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Abstract

Background: The adverse reactions that are caused by drugs are potentially life-threatening problems.
Comprehensive knowledge of adverse drug reactions (ADRs) can reduce their detrimental impacts on patients.
Detecting ADRs through clinical trials takes a large number of experiments and a long period of time. With the
growing amount of unstructured textual data, such as biomedical literature and electronic records, detecting ADRs in
the available unstructured data has important implications for ADR research. Most of the neural network-based
methods typically focus on the simple semantic information of sentence sequences; however, the relationship of the
two entities depends on more complex semantic information.

Methods: In this paper, we propose multihop self-attention mechanism (MSAM) model that aims to learn the
multi-aspect semantic information for the ADR detection task. first, the contextual information of the sentence is
captured by using the bidirectional long short-term memory (Bi-LSTM) model. Then, via applying the multiple steps of
an attention mechanism, multiple semantic representations of a sentence are generated. Each attention step obtains
a different attention distribution focusing on the different segments of the sentence. Meanwhile, our model locates
and enhances various keywords from the multiple representations of a sentence.

Results: Our model was evaluated by using two ADR corpora. It is shown that the method has a stable generalization
ability. Via extensive experiments, our model achieved F-measure of 0.853, 0.799 and 0.851 for ADR detection for
TwiMed-PubMed, TwiMed-Twitter, and ADE, respectively. The experimental results showed that our model
significantly outperforms other compared models for ADR detection.

Conclusions: In this paper, we propose a modification of multihop self-attention mechanism (MSAM) model for an
ADR detection task. The proposed method significantly improved the learning of the complex semantic information
of sentences.

Keywords: Adverse drug reactions, Multihop self-attention mechanism, Complex semantic information, Neural
network

Background
With the rapid growth of the number of drug types,
it is essential to determine the safety of the drugs
that are used. Adverse drug reaction (ADR) is a broad
term encompassing the dangerous effects that a drug
may have. ADRs may occur after short-term or long-
term administration, or they may be produced by a
combination of two or more drugs. In a study that
was concluded in 2000, it was reported that approxi-
mately 7000 deaths [1] were caused by ADRs each year.
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The systematic review of a prospective observational
study stated that 5.3% of all hospital admissions are asso-
ciated with ADRs [2]. Thorough knowledge of ADRs
can effectively prevent their occurrence in patients [3,
4]. Therefore, ADR detection is crucial for pharmacovig-
ilance. Data that have been previously used in ADR
research came from the Federal Drug Administration’s
Adverse Event Reporting System (FAERS) [5, 6] and clin-
ical electronic medical records. Because of the privacy
protection, those kinds of databases are not fully open
access. Moreover, those databases are updated slowly,
which limits the prevention of adverse drug reactions.
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Currently, due to the exponentially growing biomedical
literature and the rapid development of social media, the
resources that are generated are unlimited. Due to its fas-
cinating characteristics and great potential, automatically
extracting entities and their relations from the biomedi-
cal text have attracted much research attention [7]. Our
research is entirely focused on biomedical text [8] and
twitter messages [9]. As shown in Fig. 1, it is an example
of annotated sentences from the ADR corpora, The first
sentence contains ADR, and the second sentence does not
contain ADR.
In early studies, researchers used the co-occurrence

method [10] to determine the existence of ADRs. If a sen-
tence includes both a drug and adverse reactions, it sug-
gests that those terms are probably related. However, this
method ignores the genuine semantic relations between
drug and adverse reactions. Some researchers used rules-
based approaches [11], but the rules are difficult to
cover all situations. In recent years, researchers developed
many systems for automatically extracting relations from
biomedical text, such as protein-protein interactions and
gene-disease relations [12, 13]. Meanwhile, some stud-
ies employed traditional machine-learning techniques in
ADR detection [14, 15]. Bian et al. [16] built support vec-
tor machine (SVM) classifiers to analyze the potential
adverse events. Liu et al. [17] developed a feature-based
approach for the feature selection for adverse drug events
(ADEs). However, biomedical relation detection based
on traditional machine-learning heavily relies on feature
engineering, which is a cumbersome process.
Recently, deep learning has attracted significant atten-

tion in natural language processing (NLP) due to its
numerous advantages [18, 19], such as less feature engi-
neering, better performances and strong representations
of data compared to other systems [20]. The convolutional
neural network (CNN) and recurrent neural network
(RNN) are two widely used neural network structures
in biomedical relation detection. Lee et al. [21] build
several semi-supervised CNN models for ADE classi-
fication. Zeng et al. [22] proposed a piece-wise CNN

(PCNN)method to automatically learn sentence-level fea-
tures and select one valid instance for the relation clas-
sification. Li et al. [23] used Bi-LSTM to represent the
sentence vector combining the contextual information. It
was found that the CNN model could reduce the num-
ber of model parameters through local connections and
parameter sharing. It could better extract local features
from short sentences. The RNNmodel is designed to deal
with long-distance sequences and is good at dealing with
long-distance features. However, the contribution of each
element in the sentence is the same. Meanwhile, there is
no more prominent part of the sentence that determines
the category of the ADR.
The segments with a stronger focus in the sentence

are treated as more important, which would influence
the sentence representation. Alimova et al. [24] investi-
gated the applicability of the interactive attention network
(IAN) for the identification of adverse drug reactions from
user reviews. Lin et al. [25] and Ji et al. [26] introduced an
attention mechanism to the PCNN-based multi-instance
learning (MIL) framework to select informative sentences.
Zhou et al. [27] introduced a word-level attention model
to the Bi-LSTM-based MIL framework and obtain sgnif-
icant result. By focusing on the most relevant part of
the detection of adverse reactions, this method has a
greater impact on the vector representation of sentences.
Although previous approaches have promising results in
ADR task, they are limited to a single sentence represen-
tation that provides single semantic information. In fact,
multiaspect information needs to be considered when
understanding a sentence, which is helpful to enhancing
the ADR detection performance.
In this paper, we propose a multihop self-attention

mechanism (MSAM) that is related to dynamic memory
networks (DMNs) [28] to deal with these problems. The
contributions of our work can be summarized as follows:

• Our model is different from the previous methods
that use the single vector representation of a
sentence, which cannot obtain adequate information

Fig. 1 The examples of annotated sentences in the ADR corpus
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about a sentence. Our model employs multiple
vectors for the sentence representation by taking into
account the previous memory results.

• By applying multiple attention mechanism, each
attention step obtains different attention weights
focusing on the different segments. This approach
allows the MSAM to capture the different semantic
information from the multiple representation of the
sentence.

• Since a complete sentence contains intricate
semantic information, our model applies multiple
steps semantic analysis of the text to enhance the
ADR classification performance. Via extensive
experiments, the results show that our model
achieves state-of-the-art ADR classification based on
the sentence.

Methods
In this section, we explain in detail our method. First, the
embedded features that are used in our neural network
model are described. Second, the basic Bi-LSTM model
and self-attention mechanism are introduced. At last, our
MSAMmodel is presented. Figure 2 illustrates theMSAM
that is applied to the identification of ADRs. The right
side of the figure shows the details when the number of
iteration steps is K=2.
The architecture of our model consists of four com-

ponents: (1) The words are represented by word vector
embedding and position embedding, respectively. (2) Bi-
LSTM can be used for extracting the contextual infor-
mation in the sentence. (3) The multihop self-attention
mechanism can extract complex semantic information. (4)
The output layer realizes the sentence classification.

Embedding input representation
The input of our model is sentence sequence. Give a sen-
tence S={w1,w2, . . . ,wn} denote the sentence sequence.
In this paper, word wi in the sentence sequence is
represented by concatenating the word embedding and
position embedding.

Word embedding
Word2Vec [29] learns low-dimensional continuous vector
representations for words, which could solve the mem-
ory overflow problems that are caused by the one-hot
encoding to represent the word vectors. Meanwhile, this
approach could also capture the semantic information
underlying the words. In recent years, word embed-
ding has been successively applied in NLP tasks, such
as sequence labeling [15], sentiment analysis [30], infor-
mation retrieval [31], text classification [32] and so on.
In our experiments, we downloaded a total of 2,680,617
MEDLINE abstracts from the PubMed by using the query
string ’drug’. Then, these abstracts were used to train

word embedding by using Word2Vec [29] as the pre-
trained word embedding. The word wword

i is encoded into
a real-values vector by using pre-trained word embedding.

Position embedding
In addition to word embedding, we also exploit position
embedding to extend the input representation ability. The
same word in different contexts or in different positions in
a sentence has different meanings [33]. However, the word
embeddings do not consider this information. Therefore,
we used position embedding to capture the position fea-
tures by distinguishing the relative distances between each
word and the entities. For example, in the sentence “We
describe a case of EGE manifested as an allergy to gem-
fibrozil.”, the relative distances from the word ’allergy’ to
’EGE’ and ’gemfibrozil’ are 4 and -2, respectively. Then, we
mapped the relative distance to a position embedding vec-
tor. For position embedding, we randomly initialize the
position vector according to a standard normal distribu-
tion and updated it when training the model. Finally, we
could obtain two position embeddings wpos1

i and wpos2
i ,

which are the position embeddings of wi with respect
to drug entity and adverse reaction entity, respectively.
Thus, the overall word embedding representation for wi is
wi =

[
wword
i ,wpos1

i ,wpos2
i

]
.

Extract contextual information
RNNs perform well in processing sequential data benefits
since the RNNs have the advantage of limited short-
term memory. However, when analyzing long-distance
sequences, RNNs will lose the previous information, and
vanishing gradient problems will occur [34]. Long Short-
Term Memory (LSTM) [35] is proposed for RNNs. It
designed to deal with the long-distance sequences and
solving the vanishing gradient problem.
The architecture of an LSTM unit incorporates three

gates: an input gate (i), a forget gate (f ), and an output
gate (o). The formula of the LSTM functions are given as
follows in Eqs. (1)-(6):

ft = σ(Wf ·[ ht−1,wt] ) (1)

it = σ(Wi·[ ht−1,wt] ) (2)

C̃t = tanh(WC ·[ ht−1,wt] ) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo·[ ht−1,wt] ) (5)

ht = ot ∗ tanh(Ct) (6)
Where σ and tanh are the activation function, and σ

denotes the sigmoid function with values between 0 and 1.
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Fig. 2 The sequential overview of our MSAMmodel

Wf , Wi, WC , and Wo are the weight matrices. ht−1 repre-
sents the output of the previous cell, and wt represents the
input of the current cell at the moment t.Ct is the memory
cell at moment t. All of gates are set to generate the cur-
rent hidden state ht with the previous hidden state ht−1
and the input token wt .
The LSTM model is a sequential model. For the LSTM

unit, it only learns the past information and cannot use
future information. However, past or future information
could impact the current word. Therefore, in this paper,
forward and backward LSTM mechanisms were used to
assess the valuable contextual information in the sentence.
The Bi-LSTM could obtain each directional information
in the sequences. The output ht =[ (

−→
ht ;

←−
ht )] of Bi-LSTM

is a concatenation of the forward hidden state
−→
ht and

the backward hidden state
←−
ht at time step t. The gener-

ated new vector H = (h1, h2, . . . , hn) reflects the more
expressive high-level semantic meaning of the sentence.
The output of the Bi-LSTM layer is a sequence of hidden
vectors H ∈ Rn×2d where n is the sequence length and d
is the dimensional size of the LSTM.
Language descriptions are non-standard and different.

Therefore, it is especially important to find the most rel-
evant parts of ADRs. Bi-LSTM could obtain the word
dependence within the sentence and capture the internal
structure of the sentence. It combines local information at

a higher level through local perception. For implementa-
tion convenience, the model expects fixed-length inputs
for batch processing. It is necessary to standardize the
number of tokens in each sentence. In this paper, we set
all sentence to be the same length by trimming longer sen-
tences and padding shorter sentences with zero tokens.
Then, we input sentence vector representation into the
multihop self-attention mechanism after passing them
through the Bi-LSTM layer.

Self-attention mechanism
The importances of words in a sentence are different
for the ADR detection task. However, each input word
shares the same weight in the input layer of neural net-
works. It is necessary to assign the weight for each word
according to its contribution to ADR detection. The atten-
tion mechanism was first proposed in the field of visual
images [36]. Since the attention mechanism is effective in
machine translation [37], many researchers have applied it
to NLP. The self-attention mechanism can automatically
learn the weight of each word. However, a single layer of
a self-attention mechanism can only focus on one part of
the sentence and ignore other key parts. Therefore, we
use a multiple vectors representation that focuses on dif-
ferent parts of the sentence to form its overall semantic
representation.
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Multihop self-attention mechanism
The first multihop attention networks were proposed in
the field of machine understanding and question answer-
ing [28, 38–40]. Different parts of an answer can relate
to different aspects of a question [38]. The experimen-
tal results on question answering show that multihop
attention networks can achieve better performance than
others. Inspired by the above ideas, our model uses mul-
tihop self-attention to improve the effectiveness of ADR
tasks. The iterative nature of this multihop thinking allows
it to focus on different inputs during each pass so that it
can explore the intricate relationship.
In many sentences, the semantic relations between

drugs and adverse reactions are various. Different parts of
a sentence play different roles in ADR detection. In this
section, we introduce the MSAM to predict the param-
eters of MSAM layers through iterations. Here, we set a
memory parameter m and gradually update the memory
parameters to iterative update the MSAMmethod.
Let H = (h1, h2, . . . , hn) denote the hidden vectors of

the sequence after passing through the Bi-LSTM layer.
Here, ht is a concatenation of the forward hidden state

−→
ht

and the backward hidden state
←−
ht at time step t. n is the

sequence length. In each step k, the formulas to compute
weighted representation of sentence are as follows:

Sk = tanh(Wk
hH) � tanh

(
Wk

mm
k
)

(7)

βk = softmax
(
wk
SS

k
)

(8)

Where Wh, Wm, WS are the attentive weight matrices.
mk is a separate memory vector for guiding the next
self-attention step.
The initial memory parameter vectorm is defined based

on the context vector ht . In each step, the sentence is
represented by a vector mk that specifically focuses on
some aspects of a sentence. The memory parametermk is
recursively updated by (9):

{
m0 = 1

N �tht
mk = mk−1 + uk (9)

The vector mk−1 is used as the input for the MSAM that
is described in the previous step to extract the sentence
representation mk . We compute the uk weighted sums
by multihopping the matrix βk and the Bi-LSTM hidden
statesH. The resulting structured sentence representation
uk is shown in Eq. (10):

uk = �tβ
kH (10)

The sentence representation uk is the weighted sum after
passing through the Bi-LSTM layer hidden states H.
Here, we calculate the classification weight by using uk .

Then, our model takes the average after softmax as the

final classification result. The sentence probability of the
ADR classification is computed as follows:

Pk = softmax(ReLU(uk)) (11)

P = 1
K

�kPk (12)

In this study, the experiments find that the best num-
ber of self-attention steps is K = 2. In this case, each
self-attention step gives a different attention distribution
focusing on the different segments.

Output and training
After we obtain the sentence representation, we predict
the classification of the sample by using a fully connected
network. The softmax function is chosen as the activation
function, and its calculation result is between 0 and 1. The
sum of these values is 1. Then, the function takes the node
with the highest probability as our prediction target. The
formula of the softmax function is as follows:

Si = ei

�jej
(13)

Where Si represents the ith output value of the softmax
function. Prior to the prediction, we added a full con-
nected layer to extract key features. The cost function of
the model is the cross-entropy of the true class label y
defined as follows:

C = −�iyilnSi (14)

Where yi represents the real classification result. We
trained the parameters by minimizing the loss function.

Results
Experimental datasets and settings
To evaluate the proposed approaches, we conduct an
empirical evaluation based on two ADRs datasets:
TwiMed and ADE. The two corpora have different lan-
guage structures: the language in the literature is for-
mal, but twitter language is informal with frequent
misspellings and irregular grammar. Further, we briefly
describe each dataset.

• TwiMed [9]. TwiMed corpus consists of two parts:
TwiMed-PubMed and TwiMed-Twitter, which are
the sentence that are extracted from PubMed and
Twitters, respectively. This corpus contains three
types of annotated entities: drugs, symptoms and
diseases. In addition, it contains three types of
relations between those entities: Reason-to-use,
Outcome-positive, and Outcome-negative. In our
experiments, both symptoms and diseases are
considered to be adverse reactions.
Outcome-negative is used to denote that the drugs in
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Table 1 Summary statistics of the corpora

Coupus Documents ADR non-ADR Max sentence length Experimental data length

TwiMed-Pubmed 1000 264 983 137 75

TwiMed-Twitter 625 311 301 64 50

ADE 1644 6821 16695 90 90

the sentence could cause adverse reactions. If the
relationship between adverse reactions and drugs
was labeled as Outcome-negative in the sentence, we
marked the sentence as ADR (positive), otherwise, we
annotate it as non-ADR (negative). The data division
was similar to that used in Ilseyar et al. [24].

• ADE [8]. The ADE corpus is extracted from 1644
PubMed abstracts. There are 6821 sentences that
contain at least one ADE (positive) and 16,695
sentences that contain no ADEs (negative), which
have been divided. This corpus contains two types of
annotated entities in ADE (positive) sentences: drugs
and diseases. There are no annotated entities in the
sentence with no ADEs (negative). Therefore, we did
not annotate negative sentence in this task.

The summary statistics of corpora are presented in
Table 1. As shown in this table, the ADE corpus contains
significantly more annotations than TwiMed. Meanwhile,
the datasets we used for the experiment included sen-
tences in both PubMed and Twitter. Since the twitter
application program interface does not allow for the shar-
ing of actual tweet text, the published tweet data includes
unique tweet ID but excludes the tweet text. Thus, it was
necessary to obtain the tweet text by using web crawlers
with the unique tweet ID. The original dataset contained a
total of 1,000 tweets. When we reacquired the data using
the IDs, only 625 (62.5%) tweets were still publicly avail-
able. The Twitter and PubMed corpora were annotated by
domain experts.
We attempt to combine different corpora to assess

their classification accuracies. The annotations of the two
datasets are different. First, both positive and negative

data of the TwiMed corpus are annotated with entities.
However, only positive data of the ADE corpus are anno-
tated. Second, the TwiMed corpus includes twitter mes-
sage data. However, the grammatical structure of twitter
message is not standard, which makes it difficult to pro-
cess and identify. Third, Pubmed sentences are usually
longer than twitter sentences. Therefore, for the above
problems, we also made corresponding adjustments in the
parameter setting of our model.
In our experiments, we implemented our models using

Keras and ran them on a TiTan GPU. We conducted
that the average training time (seconds per sentence) of
our method on the ADE, TwiMed-Pubmed, and TwiMed-
Twitter corpora are 0.065 s/sent, 0.062 s/sent and 0.051
s/sent, respectively. The word embedding parameters of
our model are initialized using 100-dimensional pre-
trained word embeddings. The dimensionality of position
embedding is 10. The model parameters are optimized
using the Adam optimizer with a learning rate of 0.01.
We used a maximum of 35 epochs to train the MSAM
on each dataset. We set the batch sizes of the TwiMed
and ADE dataset to 8 and 16, respectively. The num-
ber of hidden units for the Bi-LSTM layer is 50 when
using Pubmed (and 20 for twitter). The best results
are obtained when the number of self-attention steps
is K = 2.
All models were evaluated by using 10-fold cross-

validation on the training set. We evaluate the perfor-
mance of the classification techniques using the precision
(P), recall (R) and F-score (F1), which are the major eval-
uation metrics for ADR detection on both corpora. The
outcome F1 could quantify the overall performance by
balancing the precision and recall.

Table 2 Classification results of the compared methods for the TwiMed corpus

Method TwiMed-PubMed TwiMed-Twitter

P R F1 P R F1

Feature-rich SVM [24] 0.799 0.681 0.728 ± 0.100 0.752 0.810 0.778 ± 0.047

IAN [24] 0.878 0.738 0.792 ± 0.016 0.836 0.813 0.824 ± 0.042

CNN-based method [42] 0.849 0.831 0.835 ± 0.060 0.739 0.788 0.761 ± 0.061

multichannel CNN [43] 0.861 0.780 0.816 ± 0.072 0.738 0.841 0.780 ± 0.054

Joint AB-LSTM [44] 0.817 0.856 0.831 ± 0.040 0.701 0.828 0.754 ± 0.072

BiLSTM+MSAM+position 0.858 0.852 0.853 ± 0.057 0.748 0.856 0.799 ± 0.046
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Table 3 Classification results of the compared methods for the
ADE corpus

Method P R F1

Knowledge-based system [45] 0.421 0.763 0.543

Feature-rich classification [46] - - 0.812

Bi-LSTM-RNN [23] 0.675 0.758 0.714

CNNA [47] 0.815 0.838 0.826

C-LSTM-CNN [48] 0.816 0.834 0.824 ± 0.009

BiLSTM+MSAM 0.847 0.855 0.851 ± 0.013

Experimental results
In our experiments, we evaluated our proposed model
via the ADR detection task, which is considered to be a
classification task. In previous works, most relation detec-
tion methods assess models using large corpora, and the
various semantic information inside the sentences is also
ignored. In contrast, our MSAM model is designed to
alleviate this problem using multiple self-attention mech-
anism. In our experiments, the two corpora and previous
methods were compared.

Evaluation on TwiMed
We compare our proposed model with the latest models
using the TwiMed corpus. Table 2 shows the perfor-
mance comparisons of various models on the TwiMed
corpus.
In the first two lines of Table 2, we assess the perfor-

mance of the main model and baseline that was proposed
by Alimova et al. [24] The feature-rich SVM method is
based on the SVM with a linear kernel [41]. It consid-
ered a set of features. However, in our method, we can
still get better results with a few features. In the sec-
ond line, the method utilized an interactive attention
network (IAN) [24] to learn the representations for tar-
gets and contexts. The IAN used attention mechanisms
to detect the important words of the target expression
and its full context. In addition, we consider the rela-
tive position between each word in the sentence and the
entity.
From the third to the fifth lines of Table 2, the methods

are our implementations. Liu et al. [42] and Quan et al.
[43] proposed CNN-based methods for the relationship
detection task. Kumar et al. [44] presented one model, the

Joint AB-LSTM based on the LSTM network. The mod-
els merge the semantic meanings to one single vector.
However, our model uses multihop ideas to focus on
the different segments of a sentence and obtain complex
semantic information.
In the last line of Table 2, we give the experimental

result of our proposed MSAM model. The results show
that MSAM performs better than the baseline model in
ADR classification. Compared with the IAN, our method
obtains a 6.1% better F1 score on the TwiMed-PubMed
corpus. Compared with Liu et al.’s [42] method, our
method provides a 1.8% better F1 score on the TwiMed-
PubMed corpus. However, the performance on TwiMed-
Twitter is less pronounced. The reason is that the format
of tweets is different from that of biomedical text, and a
small amount of twitter data from only 625 tweets were
still publicly available.
These experimental results suggest that our MSAM

model could combine the contextual features that are
extracted by Bi-LSTM. Compared with the feature-rich
SVM [24] method, our method effectively reduces fea-
ture construction. We apply multiple self-attention steps
to learn the representations for sentences. It can extract
different important information in the sentence through
each iteration. The multiple vectors that focus on dif-
ferent parts of the sentences could better represent the
overall semantics. Therefore, the MSAM is better at cap-
turing the complex semantic relations between drugs
and adverse reactions and improving the results of the
experiment.

Evaluation on ADE
We also compare our proposed model by using another
corpus. Table 3 shows the performance comparisons of
various models on the ADE corpus.
In the first five lines of Table 3, we present the perfor-

mance of the main model and the baselines for the ADE
corpus. Kang et al. [45] developed a knowledge-based
relation detection system that could be successfully used
to extract adverse drug events from biomedical text. The
learning process relies on external knowledge and ignores
sentence-specific information because of the utilization
of a small amount of data. Due to the limitations of the
manual rule setting, this method resulted in a high recall
score but a low precision score. Sarker et al. [46] relied

Table 4 Performances obtained by using different attention mechanisms

Method TwiMed-PubMed TwiMed-Twitter ADE

P R F1 P R F1 P R F1

Self-Attention 0.855 0.845 0.846 0.731 0.793 0.751 0.845 0.848 0.847

Multi-head Self-Attention 0.829 0.850 0.841 0.767 0.800 0.784 0.820 0.851 0.836

Multihop Self-Attention 0.858 0.852 0.853 0.748 0.856 0.799 0.847 0.855 0.851
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Table 5 Performance of various modules on the TwiMed corpus

Method TwiMed-PubMed TwiMed-Twitter

P R F1 P R F1

BiLSTM 0.853 0.806 0.829 0.680 0.754 0.715

BiLSTM+position 0.843 0.825 0.836 0.809 0.654 0.723

BiLSTM+Self-Attention+position 0.855 0.845 0.846 0.731 0.793 0.751

BiLSTM+MSAM+position 0.858 0.852 0.853 0.748 0.856 0.799

on generating a large set of features representing the
semantic properties from the text. However, our method
only used the word embedding feature on the ADE cor-
pus, and it could still obtain better performance. Li et al.
[23] investigated joint models for simultaneously extract-
ing drugs, diseases, and adverse drug events. It used a
dependency parser, which we did not need. Huynh et
al. [47] proposed the convolutional neural network with
attention (CNNA) by adding the attention weights into
convolutional neural networks. Song et al. [48] presented
the Context-LSTM-CNN method for sentence classifi-
cation. The method analyzed the data based on the
abstract text that contained the data. The generaliza-
tion of the method is reduced, which could not be well
applied to the processing of short text data, such as twitter
messages.
In the last line of Table 3, we give the experimen-

tal results of our proposed MSAM model. The memory
parameter m can record the important information of
each iteration step of the multihop attention mechanism
so that we can obtain multiple sources of information and
comprehensively judge it. From the results, we observe
that the MSAM model achieve the best results on the
ADE corpus. Our results were better than others with
a few features. Compared with the Context-LSTM-CNN
method that achieves state-of-the-art results, our method
obtains a 2.7% better F1 score.

Performance with different attention
In Table 4, we give experimental results of the different
attention [49] models on TwiMed and ADE, respectively.
We can see from Table 4 that the results of the model

obtained using multihop self-attention are better than
those obtained by models using multi-head self-attention
and self-attention. Our method allows the model to assess
the information from different positions. The vector rep-
resentation for each step in our model takes into account
the results of the previous step. Our MSAM model
can learn a better sentence representation by focusing
on different aspects of the sentence, which makes the
sentence-level multihop self-attention mechanism have a
better chance of selecting the sentences containing ADRs.
Therefore, the results of our model will be relatively better
than those of others.

Effect of variousmodules
In Table 5, we also give experimental results of the basic
model on TwiMed and ADE. The simplified models are
described as follows:

• Bi-LSTM: The model is used as the baseline model.
Others methods are based on this method. Forward
and backward LSTMmechanisms extract the
information in the sentence.

• Bi-LSTM+Self-Attention: The model integrates the
self-attention mechanism based on the Bi-LSTM
model.

• Bi-LSTM+Multihop Self-Attention: The model
integrates the multihop self-attention mechanism
based on the Bi-LSTMmodel. We conducts
experiments for different iteration steps.

• Bi-LSTM+Multihop Self-Attention+position: The
model integrates the position feature based on the
Bi-LSTM+Multihop Self-Attention model.

Table 5 shows the results when we evaluate the posi-
tion feature in experiments on the TwiMed corpus. Con-
sidering the position feature on the TwiMed corpus,
the contextual information of each word in the sen-
tence can be distinguished. The precision and recall of
TwiMed-Twitter fluctuate quite widely bacause of the
small amount of twitter data, further, social media lan-
guage is highly informal, and user-expressed medical con-
cepts are often nontechnical.
Table 6 shows the results for the ADE corpus when

there is no position feature. The reason for these results is
that the negative data in ADE corpus are not annotated.
Therefore, we do not consider that a sentence may contain
different relationships in the ADE corpus. Our method
achieved a high F1 score of 85.1% F1, which is 0.4% bet-
ter than that of the Bi-LSTM+Self-Attention method. The

Table 6 Performance of various modules on the ADE corpus

Method P R F1

BiLSTM 0.812 0.822 0.817

BiLSTM+Self-Attention 0.847 0.848 0.847

BiLSTM+MSAM 0.847 0.855 0.851



Zhang et al. BMC Bioinformatics          (2019) 20:479 Page 9 of 11

self-attention results are also very high because the ADE
corpus contains simple information. Therefore, the results
of our MSAM model on the ADE corpus are not sub-
stantially different from the results of the self-attention
mechanism.

Effect of the number of MSAM steps
Table 7 shows the F1-measure with respect of the number
of steps on the TwiMed corpus and ADE corpus. Step1,
step2, and step3 represent the MSAM iteration steps.
When the number of MSAM iteration steps is K = 2,
the model obtains the best performance. This effect might
be due to the sentences not being particularly long and
often containing two important aspects at most. There-
fore, multiple steps may have significant effects on the
multi-aspect information detection for long text. Table 7
also demonstrates that the performances on the differ-
ent ADR corpora varied significantly with respect to the
different numbers of steps.

Effect of imbalance data
We also get the result from up-sampling and down-
sampling that the ratio of positive and negative samples
is 1:1. Table 8 shows the performance on the TwiMed-
PubMed and ADE corpora. The TwiMed-Twitter cor-
pus does not have imbalance data, so we did not apply
up-sampling or down-sampling to it. The up-sampling
method copies the positive samples in the training dataset.
Because of the small number of examples, increasing the
positive examples could improve the experimental results
to some extent. The down-sampling method removes
the negative examples. Although some negative examples
have been removed, which reduced the impact of noisy
data, the small amount of data is the main reason why the
results are not ideal.

Case study
Figure 3 depicts the heat map of a sentence from the
TwiMed corpus that was subjected to MSAM. We gave
examples from PubMed and Twitter that illustrate the
effectiveness of our proposed model. The stronger the red
color of a word in the sentence is, the larger the multihop
self-attention layer weight of that word. The first sentence
is the heat map result that was obtained by MSAM step
1. The second sentence is the heat map result that was
obtained by MSAM step 2. In this example, we observe

Table 7 Effects of different number of steps and self-attention
on both corpus (F1)

Method TwiMed-PubMed TwiMed-Twitter ADE

step1 0.831 0.786 0.819

step2 0.853 0.799 0.851

step3 0.820 0.789 0.820

Table 8 Effects of up-sampling and down-sampling for
imbalanced data

Corpus P R F1

TwiMed-PubMed 0.858 0.852 0.853 ± 0.057

TwiMed-PubMed (up) 0.851 0.889 0.867 ± 0.032

TwiMed-PubMed (down) 0.862 0.842 0.849 ± 0.033

ADE 0.847 0.855 0.851 ± 0.013

ADE (up) 0.846 0.869 0.857 ± 0.007

ADE (down) 0.823 0.862 0.842 ± 0.014

that our model is able to extract the complex seman-
tic information from the sentence. We do not only focus
on entities, which are drugs and reactions, but we also
focus on finding words other than entities that can play
important roles in the classification of relationships. The
focus of each iteration step is different, which allows the
sentence vector representation to be obtained from the
multidimensional perspective.

Conclusion
Most of the neural network models only capture simple
semantic information from the single representation of a
sentence, which limits the performance of the ADR detec-
tion task. In fact, determining the relationship between
drugs and adverse reactions requires complex semantic
information. In this paper, we propose a multihop self-
attention mechanism for the ADR detection task, which
allows the model to capture multiple semantic informa-
tion bits for the ADR detection task. By using the mul-
tistep attention mechanism, our model learns multiple
vector representations that focus on different semantic
information to detect the relationships between drugs and
adverse reactions. Experimental results obtained for two
different widely used corpora demonstrate that (i) our
MSAM is effective at capturing the complex semantic
information in a sentence; and (ii) our model is robust
and suitable for different types of text. It is encour-
aging to see that our model achieves state-of-the-art
results on ADR classification based on the sentence
level.
Although our model achieved the best performance on

the TwiMed-PubMed andADE corpora, there is still room
to improve. The performance on the TwiMed-Twitter cor-
pus is relatively lower than that on TwiMed-PubMed. The
reason for this discrepancy is that the number of train-
ing examples in the TwiMed-Twitter corpus is very limited
compared with the TwiMed-PubMed corpus. Because of
the particularity of twitter data, we have less available
data. We obtain 625 sentences for the experiment. Mean-
while, the language in social media is highly informal. In
future work, we will combine twitter data and biomedical
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Fig. 3 Attention heat map from MSAM (k = 2) for ADRs classification

literature data to train the model to solve the problem of
insufficient twitter data.
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