7.7, 7.5 Hz), 7.42 (H-5', dd, J = 7.5, 4.4 Hz), and 8.64 (H-6', d, J = 4.4 Hz), which were assigned to a 2-substituted pyridine ring system, and one signal at 8.01 (H-3, s) assigned to a 2,4,5,6-tetrasubstituted pyridine ring system. Heteronuclear Multiple Bond Correlations (HMBC) (Figure 2, Figure S10) from H-3' to C-2 and from H-3 to C-2' identified a 2,2'-bipyridine structure. The signal at $\delta_{C/H}$ 64.6/4.92&4.96 was assigned as a hydroxymethyl. In addition, two methyl singlets were observed, among which the signal at $\delta_{C/H}$ 57.1/4.05 was a methoxy and the one at $\delta_{C/H}$ 38.8/3.15 was assigned as a methylsulfinyl group (Tables 1, 3, Figures S7-S9). These data were very similar to those of SF2738 C (9) (Yin et al., 2016) except for the methylsulfinyl signal ($\delta_{C/H}$ 38.8/3.15), indicating 1 as a methyl sulphoxide (Figure 2). The constitution of 1, named as pyrisulfoxin C, was thus elucidated as 4-methoxy-5-methylsulfinyl-2,2'-bipyridine-6-methanol.

(\pm)-Pyrisulfoxin D [(\pm)-2] was obtained as a pair of racemate. Its molecular formula was assigned as C₁₄H₁₅N₃O₃S from the HRESIMS peak at m/z 306.0916 [M+H]⁺ (Figure S11), which has one more oxygen atom than compound 5. Similar to 1, proton signals measured in DMSO-d₆ at 8.32 (H-3', d), 7.96 (H-4', dd), 7.49 (H-5', dd), 8.69 (H-6', d), and 7.38 (H-3, s) (Table 1, Figure S12) were assigned to a 2,2'-bipyridine system. Besides the 2,2'-bipyridine core skeletons, its NMR (Tables 1, 3, **Figures S12–S14**) displayed one NH signal at $\delta_{\rm H}$ 8.49 (1H, brs), one methylene at $\delta_{\rm H}$ 4.71, and one acetyl group at $\delta_{\rm C/H}$ 22.5/1.92 and $\delta_{\rm C}$ 170.4. And the key COSY correlation signals (Figure 2, **Figure S15**) of H-7 ($\delta_{\rm H}$ 4.71, m, 2H) to NH ($\delta_{\rm H}$ 8.49, brs, 1H) revealed the -CH2-NH- group. The HMBC correlation signals (**Figure 2**, **Figure S16**) between both methyl protons ($\delta_{\rm H}$ 1.92) and methylene protons ($\delta_{\rm H}$ 4.71) with the carbonyl carbon ($\delta_{\rm C}$ 170.4) established an (acetylamino)methyl group. These data are very similar to those of 5 (Ignacio et al., 2012) within the main

difference that the -SCH₃ protons' signal at $\delta_{\rm H}$ 2.25 (3H, s) in 5 moved to $\delta_{\rm H}$ 3.03 (3H, s) in (±)-2, indicating the existence of a -S(O)CH₃ group in (\pm) -2. Unexpectedly, three non-protonated carbon signals (C-2, C-4 and C-2') were absent in both 1D and 2D NMR spectra of (\pm) -2, even after changing the solvent as MeOH- d_6 (Table 3, Figures S17–S21). To further confirm the constitution of (\pm) -2, (\pm) -2 was prepared by oxidation of the known compound 5 with Oxone (Scheme 1). The product was identified by the same MS (Figure S22), the same co-HPLC retention times (t_R 10.5 min, Figure S39) and almost the same 1D NMR (Figures S23, S24, Tables 1, 3) to the natural (\pm) -2. Therefore, the constitution of (\pm) -2, named as pyrisulfoxin D, was identified as N-[(4-hydroxy-5-methylsulfinyl-2,2'-bipyridin-6-yl)methyl] acetamide. However, the carbon signals of C-2, C-4, C-5, C-6, C-7, and C-2' were neither absent in the ¹³C NMR spectrum of the synthetic (\pm) -2 due to the coinfluence of 4-OH and 3-S(O)CH₃. In order to verify this hypothesis, a new 4-Omethyl derivative $[(\pm)-2a]$ was prepared from the methylation of (\pm) -2 by TMS-CHN₂ (Scheme 1) and identified by HRESIMS (Figure S25) as well as 1D and 2D NMR spectra (Figure 2, Figures S26-S30). As expected, these non-hydrogenated carbon signals were present in the ¹³C NMR spectrum of (\pm) -2a (Figure S27, Table 3).

Compared to other natural products, the absolute configuration of the chiral sulfoxide is less concerned. Apart from X-ray single crystal diffraction, sulfoximine NMR method (Kusumi et al., 2006), and vibrational circular dichroism (VCD) spectroscopy (Stephens et al., 2001), the ECD spectroscopy was widely used to determine the absolute configuration of the chiral sulfoxide (Cho and Plapp, 1998; Donnoli et al., 2003). To determine the absolute configurations, the racemic pyrisulfoxin D [(\pm)-2], pyrisulfoxin A [(\pm)-3], pyrisulfoxin B [(\pm)-4] and (\pm) -4-O-methyl pyrisulfoxin D $[(\pm)$ -2a] were first separated on a chiral column into their optically pure isomers (+)-2 and (-)-2 (Figure S1), (+)-3 and (-)-3 (Figure S2), (+)-4 and (-)-4 (Figure S3), as well as (+)-2a and (-)-2a (Figure S4), respectively. Then, ECD spectra were measured and the results indicated that (+)-2, (+)-2a, (+)-3, and (+)-4 displayed strong negative Cotton effects, while (-)-2, (-)-2a, (-)-3, and (-)-4 showed strong positive Cotton effects around λ_{max} 210–220 nm (Figures 3–5). The Cotton effects around λ_{max} 210–220 nm that arose from the exciton-couple of the chromophores S=O $(n \rightarrow \pi^*)$ and pyridine $(\pi \rightarrow \pi^*)$ could be used to identify the absolute configuration of aryl methyl sulfoxides, which the positive and negative effects were correlated to the R- and Sconfigurations, respectively (Cho and Plapp, 1998). To confirm

the deduction, we further calculated the ECD spectra of the optically pure compounds (*S*)-2 and (*R*)-3 by means of DFT at B3LYP/6-31G(d) level. The calculated ECD spectra (*S*)-2 and (*R*)-3 matched well with the experimental ECD spectra of (+)-2 and (-)-3, which showed Cotton effects around λ_{max} ($\Delta \varepsilon$) 221 (-12.8), 250 (+9.4) and 300 (+5.3) nm, and 207 (+11.7), 244 (+3.1) and 296 (-3.6) nm, respectively (**Figures 3**, 4), further indicating the configurations of (+)-2 and (-)-3 as *S*- and *R*-, respectively. Thus, the absolute configurations of (-)-2 and (+)-3 were respectively determined as *R*- and *S*-. As shown in **Figure 5**, the experimental ECD spectra of 1, (-)-2a, and (-)-4 were similar to that of (-)-3, but opposite to those of (+)-3, (+)-2a, and (+)-4. Thus, the absolute configurations of 1, (-)-2a, (-)-4, (+)-2a, and (+)-4 were determined to be *R*-, *R*-, *R*-, s-, and *S*-, respectively.

Pyrisulfoxin E (13) was obtained as white amorphous powder. HRESIMS showed the protonated molecular ion peak at m/z 307.1118 [M+H]⁺, indicating a molecular formula $C_{15}H_{18}N_2O_3S$ (Figure S40). ¹H NMR signals at 8.56 (H-3', d), 7.80 (H-4', dd), 7.31 (H-5', dd), 8.65 (H-6', d) (Table 2, Figure S41), and 8.01 (H-3, s) were assigned to a 4,5,6-tetrasubstituted 2,2'-bipyridine ring system. What more, ¹H-¹H

COSY correlative signals of H-3'/H-4'/H-5'/H-6' (Figure S44) and HMBC correlative signals from H-2 to C-2' (Figure S45) verified that. Three methoxy and one methylthio signals were observed at $\delta_{C/H}$ 56.4/4.10 (OCH₃-4), 54.8/3.56 (OCH₃-7), and $\delta_{C/H}$ 18.3/2.38 (SCH₃-5), respectively (Tables 2, 3, Figures S41-S43). These data indicated that compound 13 also contained the same 6-substituted 4-methoxy-5-methylthio-2,2'bipyridine skeleton as SF2738 C (9) (Yin et al., 2016). The rest methine signal at $\delta_{C/H}$ 101.7/6.09 (CH-7), along with its HMBC correlation with the two methoxy protons at $\delta_{\rm H}$ 3.56, suggested a methylal moiety that was linked to C-6 of the 2,2'-bipyridine nucleus from the key HMBC correlations of H-7 ($\delta_{\rm H}$ 6.09), H-3 ($\delta_{\rm H}$ 8.01), and methylthio proton ($\delta_{\rm H}$ 2.38) to C-5 ($\delta_{\rm C}$ 120.7) (Figure 6, Figure S45). Thus, compound 13, named as pyrisulfoxin E, was elucidated as 6-dimethoxymethyl-4-methoxy-5-methylthio-2,2'-bipyridine.

Pyrisulfoxin F [(±)-14] was obtained as white amorphous powder. The protonated molecular ion peak at m/z 379.1222 [M+H]⁺ in HRESIMS indicating the molecular formula C₂₀H₁₈N₄O₂S (Figure S46). Similar to those of 13, ¹H NMR signals at $\delta_{\rm H}$ 8.33 (H-3', dd), 7.80 (H-4', ddd), 7.30 (H-5', m), 8.62 (H-6', dd), 8.05 (H-3, s), 4.12 (3H, OCH₃-4), and 2.44 (3H, SCH₃-5) (Table 2, Figure S47) indicated

the same 6-substituted 4-methoxy-5-methylthio-2,2'-bipyridine skeleton. ¹H-¹H COSY correlative signals of H-3'/H-4'/H-5'/H-6' (Figure S50) and HMBC correlative signals from H-3 to C-2' ($\delta_{\rm C}$ 154.9), H-3 and OCH₃-4 to C-4 ($\delta_{\rm C}$ 167.9), as well as H-3 and SCH₃-5 to C-5 ($\delta_{\rm C}$ 118.6) (Figure S51) confirmed the deduction. Apart from this moiety, another four orthodisubstituted benzene protons observed at $\delta_{\rm H}$ 6.78 (H-13, dd), 7.32 (H-14, m), 6.90 (H-15, ddd), and 7.96 (H-16, dd), which was further supported by ¹H-¹H COSY correlations of H-13/H-14/H-15/H-16 (Figure 6, Figure S50). The rest signals were observed at $\delta_{\rm H}$ 5.22 (NH-12) and 6.82 (NH-8), $\delta_{\rm C-9}$ 165.2 (carbonyl) and $\delta_{C/H}$ 65.7/6.36 (CH-7) (Tables 2, 3, Figures S47-S49) along with the ¹H-¹H COSY correlations of H-8/H-7/H-12 (Figure S50) and the HMBC correlations of H-7 ($\delta_{\rm H}$ 6.36) and H-14 ($\delta_{\rm H}$ 7.32) to C-11 ($\delta_{\rm C}$ 147.2), H-12 ($\delta_{\rm H}$ 5.22) and H-13 ($\delta_{\rm H}$ 6.78) to C-10 ($\delta_{\rm C}$ 117.4), and H-16 ($\delta_{\rm H}$ 7.96) to C-9 ($\delta_{\rm C}$ 165.2) and C-11 (Figure 6, Figure S51). These data implied a 2-substituted 2,3-dihydroquinazolin-4(1H)-one moiety. Thus, the 6-substituted 4-methoxy-5-methylthio-2,2'- bipyridine and 2-substituted 2,3-dihydroquinazolin-4(1*H*)-one moieties connected together to form the constitution of racemic **14** (**Figure 1**), which was further separated on a chiral column into optically pure isomers (+)-14 and (-)-14 (**Figure S52**). ECD calculation of (*S*)-14 at B3LYP/6-31G(d) level was used to determine the absolute configurations of the optically pure compounds. The results matched well with the experimental ECD spectrum of (+)-14 that showed Cotton effects around λ_{max} ($\Delta \varepsilon$) 214 (+3.14), 230 (-2.42), 251 (-2.72), 269 (+0.09), 290 (-2.51), and 325 (+1.31) nm (**Figure 7**). Therefore, (+)-14 was elucidated as *S*- configuration while (-)-14 as *R*-configuration.

Biological Activity

Compounds 1–14 were evaluated for cytotoxic activity against a panel of human cancer cell lines by MTT, SRB, and CTG methods. As shown in **Table 4**, racemic (\pm)-2 displayed a broad spectrum of cytotoxic activities against 26 cancer cell lines with IC₅₀ values ranging from 0.92 to 9.71 μ M, while compound 1

TABLE 4 Cytotoxicity of	1 ^a and (±)-2 ^b	against cancer and	id normal cell lines (IC ₅₀ , μ	ιM).
---------------------------	---------------------------------------	--------------------	--	------

Cell lines	A431	BT474	MDA-MB-468	U251	HCC1954	MCF-7	MKN-45	Нер3В	H1975
(±)- 2	4.63	8.24	1.31	4.79	2.14	5.78	4.88	4.42	2.55
Adriamycin ^c	0.17	1.94	>100	0.19	0.048	0.10	0.19	17.58	0.091
Cell lines	A673	H2228	MDA-MB-231	U87	Karpass299	HL60	MV-4-11	N87	H1299
(±)- 2	6.90	8.05	0.92	3.67	3.13	3.18	9.71	7.46	7.38
Adriamycin	0.13	0.097	0.18	0.12	0.39	0.21	0.16	0.12	0.49
Cell lines	A549	K562	HCT-116	143B	B16F10	SPC-A1	HUCCT1	DU145	L02
(±)- 2	4.18	5.92	2.45	8.39	7.74	7.83	7.91	4.51	>100
Adriamycin	0.099	0.018	0.10	0.095	0.015	0.19	0.051	0.048	0.096

^a The IC₅₀ values for **1** against N87 and other 26 cell lines were 8.09 μM and >100 μM, respectively. ^b The IC₅₀ for **2** against HEK-293F was >100 μM. ^c Positive control with an IC₅₀ value of 0.050 μM against HEK-293F cells.

TABLE 5	I C	vtotoxicit	v of I	(±)-3	7.	8.	and	14	against	cancer	cell lines	(IC50.	μM).
	-	,										(00)		

Cell lines	HCT-116	HT-29	P6C	BXPC-3	K562	Jurkat	MCF-7
(±)- 3	0.73	0.83	3.2	1.6	13.0	NT ^a	NT
7	0.048	0.095	0.60	0.28	10.0	NT	1.6
8	0.10	0.20	0.30	0.49	8.4	13.7	1.8
R(+)- 14	NA ^c	NT	NT	NT	NA	NT	10.4
S(-)- 14	14.7	NT	NT	NT	NA	NT	NA
Adriamycin ^b	0.21	0.16	0.65	0.032	0.25	0.44	0.86

^aNT, not tested, ^bPositive control, ^cNA, no activity.

showed a selective cytotoxicity against human gastric carcinoma cell line (N87) with an IC₅₀ value of $8.09 \,\mu$ M. As shown in Table 5, compounds 7, 8, and (\pm) -3 showed cytotoxicity against human colorectal cancer (CRC) cell lines (HCT-116, HT-29, and P6C) and human pancreatic cancer cell line (BXPC-3) with IC_{50} values ranging from 0.048 to 3.2 μ M, while compounds 7 and 8 and S(+)-14 also showed cytotoxicity against human breast cancer cell line (MCF-7) with IC₅₀ values of 1.6, 1.8, and 10.4 μ M, respectively. The new compound *R*(–)-14 showed inhibitory activity against HCT-116 with IC_{50} of 14.7 μ M. The results indicated that 6-oxime group or 6-acetylaminomethyl and 5-methylsulfinyl substitutions might be beneficial to the cytotoxicity of these 2,2'-bipyridine derivatives. Also, 6-oxime substituted 2,2'-bipyridine derivatives $[(\pm)-3, 7, \text{ and } 8]$ may have high selectivity against human CRC cells, indicating their potential use in the development of anti-CRC drugs.

CONCLUSIONS

Six new optically active caerulomycin compounds were obtained from two solid cultures of *Streptomyces albolongus* EA12432

REFERENCES

Ambavane, V., Tokdar, P., Parab, R. R., Sreekumar, E. S., Mahajan, G., Mishra, P. D., et al. (2014). Caerulomycin a-an antifungal compound endophytic with *Aconitum carmichaeli*. The racemic pyrisulfoxin D [(±)-2] showed broad-spectrum cytotoxic activities against cancer cell lines with the IC₅₀ values of 0.92–9.71 µM, while *R*-Pyrisulfoxin C (1), *S*-pyrisulfoxin F [(+)-14], and *R*-pyrisulfoxin F [(-)-14] showed a selective cytotoxicity against N87, MCF-7, and HCT-116 cancer cell lines with the IC₅₀ values of 8.09, 10.4, and 14.7 µM, respectively.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This work was financially supported by grants from the National Key Research and Development Program of China (No. 2019YFC0312504), the National Natural Science Foundation of China (Nos. U1906213 and 41876172), and the Qingdao Innovation Fund for Marine Biomedical Science and Technology (No. 2017-CXZX01-3-7).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem. 2020.00248/full#supplementary-material

isolated from marine actinomycetes. *Adv. Microbiol.* 4, 567–578. doi: 10.4236/aim.2014.49063

Bruhn, T., Schaumlöffel, A., Hemberger, Y., and Pescitelli, G. (2017). SpecDis, Version 1.70.1, Berlin. Available online at: https://specdissoftware.jimdo.com

- Bu, Y. Y., Yamazaki, H., Ukai, K., and Namikoshi, M. (2014). Antimycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. *Mar. Drugs* 12, 6102–6112. doi: 10.3390/md12 126102
- Cammi, R., and Tomasi, J. (1995). Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comp. Chem. 16, 1449–1458. doi: 10.1002/jcc.540161202
- Casida, M. E. (1995). "Recent advances in computational chemistry," in Recent Advances in Density Functional Methods, Part I, ed D. P. Chong (Singapore: World Scientific), 155–192.
- Cho, H., and Plapp, B. V. (1998). Specificity of alcohol dehydrogenases for sulfoxides. *Biochemistry* 37, 4482–4489. doi: 10.1021/bi9727040
- Donnoli, M. I., Giorgio, E., Superchi, S., and Rosini, C. (2003). Circular dichroism spectra and absolute configuration of some aryl methyl sulfoxides. Org. Biomol. Chem. 1, 3444–3449. doi: 10.1039/b307017d
- Edmands, W. M. B., Gooderham, N. J., Holmes, E., and Mitchell, S. C. (2013). S-Methyl-L-cysteine sulphoxide: the Cinderella phytochemical? *Toxicol. Res.* 2, 11–22. doi: 10.1039/C2TX20030A
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2010). *Gaussian 09, Revision B.01*. Wallingford, CT: Gaussian, Inc.
- Fu, P., Liu, P., Li, X., Wang, Y., Wang, S., Hong, K., et al. (2011a). Cyclic bipyridine glycosides from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. Org. Lett. 13, 5948–5951. doi: 10.1021/ol202245s
- Fu, P., Wang, S., Hong, K., Li, X., Liu, P., Wang, Y., et al. (2011b). Cytotoxic bipyridines from the marine-derived actinomycete *Actinoalloteichus cyanogriseus* WH1-2216-6. J. Nat. Prod. 74, 1751–1756. doi: 10.1021/np200258h
- Fu, P., Zhu, Y., Mei, X., Wang, Y., Jia, H., Zhang, C., et al. (2014). Acyclic congeners from Actinoalloteichus cyanogriseus provide insights into cyclic bipyridine glycoside formation. Org. Lett. 16, 4264–4267. doi: 10.1021/ol50 19757
- Fukaya, M., Nakamura, S., Nakagawa, R., Nakashima, S., Yamashita, M., and Matsuda, H. (2017). Rare sulfur-containing compounds, kujounins A₁ and A₂ and Allium sulfoxide A₁, from Allium fistulosum 'Kujou'. Org. Lett. 20, 28–31. doi: 10.1021/acs.orglett.7b03234
- Funk, A., and Divekar, P. V. (1959). Caerulomycin, a new antibiotic from Streptomyces caeruleus Baldacci: I. production, isolation, assay, and biological properties. Can. J. Microbiol. 5, 317–321. doi: 10.1139/m59-039
- Gomi, S., Amano, S., Sato, E., Miyadih, S., and Kodama, Y. (1994). Novel antibiotics SF2738A, B and C, and their analogs produced by *Streptomyces* sp. *J. Antibiot.* 47, 1385–1394. doi: 10.7164/antibiotics.47.1385
- Gurram, R. K., Kujur, W., Maurya, S. K., and Agrewala, J. N. (2014). Caerulomycin A enhances transforming growth factor-β (TGF-β)-Smad3 protein signaling by suppressing interferon-γ (IFN-γ)-signal transducer and activator of transcription 1 (STAT1) protein signaling to expand regulatory T cells (Tregs). *J. Biol. Chem.* 289, 17515–17528. doi: 10.1074/jbc.M113.545871
- Hamada, T., Matsunaga, S., Yano, G., and Fusetani, N. (2005). Polytheonamides A and B, Highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, *Theonella s winhoei. J. Am. Chem. Soc.* 127, 110–118. doi: 10.1021/ja045749e
- He, W., Xu, Y., Fu, P., Zuo, M., Liu, W., Jiang, Y., et al. (2019). Cytotoxic indolyl diketopiperazines from the Aspergillus sp. GZWMJZ-258, endophytic with the medicinal and edible plant Garcinia multiflora. J. Agric. Food Chem. 67, 10660–10666. doi: 10.1021/acs.jafc.9b04254
- Ignacio, G. L., Natalia, M. V., Alberto, S. G. C., Javier, G. S., Alfredo, F. B., Carmen, M. F., et al. (2012). *Colymycin derivatives*. Patent WO 2012/093192 A1. Available online at: https://lens.org/018-426-226-645-154
- Imae, Y., Takada, K., Okada, S., Ise, Y., Yoshimura, H., Morii, Y., et al. (2013). Isolation of ciliatamide D from a marine sponge Stelletta sp. and a reinvestigation of the configuration of ciliatamide A. J. Nat. Prod. 76, 755–758. doi: 10.1021/np300878b
- Kara, M., Asano, K., Kawamoto, I., Takiouchi, T., Katsumata, S., Takahashi, K. I., et al. (1989). Leinamycin, a new antitumor antibiotic from Streptomyces; producing organism, fermentation and isolation. J. Antibiot. 42, 1768–1774. doi: 10.7164/antibiotics.42.1768

- Kobayashi, J. I., Nakamura, T., and Tsuda, M. (1996). Hymenamide F, new cyclic heptapeptide from marine sponge *Hymeniacidon* sp. *Tetrahedron* 52, 6355–6360. doi: 10.1016/0040-4020(96)00281-5
- Kujur, W., Gurram, R. K., Haleem, N., Maurya, S. K., and Agrewala, J. N. (2015). Caerulomycin A inhibits Th2 cell activity: a possible role in the management of asthma. *Sci. Rep.* 5:15396. doi: 10.1038/srep15396
- Kujur, W., Gurram, R. K., Maurya, S. K., Nadeem, S., Chodisetti, S. B., Khan, N., et al. (2017). Caerulomycin A suppresses the differentiation of naïve T cells and alleviates the symptoms of experimental autoimmune encephalomyelitis. *Autoimmunity* 50, 317–328. doi: 10.1080/08916934.2017.1332185
- Kusumi, T., Ooi, T., Ohkubo, Y., and Yabuuchi, T. (2006). The modified Mosher's method and the sulfoximine method. *Bull. Chem. Soc. Jpn.* 79, 965–980. doi: 10.1246/bcsj.79.965
- Lake, R. J., Brennan, M. M., Blunt, J. W., Munro, M. H., and Pannell, L. K. (1988). Eudistomin K sulfoxide-an antiviral sulfoxide from the New Zealand ascidian *Ritterella sigillinoides*. *Tetrahedron Lett.*29, 2255–2256. doi: 10.1016/S0040-4039(00)86725-8
- Lee, J. H., Kim, E., Choi, H., and Lee, J. (2017). Collismycin C from the micronesian marine bacterium *Streptomyces* sp. MC025 inhibits *Staphylococcus aureus* biofilm formation. *Mar. Drugs* 15:387. doi: 10.3390/md15120387
- Lim, C. L., Nogawa, T., Uramoto, M., Okano, A., Hongo, Y., Nakamura, T., et al. (2014). RK-1355A and B, novel quinomycin derivatives isolated from a microbial metabolites fraction library based on NPPlot screening. J. Antibiot. 67, 323–329. doi: 10.1038/ja.2013.144
- Mau, C. M., Nakao, Y., Yoshida, W. Y., Scheuer, P. J., and Kelly-Borges, M. (1996). Waiakeamide, a cyclic hexapeptide from the sponge *Ircinia dendroides*. J. Org. Chem. 61, 6302–6304. doi: 10.1021/jo960771e
- Mehler, A. H. (1956). Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxyanthranilic acid. J. Biol. Chem. 218, 241–254.
- Mei, X., Lan, M., Cui, G., Zhang, H., and Zhu, W. (2019). Caerulomycins from Actinoalloteichus cyanogriseus WH1-2216-6: isolation, identification and cytotoxicity. Org. Chem. Front. 6, 3566–3574. doi: 10.1039/C9QO00685K
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63. doi: 10.1016/0022-1759(83)90303-4
- Murata, O., Shigemori, H., Ishibashi, M., Sugama, K. O., Hayashi, K., and Kobayashi, J. I. (1991). Eudistomidins E and F, new β -carboline alkaloids from the okinawan marine tunicate *Eudistoma glaucus*. *Tetrahedron Lett.* 32, 3539–3542. doi: 10.1016/0040-4039(91)80827-S
- Nohara, T., Fujiwara, Y., Ikeda, T., Murakami, K., Ono, M., Nakano, D., et al. (2013). Cyclic sulfoxides garlicnins B₂, B₃, B₄, C₂, and C₃ from *Allium sativum*. *Chem. Pharm. Bull.* 61, 695–699. doi: 10.1248/cpb.c13-00082
- Nohara, T., Kiyota, Y., Sakamoto, T., Manabe, H., Ono, M., Ikeda, T., et al. (2012). Garlicnins B₁, C₁, and D, from the fraction regulating macrophage activation of *Allium sativum*. *Chem. Pharm. Bull.* 60, 747–751. doi: 10.1248/cpb.60.747
- Radulović, N. S., Miltojević, A. B., Stojković, M. B., and Blagojević, P. D. (2015). New volatile sulfur-containing compounds from wild garlic (*Allium ursinum* L., Liliaceae). *Food Res. Int.* 78, 1–10. doi: 10.1016/j.foodres.2015.11.019
- Rashid, M. A., Gustafson, K. R., Boswell, J. L., and Boyd, M. R. (2000). Haligramides A and B, two new cytotoxic hexapeptides from the marine sponge *Haliclona nigra. J. Nat. Prod.* 63, 956–959. doi: 10.1021/np000051+
- Schumacher, R. W., and Davidson, B. S. (1995). Didemnolines A-D, new N9-substituted β -carbolines from the marine ascidian Didemnum sp. Tetrahedron 51, 10125–10130. doi: 10.1016/0040-4020(95)00594-X
- Sera, Y., Adachi, K., Fujii, K., and Shizuri, Y. (2003). A new antifouling hexapeptide from a Palauan sponge, *Haliclona* sp. J. Nat. Prod. 66, 719–721. doi: 10.1021/np020271i
- Shindo, K., Yamagishi, Y., Okada, Y., and Kawai, H. (1994). Collismycins A and B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding. J. Antibiot. 47, 1072–1074. doi: 10.7164/antibiotics. 47.1072
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112. doi: 10.1093/jnci/82.13.1107
- Stephens, P. J., Aamouche, A., Devlin, F. J., Superchi, S., Donnoli, M. I., and Rosini, C. (2001). Determination of absolute configuration using vibrational circular dichroism spectroscopy: the chiral sulfoxide 1-(2-methylnaphthyl)

methyl sulfoxide. J. Org. Chem. 66, 3671–3677. doi: 10.1021/jo0 01403k

- Stephens, P. J., Pan, J. J., and Krohn, K. (2007). Determination of the absolute configurations of pharmacological natural products via density functional theory calculations of vibrational circular dichroism: the new cytotoxic iridoid prismatomerin. J. Org. Chem. 72, 7641–7649. doi: 10.1021/jo0 71183b
- Takada, K., Irie, R., Suo, R., and Matsunaga, S. (2017). Resolution of the confusion in the assignments of configuration for the ciliatamides, acylated dipeptides from marine sponges. J. Nat. Prod. 80, 2845–2849. doi: 10.1021/acs.jnatprod.7b00684
- Thornburg, C. C., Cowley, E. S., Sikorska, J., Shaala, L. A., Ishmael, J. E., Youssef, D. T., et al. (2013). Apratoxin H and apratoxin A sulfoxide from the Red Sea cyanobacterium *Moorea producens. J. Nat. Prod.* 76, 1781–1788. doi: 10.1021/np4004992
- Tsuge, N., Furihata, K., Shin-ya, K., Hayakawa, Y., and Seto, H. (1999). Novel antibiotics pyrisulfoxin A and B produced by *Streptomyces*

californicus. J. Antibiot. 52, 505–507. doi: 10.7164/antibiotics. 52.505

Yin, H., Lin, J., and Chu, Y. (2016). Antifungal secondary metabolites produced by an endophytic actinobacteria isolate EA12432 from *Aconitum carmichaeli*. *Chin. J. Antibiot.* 41, 653–657. doi: 10.13461/j.cnki.cja.005761

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Du, Wang, Cui, Chu, Jia, Wang and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.