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ABSTRACT

Using a comparative genomics approach to
reconstruct the fate of genomic regulatory blocks
(GRBs) and identify exonic remnants that have
survived the disappearance of their host genes
after whole-genome duplication (WGD) in
teleosts, we discover a set of 38 candidate cis-
regulatory coding exons (RCEs) with predicted
target genes. These elements demonstrate evolu-
tionary separation of overlapping protein-coding
and regulatory information after WGD in teleosts.
We present evidence that the corresponding
mammalian exons are still under both coding and
non-coding selection pressure, are more
conserved than other protein coding exons in the
host gene and several control sets, and share key
characteristics with highly conserved non-coding
elements in the same regions. Their dual function
is corroborated by existing experimental data.
Additionally, we show examples of human exon
remnants stemming from the vertebrate 2R WGD.
Our findings suggest that long-range cis-regula-
tory inputs for developmental genes are not
limited to non-coding regions, but can also
overlap the coding sequence of unrelated genes.
Thus, exonic regulatory elements in GRBs might
be functionally equivalent to those in non-coding
regions, calling for a re-evaluation of the sequence
space in which to look for long-range regula-
tory elements and experimentally test their
activity.

INTRODUCTION

Long-range cis-regulation is of central importance in evo-
lution, embryonic development, and human disease. The
loci of many developmental transcription factor genes (1)
are spanned by clusters of highly conserved non-coding
elements (HCNEs) (2), which demarcate the region con-
taining long-range enhancer elements that regulate the
gene’s expression (3,4). The spanned regions can extend
more than a megabase around the corresponding target
gene and are often gene-poor, or contain gene deserts. A
substantial number of these regions, however, contain
other unrelated genes whose introns contain HCNEs but
which apparently are not subject to their regulatory
effects. We have termed these genes bystander genes to
distinguish them from target genes which are under
HCNE-mediated regulation (5). We refer to the entire
arrangement of target genes, bystander genes or gene
deserts spanned by HCNE arrays as genomic regulatory
blocks [GRBs, (5)].

One unresolved question concerning the evolution of
HCNEs is when and how the HCNEs appeared in their
current locations. The observation that whole-genome
duplication (WGD) can disentangle HCNEs from by-
stander genes points to the possibility that HCNEs
appeared in the region within ‘striking distance’ to their
target gene. Since the sequences of most HCNEs in
genomes with no recent WGD are unique, they might
have been conscripted from the original intronic sequence
of either the target or the neighboring (bystander) gene, or
the intergenic sequence between them. Moreover, they kept
emerging over the course of vertebrate (and Metazoan)
evolution: there is evidence that many of these elements
might have appeared in the tetrapod lineage after its
separation from fish (6). Since these elements cluster

*To whom correspondence should be addressed. Tel: +47 555 84362; Fax: +47 555 84295; Email: boris.lenhard@bccs.uib.no

Present addresses:

David Fredman, Department for Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse, 1090 Vienna,

Austria.

Thomas S. Becker, Brain & Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia.

© The Author(s) 2009. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



1072  Nucleic Acids Research, 2010, Vol. 38, No. 4

around target genes and cover the entire span of GRBs, in
some cases the spatial arrangement of HCNEs might play a
role (unknown as of yet) in their regulatory mechanism that
leads to turnover and recruitment of new elements. In
accord with this possibility, it has been shown recently
that many old repetitive elements in GRBs are also under
purifying selective pressure (7), and that there are cases
of cis-regulatory elements recruited from transposable
element sequences (8,9).

The above observations led us to speculate that some of
these regulatory elements might have been employed from
DNA that already served other functions. The ability to
code for protein is one of the most suitable functions to
test this hypothesis, due to the characteristic evolutionary
signature of selection on protein coding sequence.
Therefore, we set out to investigate whether one of the
most obvious functional elements in GRBs—coding
exons—might show evidence for additional non-coding
evolutionary pressure and thus indicate that they double
as parts of regulatory elements of the same type and origin
as their HCNE neighbors. A number of cases of
‘enhancers in protein-coding sequence’ have been studied
individually at different levels (see Discussion section).
Two recent studies (10,11) identified a putative Hox-Pbx
responsive cis-regulatory sequence, which resides in the
coding sequence of Hoxa2 and is an important component
of Hoxa?2 regulation in rhombomere 4. The authors found
that this Hox-Pbx exonic element is embedded in a large
205 bp long ultraconserved genomic element shared by all
vertebrate genomes, which suggests superimposed func-
tional and evolutionary constraints on both coding and
non-coding function.

GRBs have properties that allow us to identify cases of
evolutionary separation of overlapping functional
elements: they are the regions with the longest conserved
gene order across distant vertebrates, with bystander
genes apparently ‘locked” into the conserved syntenic
arrangement by the requirement that HCNEs remain in
cis to their target gene (5). The support for the latter is
provided by analysis of the fate of GRBs after WGD
followed by partial rediploidization, where a fraction of
bystander genes becomes disentangled from the ancestral
lock-in with HCNEs controlling the target gene, as
described in (5). Analogous examples of physical separa-
tion of intercalated functional elements have been
described for protein-coding genes encoding intronic
small nucleolar RNAs (snoRNAs) (12-14). Similarly,
our model of GRBs makes an interesting prediction
about the fate of overlapping coding and non-coding func-
tions in exons of bystander genes after WGD: since the
non-coding (regulatory) information is likely to target a
neighboring (GRB target) gene, rediploidization will lead
to the separation of the two functions at the duplicated
loci in a subset of cases. The non-coding function should
remain active in cis to the target gene, while the coding
information for the bystander gene can remain functional
at the other locus (Figure 1A).We should therefore be able
to detect such overlaps computationally on a genome-wide
scale, and, importantly, pinpoint those for which WGD
resulted in separation of non-coding and protein-coding
function. The GRB model also predicts that exons of

target genes might have acquired this function, as
corroborated by the Hox-Pbx exonic element described
above. To make the detection of these elements and their
interpretation as unambiguous as possible, we focused on
coding exons of bystander (apparently unaffected by long-
range regulation) genes and followed their fate after
WGD in teleost fish. Since many bystander genes are
broadly expressed (‘housekeeping’) genes that are likely
to rediploidize (i.e. lose one of the two copies) following
WGD (5), we expect the overlapping regulatory function in
the ‘decayed’ copy that is in cis with the neighboring target
gene to remain conserved as an isolated exonic remnant
that could be tested for enhancer activity. In this article,
we use a genome-wide computational approach to present
evidence in support of this hypothesis.

MATERIALS AND METHODS
Data extraction

We downloaded genomic sequences (hgl8, mm9 and
danRer5 for human, mouse and zebrafish respectively)
and whole-genome alignments from the UCSC Genome
Browser Database (15), and transcriptome mapping infor-
mation from Ensembl (release 49) (16). Using the method
described in Ancora (17), human-zebrafish HCNEs were
extracted by scanning pairwise human—zebrafish UCSC
net alignments for minimal regions >50nt with at least
70% identity.

Defining synteny blocks and their gene content

Starting from 215 putative GRB target genes selected from
zebrafish—-human HCNE density peaks in Ancora (17) and
their gene functions in development and/or as transcrip-
tion factors, we retrieved the human-zebrafish synteny
blocks overlapping with the target genes. Synteny blocks
were calculated from UCSC Genome Browser human-—
zebrafish net alignments (15) joined in a graph-based
procedure using a gap threshold of 450k bp in the
human genome and 150k bp in the zebrafish genome, as
previously described (5). This procedure allows for inver-
sions and other local rearrangements such that syntenic
blocks are separated by macro-rearrangements rather
than smaller insertions and alignment gaps.

For each synteny block overlapping with the target
gene, we retrieved all Ensembl protein-coding genes in
the block [excluding the target gene(s)] as putative
bystander genes. For each bystander gene, we checked
its orthologous gene(s) in zebrafish, using a complete
ortholog set composed by known Ensembl ortholog set
plus an additional ortholog prediction set defined with
reciprocal exon alignment coverage (18). Those bystander
genes, which did not have an ortholog in the correspond-
ing synteny block in zebrafish, were labeled as candidate
RCE host genes. Many of those candidate genes were
however not lost from the zebrafish genome, but had
orthologs elsewhere, outside of the ancestral block of
conserved synteny.
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Figure 1. The GRB model, the evolutionary scenario to define RCEs and an example of an RCE. (A) A GRB is defined as a genomic region where a
target gene (red) receives long-range regulatory inputs from an array of HCNEs (green ovals) that span the entire GRB and often intertwine with
exons of unrelated bystander genes (orange). The regulatory elements need to stay in cis to their target gene to function, leading to the conservation
of synteny between the target and its long-range regulatory inputs. In the evolutionary scenario illustrated, teleost WGD (red circle) and subsequent
rediploidization (yellow fork) resulted in each gene being retained in a single functional copy. However, one exon fragment (blue dashed frame) that
overlaps a regulatory element was retained in duplicate, with one copy remaining in conserved synteny with the target gene just like the HCNEs, and
the other remaining as part of a functional gene elsewhere in the genome. We named such zebrafish exonic remnants and their vertebrate orthologs
RCEs, and named the genes they are or were part of ‘RCE host genes’ (blue). (B) The PROX! - RPS6KCI locus. The prospero homeobox protein
PROX]1, which is essential for early development of the central nervous system (CNS), is an example of a 1-to-1 GRB orthology scenario. PROX/
has a bystander gene RPS6KCI in the synteny block defined by PROXI and the HCNEs spanning the locus. RPS6KCI encodes a ribosomal protein
kinase, which has no evidence for involvement in CNS development or for being tightly regulated in general. In this case, RPS6KC1, as the bystander
gene, was lost in the zebrafish synteny block, leaving several human-zebrafish HCNEs in the gene desert created by its disappearance. Interestingly,
three out of 15 exons were also kept as highly conserved remnants in the zebrafish (referred as RCE 9, 10, 11in Supplementary Table SI).
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Detection of exon remnants of bystander genes

We identified putative exonic remnants of bystander genes
by counting the conservation of each exon for each can-
didate RCE host gene using human—zebrafish orthologous
UCSC chain alignments. For each exon, if <15% of base
pairs were aligned, it was counted as completely lost; oth-
erwise, the aligned part in the exon was extracted and
defined the remnant part of the host gene regulatory
coding exon (RCE). The RCE term we use is broadly
related to the coding regions under non-coding selection
(‘CRUNCS’) used in Chen ez al. (19), but we use a differ-
ent definition here. To make the subsequent reading frame
consistency check easier, we cropped 1 or 2 nucleotides
from the ends of the region if it did not begin and end
with complete codon. To remove exons that might still be
functional as part of expressed transcripts, we excluded all
candidates that showed evidence of expression in zebrafish
by genomic overlap (>1 bp) with known zebrafish spliced
ESTs and mRNAs (as of 22 May 2009) obtained from the
UCSC Genome Browser (15).

Background sets

As a proxy for neutrally evolving sequence, we used the
human-mouse—dog ancestral repeats (ARs) obtained from
Hardison et al. (20). To obtain an estimate of the local
neutral rate whose variance is matched to the substitution
rate estimate for the RCE regions, we selected the nearest
local AR and trimmed it to a total ungapped alignment
length matching that of RCE region. In this process, the
local ARs had to fulfill each of four criteria: (i) no overlap
with its local RCE segment, (ii) length of at least 100 bp,
(iii) 1s longer than the locally matched RCE segment and
(iv) is as close as possible to its locally matched RCE
segment.

For each RCE region, we extracted a random
subsequence of the same length as the RCE from the
remainder of the full-length coding sequence (CDS) of
its host gene. The orthologous sequences of randomCDS
in mouse were extracted using UCSC chained alignment
data.

Nucleotide substitution rates and conservation
score in RCE

We extracted the human RCE regions (cropped to start
and end with complete codons according to the reading
frame) and identified putatively orthologous genomic
regions in mouse using the human-mouse BlastZ net
alignment from UCSC Genome Browser Database (15).
Regions without a human-mouse alignment were
excluded from the analysis.

As an indicator of selection pressure on an amino acid,
the non-synonymous substitution rates to synonymous
substitution rates ratio (K,/K;) was calculated using
codeml in pair-wise mode (runmode = —2, model = 0).
To compare the protein-coding selection pressure on the
genes containing RCE segments, we calculated the K,/Kj
ratio for the RCE host gene and took two genes from the
same GRB as references; the target gene (we took the one
closest to the RCE host gene if more than one putative

target gene was found inside the defined GRB), and a
randomly chosen bystander gene that had a mouse
ortholog.

The nucleotide substitution rates between human and
mouse RCE orthologous pairs were computed by using
baseml with REV substitution model and enforced
molecular clock (runmode =0, model =7, clock = 1,
ndata = 1).

We calculated the conservation score for each RCE,
randomCDS and local AR alignment by dividing the
total number of aligned identical nucleotides with the
total length of alignment.

Nucleotide distance of 4D sites

We extracted all 4-fold degenerate (4D) synonymous sites
from RCE segments, the RCE host genes, and a back-
ground gene set consisting of 1000 randomly chosen
genes from the whole set of human protein-coding genes
that had Ensembl orthologs in mouse. For each dataset,
the 4D sites (and their orthologous sites in mouse)
were retrieved and concatenated together to make a new
alignment.

The nucleotide distance between orthologous 4D sites
was computed with JC69 model (21), using the formula

4
D:—%xlog(l—gx%),

where D is the expected distance; x represents the number
of different nucleotides, and n is the total number of
nucleotides. Since the distance is directly determined by
the difference rate (x/m) rather than the length of the
sequence, correction for the sequence length (i.e. normal-
ization) was not necessary.

Scanning of transcription factor binding sites and protein
domains

To analyze the transcription factor binding site (TFBS)
content in the RCEs, we scanned the human—mouse align-
ment of the regions using JASPAR Core TFBS position
weight matrices (PWMs) and a 90% relative score thresh-
old (22). Putative TFBSes matching the RCE segments
were extracted using Perl with TFBS modules (23). For
comparison to the TFBS content in the RCE, we took two
background sets, (i) the random CDS (defined as above)
and (i1) the nearest HCNEs. The nearest HCNEs fulfilled
the following criteria: (a) They were part of the set of
HCNEs between human-mouse (>50bp, >98%) (17),
(b) they were as close as possible to its local RCE, and
(c) trimmed to the same length as its local RCE segment.

To analyze the over-represented TFBS familial profiles
in the RCE, we scanned the three sets (RCE, randomCDS
and nearest HCNE) with JASPAR_FAM TFBS matrix
profiles representing generalized core motifs for 11 struc-
tural classes of transcription factors (22), and computed
z-score as a measure of over-representation (24). We used
the Perl module Statistics::Distributions from CPAN to
calculate the P-value.

We also checked if any putative protein domains
overlapped the RCE regions. We first scanned the RCE
host gene with Pfam [release 23.0 (25)] with default



parameters (global & local merged strategy, E-value: 1.0),
keeping only those domains that overlapped with the RCE
regions (by at least one amino acid). To obtain significant
hits, we further filtered the results by limiting the E-value
to <0.001.

Testing DNA elements for enhancer activity by
transgenesis in zebrafish

Structure of the Tol2-based enhancer test vector. The basic
enhancer test DNA vector contains the Gateway® Cl
cassette, the zebrafish gata2 promoter (26) coupled to
the GFP gene and the polyA signal, flanked by Tol2
terminal repeats, into which the test sequence was placed
by LR recombination (27).

Microinjections and zebrafish handling. The mixture of
DNA construct and Tol2 transposase mRNA was
injected at a concentration of 25ng/ul each into one-cell
stage wild-type fertilized zebrafish eggs using glass
capillaries. Injected fish were observed at 1dpf and 2 dpf
for GFP expression, raised to sexual maturity and
screened to isolate transgenic lines. Detailed description
of all procedures can be found in Navratilova et al. (27).
Sequences were tested in at least four independent
transgenic lines.

RESULTS

A candidate set of exonic remnants of ancestral
bystander genes

We hypothesized that a subset of the sequences that
contain coding exons in a GRB, in either target or
bystander genes, has been recruited over time into regula-
tory elements functionally equivalent to those detected in
HCNEs. After WGD, some of the bystander genes
rediploidized such that one copy was inactivated, releasing
the coding pressure on the embedded regulatory element
and other exons in cis to it. Over time, the coding sequence
deteriorated and left behind a remnant of the exon with a
regulatory role only (targeting the GRB target gene). The
approach is illustrated in Figure 1A. We investigated 215
curated GRB target genes [Materials and Methods’
section and (5,28)] spanned by arrays of human-zebrafish
HCNEs for evidence of such a scenario. We defined the
corresponding zebrafish-human synteny blocks around
each target gene, and identified zebrafish orthologs and
paralogs for every human gene inside the span of these
synteny blocks (‘Materials and methods’ section). We
identified a total of 38 zebrafish exonic remnants
(Supplementary Table S1) that were retained in the
zebrafish synteny block, but were no longer part of a func-
tional coding transcript (Figure 1A and ‘Materials and
Methods’ section). As evident from the human annota-
tion, which we take to represent the ancestral (pre-3R
WGD) gene state, the remnants were derived from 19
host genes (‘Host gene’ in Supplementary Table S1). In
most cases, 1 or 2 individual exons of each host gene
remained (Supplementary Figure S1). In many of them,
the conservation extends into one or both flanking
introns, in agreement with the idea that the sequence
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might have been recruited into its non-coding function
independently of the exon’s coding role. We named the
38 originating exons RCEs (see full definition in
‘Materials and Methods’ section); again, their orthologous
exonic remnants detected in zebrafish do not code for
protein any more. We further characterized these regions
using a series of computational approaches, to establish
(1) if the zebrafish remnants are under non-coding selec-
tion only, (i) if their mammalian orthologs still show
evidence of dual coding + noncoding selection and
(ii1) if they have sequence properties equivalent to those
of regulatory HCNEs in the region.

The GRB target genes can be divided into two main
groups based on whether they have either one (I-to-1,
singletons) or two zebrafish orthologs (1-to-2,
co-orthologs), where both copies of the gene have been
retained after teleost WGD; in other words, a 1-to-2
orthology means that one human (tetrapod) gene has
two orthologs in a zebrafish (teleost) that are paralogous
to each other: the two zebrafish paralogs are more closely
related to each other than to their (common) tetrapod
ortholog. These groups form a basis for interpretation of
origin of RCEs from the bystander genes that were lost
from the GRB in fish [see ref. (5) for examples]. Examples
of GRB target genes with 1-to-1 orthology scenarios are
PROXI (Figure 1B), OTX2 and TSHZI, while examples
of the 1-to-2 scenario are PAX6 (Supplementary Figure
S2), ZIC2, LHX1, SP3, etc.

Additional information about the 38 remnants of
coding regions and the corresponding potential RCEs in
human, including genomic coordinates in hgl8 and
danRer5, sequences, alignments, the number of HCNEs
within the orthologous human host gene, and the primers
for PCR amplification for possible experiments are given
in the Supplementary Data file.

Assessment of coding potential of exon remnants

The annotation of the zebrafish genome is presently
incomplete, making unambiguous ortholog gene assign-
ment difficult, especially in the case of single-exon genes.
To assure that the detected zebrafish exonic remnants do
not code for protein any longer, we used three evaluation
criteria. Specifically, using the human:zebrafish alignment
for each retained zebrafish exon and the open reading
frame (ORF) of the corresponding human gene, we
searched the retained zebrafish sequence for: (i) splice
site conservation: nearly all eukaryotic nuclear introns
begin with the nucleotide sequence GU and end with
AG (the GU-AG rule); conservation of this splice site
identification signal indicates that the adjacent exons
might still be transcribed/spliced; (ii) reading frame
conservation: any insertions/deletions (indels) resulting
in a disrupted ORF, which indicate that the exon may
no longer be coding; (iii) presence of point mutations
resulting in a stop codon.

Based on these three tests, we labeled the strength of
evidence that coding potential of a zebrafish exon remnant
was abolished. This was set as ‘class I’ for 28 of 38
remnant exons, indicating that a splice site was mutated,
the ORF disrupted by indels, or that an internal
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Table 1. The candidate set of RCE host genes

1D Target gene (Tg) RCE host gene (Bg) Number of Number of remnant Number of class I(II) Number of HCNEs
total exons exons remnants within host gene
1 PAX6 ELP4 12 2 2 (0) 36
2 WTl1 EIF3M 11 2 2 (0) 2
3 zZICc2 PCCA 25 3 1(2) 33
4 EYAI KCNB2 2 1 1 (0) 0
5 PROX1I RPS6KC1 15 3 3 (0) 9
6 TWISTI HDACY 25 2% 1(1) 2
3b 3 (0) 7
7 Foxp2 PPPIR3A 4 1 1 (0) 0
8 LHXI ACACA 56 2 1(1) 13
9 NR2FI 094914_HUMAN 9 3 1(2) 1
10 IRX3 RPGRIPIL 26 1 1 (0) 8
11 GSX2 CHIC? 6 2¢ 02 3
12 TSHZI ZNF407 7 1 1 (0) 36
13 EVX2 MTX2 10 2 2 (0) 4
14 ZNF536 C19orf2 11 1 1 (0) 1
15 FIGN KCNH7 17 1 1 (0) 0
16 LBXCORI MAP2KS5 22 3 1(2) 15
17 SMAD3 IQCH 21 1 1 (0) 2
18 SP3 OLAI 10 2 2 (0) 12
19 DLX2 SLC25412 18 2 2 (0) 0

Summary table for 19 RCE host genes (Bg) and the corresponding target genes (Tg). For each RCE host gene, the number of total exons and retained
exons are given. Each retained exon remnant was assigned to class I or 11, according to the strength of evidence for loss of their coding potential.
The number of intragenic HCNEs from each host bystander gene is given as an indicator of potential regulatory content of the host gene’s introns.

“Both HDACY orthologs were lost from the synteny blocks of GRB target gene TWISTI in zebrafish, which left two exonic remnants on zebrafish

chromosome 19.
*Three on chromosome 16.

“In the CHIC?2 gene, there are two remnants on chr20:20493k branch and they are identical in sequence and closely located in the chr20:23213k
branch in the Zv7 assembly, but both on the same branch are mapped to the same position in Zv8 assembly, which we considered as a Zv7 assembly

error, and reported only one from each branch.

stop-codon was found. Otherwise we assigned a lower
confidence ‘class II’ level of evidence (the remaining
10 of 38 regions in Table 1). For the bystander gene(s)
containing ‘class II' RCEs, we investigated whether (i)
they had an ortholog in the corresponding branch in at
least two other teleost genomes (medaka, fugu, stickleback
and tetraodon), (ii) the zebrafish ortholog (if any) of the
originating host gene was outside the synteny block of the
corresponding target gene. According to the GRB model
(Figure 1A), if the gene is still functional elsewhere in the
genome (e.g. outside the GRB), it is more likely to have
disappeared from its original syntenic location, leaving
behind regulatory elements (originally intertwined with
its exons) in cis to the target gene. Besides the lack of
known evidence of transcription (ESTs, mRNA) for the
exonic remnants (see the Supplementary Data for details),
these additional criteria suggest that all 38 RCEs,
including those in class II, have lost their protein-coding
potential in zebrafish.

RCEs in mammals have low nucleotide substitution rates

Our next task was to investigate whether there is evidence
for overlapping coding and non-coding selection pres-
sure in mammalian orthologs of these exon remnants,
i.e. potential RCEs that should correspond to their
bifunctional ancestral (pre-WGD) state. We first
investigated if the RCE regions were under purifying selec-
tion pressure by comparing the estimated rate of
nucleotide substitution between human:mouse orthologs.
The human:mouse comparison is suitable for several

reasons; (i) zebrafish is a phylogenetic out-group relative
to human and rodents, (ii) the rodent-specific rate of loss
of HCNESs conserved in human and zebrafish is very low
(29), and (iii)) human and mouse are at an evolutionary
distance that was shown to satisfactorily discriminate
conserved regulatory elements from non-conserved
flanking regions (30). We compared the nucleotide substi-
tution rate for each RCE sequence (drcg) to that of
neutrally evolving ancient repeats (20,31) (dar) from the
genomic neighborhood, and to that of randomly sampled
CDS from the corresponding host gene (drandomcDS)
(‘Materials and Methods” section). Ancient repeats
(ARs) are non-coding and assumed to be non-functional,
and most should reveal the baseline neutral nucleotide
substitution rate for the examined genomic regions.
Assuming that RCEs are uniformly distributed along the
genes’ coding sequences, or that there is no positional bias
for purifying selection pressure relative to bystander gene
start, the diandomcps 18 the expected substitution rate for
coding sequence in the same genomic neighborhood.
Thus, the ratios dRCE/dAR and dRCE/drandomCDS are
expected to be close to 1 if selection has not distinguished
between substitutions within RCE and substitutions
within nearby ARs or random CDS. If any of these
ratios were significantly lower than 1, this would be an
indication that purifying selection on substitutions has
been more prevalent in RCEs, or that underlying
mutation rates are lower in RCEs.

Since RCEs are coding sequences in human and mouse
genomes, their nucleotide substitution rates should be
much lower (confirmed by median drcg/dar = 0.145,
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Figure 2. Comparison of sequence conservation of RCE versus ancestral repeats and randomCDS. (A) Cumulative distribution of nucleotide
substitution rates for 38 pairs of RCE region and local ancient repeats, and 38 randomly selected CDS regions from the same host genes.
(B) Cumulative distribution of conservation scores for 38 pairs of RCE region and local ancient repeats, and randomly selected CDS regions

from the same host genes.

Table 2. RCE regions, random CDS and ancient repeats

RCE region Random CDS P-value Ancient repeat P-value
Median substitution rate
All 0.062 0.120 0.0006 0.467 <Te-12
Only high 0.066 0.108 0.002 0.467 <7e-09
Median conservation score (%)
All 94.1 89.3 0.0004 53.7 <Te-12
Only high 93.8 90.1 0.007 53.5 <le-10

Human:mouse substitution rate and conservation scores for RCE regions compared to random coding regions from their host genes. Remnants of
bystander genes have significantly lower substitution rates and higher conservation than referenced CDS regions and ancient repeats (paired

Wilcoxon tests).

P <7 x 107'%; paired Wilcoxon test, Figure 2A), and their
sequence conservation in human:mouse alignments much
higher (confirmed by P <7 x 10™'%; paired Wilcoxon test,
Figure 2B) than that in the local (positionally matched)
ancient repeats. Comparison of the transversion and tran-
sition rates of RCE regions with that of corresponding
background sets also show significant difference
(Supplementary Figure S3).

We used an additional independent test with essentially
the same result. Instead of using ancient repeats, we took
all 4D synonymous sites from the ENCODE project (32)
as a neutrally evolving reference (33), and computed the
human:mouse conservation P-value [using phyloP (34)]
for all RCEs and randomCDS regions. Similarly, we
found that most RCEs and randomCDS regions are
significantly more conserved than the ENCODE 4D
sites, while the ancient repeats used in the previous test
had similar P-values as 4D sites. Out of 34 RCE regions
with significant conservation P-value (<0.05), 26 had a
smaller P-value than the paired randomCDS reference
(Supplementary Figure S4).

The substitution rates in the human:mouse orthologs of
the total set of 38 identified exon remnants were also
significantly lower than that in paired random CDS
regions (median drcg/drandomceps = 0.424, P = 6 X 1074
paired Wilcoxon test) (Table 2, Figure 2A). The conserva-
tion scores were also significantly higher (P =4 x 107%;
paired Wilcoxon test, see Table 2, Figure 2B). The differ-
ence was not substantially larger if we considered only the
set of 28 RCEs with unambiguous loss of coding capacity
(marked ‘class I’ in Supplementary Table S1). The median
value of substitution rates ratio was 0.135 for drcg/dagr
(P <7 x107%; paired Wilcoxon test, Table 2), and 0.424
for drcg/drandomcps (P = 0.002; paired Wilcoxon test).
Both ratios were close to the corresponding ratio for the
full set of RCEs, indicating that the two categories (‘class
I’ and ‘class II’) of RCEs have similar constraint
properties. We also compared class I to class II directly,
which showed that there is no significant difference
between them (P = 0.486, Wilcoxon test), adding confi-
dence that ‘class II’ elements are indeed exonic remnants
with non-coding function only.
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To account for the possibility that selection pressure
could be heterogeneously distributed across protein-coding
sequence of the considered genes, we investigated the selec-
tion pressure on their 4D sites, which should not be
influenced by protein-coding selection pressure. We
extracted all 4D sites within the RCE segments, the
entire RCE host genes, and a background set of 1000
randomly sampled human genes. We retrieved the align-
ment of each human sequence and its corresponding
mouse ortholog, and calculated the nucleotide distance
for the 4D sites in each alignment (‘Materials and
methods’ section). The nucleotide distances distribution
4D sites shows a clear peak towards zero for most
human-mouse RCE pairs (median = 0.216), which was
significantly lower than for RCE host genes
(median = 0.398, P =0.002) and the random back-
ground (median = 0.440, P<4x107%) (Figure 3).
Importantly, the distribution of nucleotide distances for
RCE host genes was also significantly different from the
background (P = 8 x 10~*), underlining the characteristic
properties of RCE regions. To exclude contribution of
detected RCEs to its host gene, we also repeated the
analysis excluding the 4D sites of RCEs from that of
the RCE host gene set, showing that the peak of
distance distribution for the remainder of the host gene
shifted towards the center of the background set
(median = 0.414, P = 0.02, see Figure 3, Supplementary
Table S2). Thus, the 4D synonymous sites within RCE
regions are under significantly stronger purifying selec-
tion pressure than both other regions in the same gene
and the genome average.

TFBS evidence and protein domain content on RCEs

The underlying reason for the observed additional
purifying selection pressure acting on RCE regions
remains to be explained (Introduction section). To
examine the possibility that a high density of putative
TFBS could partially account for non-coding selection
pressure, we compared the TFBS composition within
RCEs to random CDS regions from the genes
hosting the RCEs, and the nearest HCNEs using

JASPAR_FAM familial TFBS profiles (35) (‘Materials
and Methods” section). We performed relative
over-representation analysis on them by using the
JASPAR_FAM database (22). We found that three out
of 11 TFBS familial profiles (ETS, REL and MADS) show
significant difference (P < 0.05) between the RCE set and
the randomCDS set. Among them, the ETS class also
showed a significant difference between RCE and HCNE
sets (see Supplementary Table S3). Due to relatively small
number of RCEs, however, the observed differences are
not conclusive.

Protein domain content of RCEs. Since it can be envisaged
that the amount and distribution of the regulatory
sequence that can be accommodated in an overlap with
protein-coding information will depend on evolutionary
constraints on the underlying protein sequence, we
investigated whether any of the known protein domains
or types of domains were prevalent in overlap with RCEs.
In total, half (19 out of 38) RCEs were found to overlap
partially or completely with one or two out of 21 protein
domains from the Pfam database with significant E-value
(E<0.001) (‘Materials and methods’ section and
Supplementary Table S4). Based on this limited sample,
there does not seem to be a preference for a particular
protein domain to host overlapping regulatory regions.

Effect of RCEs on the K,/K, ratio of the underlying
protein-coding sequence

The ratio of the rate of non-synonymous substitutions
(K,) to the rate of synonymous substitutions (Kj) is
frequently used as an indicator of selection pressure
acting on protein-coding genes. To investigate to which
extent the RCE regions have influenced the fate of its
host bystander gene, we compared the K,/K; ratios (also
denoted ® or dN/dS) for each RCE host gene to the target
gene and a randomly chosen bystander gene from the cor-
responding GRB (‘Materials and Methods’ section). For
any given pair, a K,/K; < 1 is indicative of purifying selec-
tion and a K,/Ks> 1 is consistent with positive selection
(36,37).

freq(%)

RCE (p-value: 3.9e-08)

RCE hostgene (p-value: 8e-04 )

RCE host gene (excl. RCE) (p-value: 0.02)
background set

OEEm

Nucleotide distance (JC69 model)

Figure 3. Nucleotide distance of 4D sites. Histogram of nucleotide distances of RCE 4D sites (red line), RCE host gene 4D sites (green line), RCE
host gene excluding the RCE (blue line), and the 4D sites from 1000 randomly selected human:mouse orthologous gene pairs (grey line). The P-value
in the legend represents the significant difference level between the corresponding set and the random background set.



Since target genes of long-range cis-regulation most
often  encode transcription factors and  other
development-related genes with clear orthologs of related
function present across Metazoa (38), one might expect
them to be more constrained and to have stronger selec-
tion pressure on them than the other genes in the corre-
sponding GRB. For a gene with an exonic region
doubling as a regulatory element (e.g. RCE host gene),
one expects that the additional constraint would give rise
to a stronger purifying selection, which is eventually
reflected in a lower K,/K, ratio. Indeed, we found that
the K,/K values were 3.7-fold lower for target genes
when compared to randomly chosen bystander genes
(P =3.4x 1073, Wilcoxon test), but only 1.6-fold lower
than for bystander genes containing RCEs (P = 0.1,
Wilcoxon test) (Table 3, Supplementary Figure S5A).
We also compared the distributions of conservation
scores, and again observed differences (P = 6.0 x 107°)
for random bystanders versus target genes, but not for
RCE host genes versus target genes (P = 0.3, Wilcoxon
test) (Table 3, Supplementary Figure S5B).

We did not observe any overall significant difference in
either in K,/Kj ratio or in conservation score between the
19 RCE host genes and other, randomly sampled,
bystander genes. However, there was a trend for enrich-
ment of low K,/K; ratios (for example, K,/K,;<0.17, see
the dotted gray line in Supplementary Figure S5A) for
RCE host genes, compared with randomly chosen
bystander genes. As the K,/K ratio drops (stronger
purifying selection pressure), the RCE host genes, unlike
other bystander genes, show a composition of constraints
similar to that observed for target genes. This biphasic
property of the bystander genes indicates that they
probably represent a mix of constrained (regulatory
element overlapping) and non-constrained cases.

Chromatin signature evidence for RCE function

From the evolutionary behavior of RCE regions, it
appears likely that they do have a cis-regulatory role,
even if they are not independent enhancers. To probe
further into data supporting that the RCEs are regulatory,
we looked for epigenetic marks that are hallmarks for
enhancers: p300 (39), H3K4mel (in absence of
H3K4me3) (40), and also for CTCF binding sites (41).
Several recent studies have used ChIP-Seq technology to
generate high-throughput data for these markers;
currently, data are available only for a handful of cell
lines/tissues, but helpful enough for a preliminary
analysis.

We found support for 13 of the RCEs to have epigenetic
signatures of enhancers, with no conflicting epigenetic

Table 3. RCE host genes and random bystander genes
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marks that we could find (Supplementary Table S5).
Among them, eleven RCEs were found to overlap with
enhancers predicted by the presence of H3K4mel in the
absence of H3K4me3 (see Supplementary Figure S6A for
example cases in gene RPS6KC]).

To make sure that this observation is indicative of
enhancer activity of the RCEs, we verified to which
extent the overlapping of tissue- or cell-type-specific
chromatin enhancer marker(s) is a general feature of
developmental enhancers. We checked the p300 sites
overlapping with known developmental enhancers from
the VISTA Enhancer database (42), which contains
human non-coding conserved fragments whose enhancer
activity was tested experimentally in 11.5day mouse
embryos. Out of 496 positive enhancers in the database
(as of 25 September 2009), 202 (40.7%) were found to
overlap with p300 sites in at least one of the three embry-
onic tissues (limb, midbrain, and hindbrain) in which p300
binding was determined by ChIP-seq (39). This indicates
that the tissue-specific p300 enhancer data can be used for
a general enhancer verification purpose on large enough
collections of elements. We also found that 33.7% (167
out of 496) VISTA enhancers overlapped with regions
marked by H3K4mel (in the absence of H3K4me3), a
pattern argued to denote enhancers active in a specific
cell type [see ref. (40)]. This indicates that, on the whole,
the patterns appear to be different between cell types, but
not necessarily that each mark is present exclusively in one
cell type.

To investigate whether the overlap of RCEs with p300
and H3K4mel/-H3K4me3 marks was greater than
expected by chance, we compared the RCEs with several
background sets using a random sampling approach. We
extracted all human exons (from Ensembl protein-coding
genes, ‘exons.all’) and divided them into two groups
(‘exons.inGRB’ and ‘exons.outGRB’), depending on
overlap with any of the GRB loci used in this study
(‘Materials and methods’ section). We randomly
sampled 1000 exons from each of the sets (exons.inGRB,
exons.outGRB and exons.all) and computed how many
overlapped with at least one of the enhancer markers
[p300 from Visel et al. (39), H3K4mel in the absence of
H3K4me3 from Heintzman et al. (40)]. We repeated the
random sampling 10 000 times and compared the distribu-
tions of overlapping percentages for each set. A
significantly higher fraction of exons in GRBs overlap
with those regions, compared to the other two sets
(Figure 4, sampling P<10%" in both comparisons,
Wilcoxon tests). This is consistent with enhancers being
enriched in GRBs, compared to the rest of the genome.
But, in addition, it suggests that epigenetic marks

Target gene RCE host gene P-value Random bystander gene P-value
Median K,/Kj ratio 0.048 0.062 0.1 0.153 0.003
Median conservation score (%) 90.2 88.5 0.3 85.2 0.060

Human:mouse K,/K; and conservation scores for RCE host genes and random bystander genes compared to target genes from the corresponding
GRBs. P-values for the comparisons were computed by a paired Wilcoxon test.
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indicative of enhancer function also overlap with coding
sequence, and more often so in GRB regions. This overlap
is even more pronounced if we consider only the RCE
subset of exons, where our evolutionary analysis indicated
overlapping coding and non-coding function. A total of
8 out of 38 (21%) of RCEs overlap with enhancer marks
(Figure 4). This is much higher than the maximum value
(~8%) observed for the ‘exons.inGRB’ set, and reveals
that the RCE set has a significant over-representation of
characteristics that indicate enhancer function, compared
to other exonic regions.

To further demonstrate the over-representation of
enhancer marks in RCEs, we compared the fraction of
RCEs overlapping with H3K4mel (but not H3K4me3)
to that of HCNEs. Many HCNEs were found to act as
enhancers (about 50% based on conservation only and
practically all where the conservation was accompanied
by p300 binding (39). We took 12 HCNE datasets from
Ancora (17) with different sequence identity thresholds
between human and other four species (mouse, dog,
chicken and zebrafish, Supplementary Figure S7). For
each set, we computed the percentage of HCNEs in
GRB regions overlapping with H3K4mel. The percent-
ages ranged between 8.0% and 10.4%, with a mean of
9.7%. The RCE set had an even higher percentage of
H3K4mel marks (15.8%) than any of the HCNE sets.
This adds further evidence in favor of the hypothesis
that many RCEs act as enhancers in a manner equivalent
to the neighboring HCNEs in GRBs.

Transgenic evidence for the enhancer activity of ELP4
RCE1 and its zebrafish exonic remnant

While systematic tests for RCE activity are unavailable, a
larger 700bp zebrafish region containing the exonic
remnant of one of our RCE elements (RCEl) was
recently tested for enhancer activity by Kleinjan et al.
(43). In their study of subfunctionalization of duplicated
zebrafish pax6 genes (pax6a and pax6b) by cis-regulatory
divergence, they tested an HCNE-containing region
(labeled E60A) next to pax6a without noting that it
contains an exonic remnant of the bystander gene elp4.
E60A drove expression in optic cup and forebrain,

which are both parts of the expression pattern of the
target gene PAX6 [Figure 5 in ref. (43)]. The result is
interesting, but not conclusive regarding the role of the
RCE sequence: the E60A fragment contains an HCNE,
an exonic remnant, and another conserved region (Figure
5A), making it difficult to say which one is the core regu-
lator to drive the expression pattern, or if they perform the
regulatory function cooperatively. To examine the role of
the RCE, the region was tested at a higher resolution:
several independent transgenic lines for each sequence
tested using the reporter method proven to be efficient
and reliable for identifying vertebrate enhancer activity
(27). While the exact RCE sequence (PAX6 hsE2)
resulted in strong, but inconsistent expression patterns,
the sequence extended to cover the flanking intronic
HCNE (PAX6_hs4), labeling as PAX6_hsE2L in Figure
S5A, drove reporter expression with high specificity and
reproducibility in the retina and telencephalon, domains
of the PAX6 gene endogenous expression (Figure SB-E).
The flanking intronic part of the overall conserved
sequence alone did not show any enhancer activity in
zebrafish. The result demonstrates that the RCE is an
integral part of the regulatory element in question that is
necessary, but not sufficient, to drive part of the PAX6
expression.

The enhancer function of RCEI1 is additionally sup-
ported by a large p300 binding site [forebrain/midbrain
but not limb, mouse data from Visel ez al. (39)] that coin-
cides with the neighboring HCNE (PAX6_hs4, the region
that did not drive expression on its own), but does not
extend to cover the HCNEs immediately adjacent to the
elp4 exon or the exon itself. (For the available cell lines,
there are no signals for any of the chromatin state markers
we examined in this region.)

RCEs inferred from the early vertebrate (2R) WGD

It has long been hypothesized that the increased complex-
ity and genome size of vertebrates has resulted from (now
firmly established) two rounds (1R and 2R) of WGD
occurring in early chordate/vertebrate evolution, providing
the requisite raw materials for the developmental regula-
tory networks of higher complexity (44). By plotting the



A Scale 1 kot

chrit: 31741500 |

PAX6_hsE2L

PAX6_hsE2 I

ELP4
ELP4
Human ESTs That Have Been Spliced

Spliced ESTs.
Vertebrate Multiz Alignment & Conservation (44 Species)
2 Vertebrate Basewise Conservation by PhyloP

Vertebrate Cons

0.3
Zebrafish (July 2007/danRer5) Chained Alianments

Nucleic Acids Research, 2010, Vol. 38, No.4 1081

Figure 5. Transgenic experimental evidence for one RCE element. (A) Screenshot from the UCSC browser (hgl8) showing sequences tested, and
results from the zebrafish enhancer assay (PAX6_hsE2L—specific, PAX6_hsE2—variable, PAX6_hs4—unspecific). Other tracks visualize UCRs (51),
enhancer test results from the VISTA Enhancer browser (4) and an in silico PCR mapping of the sequence E60A tested by Kleinjan er al. (43). (B-E)
Zebrafish transgenic lines expressing EGFP driven by PAX6_hsE2L. (B) Lateral view, 1dpf; (C) ventral, 1dpf; (D) lateral, 2dpf; (E) ventral, 2dpf.

genomic map positions of only the subset of paralogous
genes that were duplicated prior to the fish—tetrapod split,
Dehal et al. (45) showed that their global physical organi-
zation provides unmistakable evidence of two distinct
genome duplication events early in vertebrate evolution
indicated by clear patterns of four-way paralogous
regions covering a large part of the human genome.

By analogy with the 3R (teleost WGD), exonic
remnants revealing RCEs could have arisen in earlier
WGDs as well, although most would be expected to
have diverged beyond recognition by present day.
However, for a number of large GRBs with the highest
density of HCNEs [e.g. MEISI/MEIS2 IRXa/IRXb
clusters, (1)] there are still paralogous HCNEs with detect-
able similarity at the sequence level. We analyzed 2R
paralogous loci for exonic remnants equivalent to those
in zebrafish; in the 2R case, however, the RCEs should be
present in all jawed vertebrates, including human
(Supplementary Figure S7A). Using the UCSC selfChain
data in human genome (hgl8) (15), we investigated all
possible paralogous GRBs and extracted all alignable
regions that are exonic in one locus, but non-exonic in
the other paralogous locus. We defined them as ancient
RCEs, which are candidates for regulatory coding
elements originating before the 2R WGD. We estimated

the minimal GRB region by union of all human:teleost
synteny blocks, which is expected to be smaller than the
minimal synteny block size between human and pre-2R
chordates (e.g. lamprey, a jawless vertebrate with a
pre-2R WGD common ancestor with human).

We found three ancient RCEs in bystander genes by
checking the alternative loss of coding property for the
selfChain regions in the GRB regions for each paralogous
target gene pair. Each of them overlaps an exonic region
of a bystander gene, but its paralogous region in the
human genome is not coding any longer. For example,
the synteny block of SP3-CDCA7 is paralogous to that
of SP4-CDCA7L (Supplementary Figure S7B), also sup-
ported by Ensembl phylogenetic tree for both SP3
and CDCA7 protein family (Supplementary Figure S8).
Their chain alignment to lamprey shows that they both
align to the same region of lamprey (Supplementary
Figure S7B), which also reveals that the paralogous rela-
tionship is the result of the 2R WGD. DNAHII, a
bystander gene located between SP3 and CDCA7, does
not have a paralog in the intergenic region of SP4-
CDCA7L block; however one of its exonic regions (chr7:
21569357-21570551 in Table 4) is found to align well to a
non-coding region (chr2:174454487-174455587) between
SP4 and CDCA7L. We predicted this non-coding region



1082 Nucleic Acids Research, 2010, Vol. 38, No. 4

Table 4. RCEs predicted in early vertebrate WGD

Target gene 1 RCE 1 coordinates Host gene 1 Target gene 2 RCE 2 coordinates Host gene 2
SP4 chr7:21569357-21570551 DNAHI1 SP3 chr2:174454487-174455587 N/A
MEIS2 chr15:34723710-34724239 Cl5orf41 MEISI chr2:67348036-67348590 N/A
BARHL? chr1:92478271-92479605 Clorf146 BARHLI chr9:134560677-134561963 N/A

RCEs predicted to have originated from early vertebrate (2R) WGD. The coordinates are based on UCSC human genome hgl8.

to be an exonic remnant left from rediploidization
after 2R WGD. The other two cases of the exonic
remnants are also found in bystander genes of the
MEISI/MEIS2 (gene ClSorf41), and BARHLI/
BARHL?2 (gene Clorfi46) GRBs (Table 4). Even though
the function of the latter two bystander genes is unknown,
their protein sequence is conserved across all vertebrates.

We also found that the paralogous counterpart for one
of these RCEs overlaps with the enhancer epigenetic marks
mentioned above. The bystander gene Cl5orf41 in the
GRB of MEIS2 has lost its paralogous gene in the
‘sister” MEIS] GRB, but one of its exons is still retained
and conserved along most vertebrates (Supplementary
Figure S6B). A strong signature of H3K4mel binding (in
the absence of H3K4me3) suggests it functions as part of
an enhancer. Prediction data of regulatory potential (46)
also suggests this is a regulatory element (the light blue
track in Supplementary Figure S6B).

DISCUSSION

Using a hypothesis-driven comparative genomics
approach, we detected a number of exonic remnants
which, prior to the WGD in the teleost lineage, were
likely bifunctional-—coding exons doubling as regulatory
elements or parts thereof. We corroborated this observa-
tion by showing evidence that the corresponding exons in
mammals are still under both coding and non-coding
selection pressure. The non-coding pressure was indicated
by their significantly decreased nucleotide substitution
rates and nucleotide distances of synonymous sites,
when compared to neutrally evolving and protein-coding
regions in the same genomic regions.

The idea that some coding exons might be under a com-
bination of coding and noncoding selection pressure has
recently received some attention. Xing and Lee (47,48)
demonstrated that non-coding selection pressure can
distort K,/K, values, making the metric unsuitable for
annotating some exons in the genome or estimating the
functional significance of amino acid residues encoded by
them. More recently, several different probabilistic models
were suggested for exons under different modes of selec-
tion pressure (4,19,49).

In particular, many facultative (occasionally skipped)
exons were shown to have a high conservation of synon-
ymous sites (50,51), presumably because the coding infor-
mation is overlapped by regulatory inputs governing
inclusion or skipping of these exons during splicing.
However, under our model, this explanation for the
noncoding conservation component is implausible since
we explicitly detected exon remnants that lack evidence
for being transcribed in zebrafish according to the

UCSC genome browser ‘known zebrafish spliced ESTs’
and mRNA annotation (accessed 22 May 2009,
‘Materials and Methods’ section).

These observations imply that additional (non-coding)
purifying selection pressure acts on RCE regions. This
does not necessarily mean that all RCEs in our set have
been subject to evolutionary constraint throughout the
~500 Myr separating humans and zebrafish from their
last common ancestor. While it is possible that some
exonic remnants are indeed wholly or partly unannotated
non-coding RNA, and others may have more recently lost
their protein-coding ability, the available sequence
evidence—including the absence of most of the other
exons of the ancestral gene, frequent disruption of ances-
tral splice sites, and lack of EST support—indicate that
this is a highly unlikely explanation for the majority of
detected cases.

If the RCE regions have been subject to extra purifying
selection from non-coding functional components, what is
their function? Like the HCNEs that function as
long-range regulatory sequences for their target gene(s)
(2,5), the RCE regions appear to be part of the same
array of conserved elements around a target gene respon-
sive to long-range developmental regulation. Many of
those elements have been shown to possess enhancer
activity [from 50% in mouse (4,42) to close to 80% in
zebrafish reporter assays (27,52)]. The conservation of
detected RCEs often extends significantly into one or
both of the flanking introns in tetrapod genomes, which
indicates that the whole region must have been recruited
into its non-coding function at some point. It was appar-
ently not an obstacle that (part of) it coded for a func-
tional part of a protein (Supplementary Table S4). This
does not necessarily suggest that the entire lengths of
exons that gave rise to RCEs, or that their—still
exonic—orthologs in tetrapod are regulatory—the most
we can claim without additional evidence is that the part
of the ancestral exon that has been retained as an exonic
remnant in zebrafish most likely has regulatory function.

Overlap between coding and regulatory sequence has
been observed in genomes of bacteria (53) and viruses
(54-57), and was explained as a way to minimize
genome size. For vertebrates, where protein-coding
regions make up only a small percentage of the genome,
coding + regulatory overlap is not likely to be a
space-saving strategy. Even so, the number of reported
individual cases of such arrangements is growing. An
early study revealed that interaction of transcription
factor B-Myb with HSSS (a hypersensitive site mapped
to exon 2 of the Bcl-2 gene) may enhance Bcl-2 gene
expression by cooperating with its promoter (58).
Barthel and Liu (59) computationally identified a



regulatory region associated with the gene ADAMTSS
that encompasses the entirety of the essential coding
exon 2. The APOE gene was also found to contain an
enhancer in its coding region for the E4 allele, which is
associated with Alzheimer’s disease (60).

In this work, we did not attempt to find the RCEs
overlapping the exons of the GRB target genes, since
they cannot be detected as exonic remnants under
non-coding selection. However, the high density of
HCNE:s in introns of target genes, as well as low rate of
synonymous substitution at many of their exons indicates
that exons of GRB targets might often overlap their own
regulatory elements. The recently reported ultraconserved
element in Hoxa2 (10) is one example of this. On the other
hand, even though exons can be targets of RNA-mediated
posttranscriptional regulation (10,61), this type of regula-
tion requires the RCE to be transcribed, which cannot
explain the selection pressure on isolated and apparently
un-transcribed exonic remnants studied in this article.

Our results add support to the idea that HCNEs were
recruited from existing sequences within regulatory reach
of their target genes. A recent study demonstrated that a
large number of repeat elements in regions that we now
know as GRBs are also undergoing purifying selection (7).
These findings should provide an incentive to test experi-
mentally the detected exon remnants in zebrafish and their
orthologs in human for the presence of enhancer activity.
Suitable test systems exist in zebrafish (62), medaka (63)
and mouse (4). If proven able to drive expression in a
spatiotemporal pattern that recapitulates a subset of
expression patterns of the neighboring gene, this would
mean that we have to modify our view of both how
protein sequences evolve and where to look for regulatory
elements in vertebrate genomes. For protein sequences, it
would mean that the non-coding component might mask
the effect on selection at the protein level to an extent
where it might be difficult to draw conclusions about func-
tional importance of a part of a protein sequence based on
its evolutionary conservation. For regulatory information,
this will demonstrate that these exons are an integral part
of the arrays of HCNEs, and that the non-coding compo-
nent of the selection pressure that acts on them is equiv-
alent to the pressure that kept HCNEs highly conserved
for hundreds of millions of years. It would also suggest
that the bystander genes were in place (i.e. in synteny to
the neighboring HCNE target) before the HCNEs them-
selves appeared.
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