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The development of the nervous system is a time-ordered and multi-stepped process that
includes neurogenesis and neuronal specification, axonal navigation, and circuits
assembly. During axonal navigation, the growth cone, a dynamic structure located at
the tip of the axon, senses environmental signals that guide axons towards their final
targets. The expression of a specific repertoire of receptors on the cell surface of the
growth cone together with the activation of a set of intracellular transducing molecules,
outlines the response of each axon to specific guidance cues. This collection of axon
guidance molecules is defined by the transcriptome of the cell which, in turn, depends on
transcriptional and epigenetic regulators that modify the structure and DNA accessibility to
determine what genes will be expressed to elicit specific axonal behaviors. Studies
focused on understanding how axons navigate intermediate targets, such as the floor
plate of vertebrates or the mammalian optic chiasm, have largely contributed to our
knowledge of how neurons wire together during development. In fact, investigations on
axon navigation at these midline structures led to the identification of many of the currently
known families of proteins that act as guidance cues and their corresponding receptors.
Although the transcription factors and the regulatory mechanisms that control the
expression of these molecules are not well understood, important advances have been
made in recent years in this regard. Here we provide an updated overview on the current
knowledge about the transcriptional control of axon guidance and the selection of
trajectories at midline structures.
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INTRODUCTION

The survival of organisms relies on their ability to detect stimuli, process sensory information
and generate adequate motor responses. These functions depend on the precise organization of
neural networks that enable communication between cells in an efficient and accurate manner.
These networks emerge during embryonic development when newly born neurons extend axons
away from the cell body to navigate through the developing embryo in order to reach their final
targets. The growth cone at the tip of the travelling axon is a specialized structure armed with a
plethora of receptors that defines the response of the growing axon to the environmental cues and
determines its direction. The existence of both commissural neurons that project to the opposite
side of the brain and ipsilateral neurons that connect with targets in the same hemisphere, is
essential for the distribution and integration of sensory information and the subsequent
generation of coordinated motor responses in species with bilateral symmetry (Colamarino
and Tessier-Lavigne, 1995). Intense research during the last few decades focused on how
ipsilateral and contralateral axons behave at the midline in different species and contexts has
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lead to the identification of many families of cues, receptors,
and signaling cascades involved in axon pathfinding. Post-
transcriptional mechanisms such as the microRNA-dependent
regulation of guidance receptors (Yang et al., 2018), the
regulation of local translation in axons (Zhuang et al., 2019;
Corradi and Baudet, 2020), the role of lipids in axon guidance
(Guy and Kamiguchi, 2021), novel ways of presenting guidance
proteins (Dominici et al., 2017; Moreno-Bravo et al., 2017;
Varadarajan et al., 2017; Wu et al., 2019; Dorskind and
Kolodkin, 2021), interactions between different families of
receptors (Zelina et al., 2014) or the targeted degradation of
ligands or receptors (Gorla et al., 2019), all contribute to
guarantee proper axon guidance progression and today we
know that aberrant expression of axon guidance proteins or
alterations in any of these mechanisms may result in a wide
variety of neurodevelopmental diseases (Engle, 2010; Izzi and
Charron, 2011; Nugent et al., 2012; Chédotal, 2014; Blockus
and Chédotal, 2015; Van Battum et al., 2015; Roig-Puiggros
et al., 2020). Despite these remarkable advances on the
molecular mechanisms underlying axon guidance processes,
current knowledge about the transcription factors (TFs) and
the regulatory networks that orchestrate the expression of
guidance molecules is still very limited (Butler and Tear,
2007). Here we provide an updated overview of the
transcriptional mechanisms that control axonal trajectories
during embryonic development paying particular attention
to the navigation of neural axons at midline structures.

Identification of Regulatory Factors
Controlling Axon Guidance
Pioneer work on Drosophila initially identified a number of TFs
involved in controlling the trajectories of motoneurons (MNs)
axons towards their correspondingmuscles and, subsequent work
in vertebrates, revealed some of the transcriptional regulators that
define specific limb muscles innervation (Landgraf et al., 1999;
Keleman and Dickson, 2001; Dasen et al., 2003; Fujioka et al.,
2003; Broihier et al., 2004; Dasen et al., 2005; Labrador et al., 2005;
Garces and Thor, 2006; Layden et al., 2006). Further studies in
vertebrates proposed that combinatorial codes of LIM proteins
specify different MN trajectories and these TFs control the
expression of specific axon guidance receptors from the EphA
family to define MN trajectories to the different limb regions
(Tsuchida et al., 1994; Sharma et al., 1998; Thor et al., 1999; Kania
et al., 2000; Kania and Jessell, 2003; Shirasaki et al., 2006). In
addition, another member of the homeobox TF family, Nkx2.9,
was described to control the expression of the Slit receptor Robo2
and promote dorsal axon exit from the spinal cord in vertebrate
spinal accessory MNs (Dillon et al., 2005; Bravo-Ambrosio et al.,
2012).

Subsequently, other families of TFs have been associated
with determining axonal trajectories in different neural
circuits. For instance, the POU-domain TF Acj6 (abnormal
chemosensory jump) was described as essential for the
targeting of olfactory projection neurons in Drosophila
(Komiyama et al., 2003), and Pou4f2, another member of
the POU-family (aka Brn3.2 or Brn3b), seems to play an

important role in the specification and pathfinding of
retinal ganglion cell (RGC) axons (Erkman et al., 2000;
Wang et al., 2000). Also in the visual system, members of
the FOX family (FoxG1 and FoxD1) regulate the expression of
the ephrinA receptors to determine the termination of retinal
projections along the anterior-posterior axis at the visual
targets (Herrera, 2004; Carreres et al., 2011). In the mouse
cortex, the zinc-finger TFs Fezf2 and Ctip2 direct the
projections of layer 5 corticospinal axons towards
subcortical regions (Arlotta et al., 2005; Bin Chen et al.,
2005; Jie-Guang Chen et al., 2005; Molyneaux et al., 2005;
Lodato et al., 2014) and Ctip2 together with Satb2 control the
formation of the corpus callosum (Srivatsa et al., 2014). In
both vertebrates and invertebrates the Run-containing
domain TFs control specific axonal trajectories since
missexpression of Runt in Drosophila photoreceptors
results in axons targeting the medulla instead of the lamina
(Kaminker et al., 2002) and alterations in the levels of Runx3
shift the laminar termination of somatosensory neuron axons
along the dorsoventral axis of the mouse spinal cord (Chen
et al., 2006).

In addition to the abovementioned examples, two neuronal
populations have been particularly useful to study the molecular
mechanisms underlying axon pathfinding: spinal neurons at the
time their axons navigate the floor plate, and retinal ganglion cells
when their axons traverse the optic chiasm. In the following
sections we review recent findings on the transcriptional
regulation of neuronal trajectories using these two classic
midline axon guidance models.

Transcriptional Regulation of Axon Midline
Crossing
The population of early born interneurons located in the most
dorsal part of the spinal cord is known as dI1. As soon as dI1
neurons differentiate, they migrate ventrally to finally occupy the
deep dorsal horns (Junge et al., 2016). A large number of reports
studying this neuronal population have contributed to the current
knowledge of how axons are attracted/repelled by guidance cues
and their receptors [for recent reviews see (Chédotal, 2019;
Comer et al., 2019)] and investigations on these neurons have
also provided major insights into the regulatory mechanisms
controlling axon guidance. There are two main subtypes of dI1
neurons: a population that occupies the medial intermediate
spinal cord and project contralaterally (dI1c) and another
cluster of cells that settle in the lateral intermediate spinal
cord and avoid the floor plate to project ipsilaterally (dI1i).
Both subtypes are derived from progenitor cells expressing the
bHLH TF Atoh1 (Helms and Johnson, 1998, 2003; Lee et al.,
1998; Helms et al., 2000; Gowan et al., 2001; Saba et al., 2005).
Atoh1 induces the expression of the homeobox TFs Groucho co-
repressors Barhl1 and Barhl2 (Bermingham et al., 2001; Saba
et al., 2005; Reig et al., 2007) that are expressed in both dI1i and
dI1c. Gain-of-function experiments showed that Barhl1
overexpression results in ectopic expression of Robo3, Nrp2
and DCC, and promotes midline crossing (Kawauchi et al.,
2010). Using a similar approach, it was shown that Barhl2 also
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promotes a commissural phenotype and that Barhl2
overexpression leads to the induction of the adhesion molecule
Tag-1 (Saba et al., 2003).

On the other hand, it has been reported that Atoh1 induces the
expression of the LIM homeodomain TFs Lhx2 and Lhx9, either
directly or indirectly through Barhl TFs (Bermingham et al., 2001;
Gowan et al., 2001; Nakada, 2004). Barhl2 mutant mice exhibited
a shift in the position of dI1i neurons from lateral to medial
regions concomitant with a dramatic loss of ipsilateral projections
and an increased number of commissural axons, which agrees
with the observed aberrant upregulation of the homeodomain TF
Lhx2 in the dI1i neurons of these mice. In vitro, Barhl2 binds to
the regulatory sequences of Lhx2 and represses its expression
(Ding et al., 2012). Gain-of-function experiments have shown
that this TF is able to induce Lhx2 and another member of the
same family, Lhx9 in spinal neurons (Kawauchi et al., 2010).
Together these results suggest that Barhl2 represses Lhx2 in dI1i
neurons to block the commissural phenotype. Independent gain-
of-function experiments in the chick spinal cord suggested a role
for Lhx9 in dI1c axons after midline crossing in the control of
rostral turning and the dorsoventral positioning of axons in the
longitudinal plane (Avraham et al., 2009), but these two Lhx
factors seem to contribute to the diversification of dI1c and dI1i
subtypes at earlier stages of dl1 differentiation.

Both Lhx2 and Lhx9 are expressed in dI1c neurons whereas
dI1i neurons express only Lhx9 (Wilson et al., 2008). Single Lhx2
or Lhx9 mutant mice do not exhibit guidance phenotypes in dI1
neurons but commissural axons do not cross the midline in
double Lhx2/9 mutants, similarly to the phenotype observed in
Robo3 mutants (Sabatier et al., 2004). This pointed at Robo3 as a
downstream target of Lhx TFs (Wilson et al., 2008). Chromatin
immunoprecipitation (ChIP) assays in vitro and in vivo revealed
that Lhx2 binds the Robo3 promoter (Wilson et al., 2008; Marcos-
Mondéjar et al., 2012) and gain-of-function experiments in the
mouse spinal cord demonstrated that Lhx2 is capable of inducing
Robo3 (Kawauchi et al., 2010). All these experiments suggested
that the Lhx2/9-Robo3 cascade is the default program in dl1
neurons and this program needs to be repressed in order to
generate ipsilateral neurons. Supporting this idea, it was shown
that ectopic expression of Robo3 in dorsal spinal neurons
redirects ipsilateral axons towards and across the floor plate
(Escalante et al., 2013). Interestingily, another member of the
Robo family, Robo2, is differentially expressed in the dl1
subpopulations and, while dI1c projections are not affected in
Robo2 mutants, dl1i axons project aberrantly through the motor
neuron pool closer to the midline (Wurmser et al., 2021).
Additionally, different components of the Wnt signaling
pathway, including β-catenin and several Wnt receptors seem
to be also required for midline crossing in dl1c (Avilés and
Stoeckli, 2016).

Despite all this progress, it is difficult to reconcile a simple
linear cascade in the gene regulatory network (GRN) specifying a
commissural versus ipsilateral choice in dI1 neurons given the
complexity of the regulatory mechanisms linking Atoh1, Barhl1/
2, Lhx2/9 and downstream targets. Together with a more precise
definition of the GRN controlling the specification of dl1
subtypes, other questions such as whether Lhx TFs activate

other guidance receptors such as DCC, Robo2 or members of
the Wnt pathway, or whether Robo3 expression is regulated by
other homeodomain TFs in different types of commissural
interneurons remain to be answered.

In the mouse visual system, the majority of retinal ganglion
cell axons cross the ventral diencephalon at the optic chiasm level
(cRGCs) while a minority of these axons project to the ipsilateral
hemisphere (iRGCs). In this model, also largely used to study
axon guidance mechanisms, another member of the LIM
homeodomain TF family, Islet2 (Isl2), is differentially
expressed in the ipsi and the contralateral RGCs
subpopulations (Pak et al., 2004). Isl2 mutant mice show an
increased number of iRGCs at the expense of the cRGCs.
However, this only affects the subgroup of cRGCs that are
born in the ventrotemporal region of the retina at late
developmental stages and the targets of Isl2 to control the
projection of this late-born RGC population have not been
identified. The TF Pou4f1 (aka Brn3a) is also expressed in
cRGCs but not iRGCs (Quina et al., 2005) but its function in
axon guidance at the midline is still a matter of investigation.
Finally, other TFs implicated in the establishment of cRGCs
identity are the members of the SoxC family, particularly
Sox4, Sox11 and Sox12 (Kuwajima et al., 2017). SoxC proteins
bind to the Hes5 promoter to repress Notch signaling and induce
cRGCs differentiation. SoxC genes regulate the expression of
Plexin-A1 and Nr-Cam, which are required in cRGCs for correct
axonal decussation at the chiasm (Kuwajima et al., 2012). Also, an
ectopic ipsilateral projection is apparent in Sox4/Sox11/Sox12
triple conditional mutant mice (Kuwajima et al., 2017),
suggesting that these proteins may be repressing the
differentiation of iRGCs.

Transcriptional Regulation of Axon Midline
Avoidance
While the transcriptional regulation of midline crossing was
originally described in dl1 spinal neurons, the regulation of
axon midline avoidance was initially characterized in the
visual system. The zinc finger TF Zic2, expressed in ipsilateral
but not in contralateral RGCs, was reported as the main
determinant of iRGC (Herrera et al., 2003). The expression of
Zic2 and the generation of iRGCs in the ventrotemporal retina
depends, at least partially, on the expression of CyclinD2 in a
populatin of neural progenitors located at the ciliary margin zone
of the embryonic retina (Marcucci et al., 2016). Functional
experiments in mice initially demonstrated that Zic2 is
necessary and sufficient to induce the expression of the
tyrosine kinase receptor EphB1 that mediates axonal repulsion
throught its ligand ephrinB2 expressed by midline cells (Williams
et al., 2003; García-Frigola et al., 2008). The upregulation of
EphB1 by Zic2 in iRGCs was later confirmed by chromatin
immunoprecipitation assays followed by massive secuencing
(ChIP-seq) which also identified other Zic2 targets including
different members of the Wnt signaling pathway (Morenilla-
Palao et al., 2020). In agreement with previous observations in
spinal dl1c neurons (Avilés and Stoeckli, 2016), loss-of-function
experiments in RGCs demonstrated that β-catenin is essential also
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for midline crossing in visual axons. Further functional experiments
ruled out the canonicalWnt pathway as a regulator of axon guidance
at the midline and demonstrated that, while contralateral axons
enhance their growth upon Wnt5a exposure, ipsilateral axons
collapse in response to Wnt5a, suggesting that a non-canonical
Wnt signaling pathway mediates midline crossing. ChIP-Seq assays
in RGCs also demonstrated that the differential response of ipsi- and
contralateral visual axons toWnt5a is regulated by binding of Zic2 to
the regulatory regions of specific Wnt receptors and other Wnt
signaling components such as Apc2. The induction of Zic2 results in
the accumulation of β-catenin which is potentially phosphorylated
by EphB1 at the growth cone after contact with ephrinB2 at the
midline (Morenilla-Palao et al., 2020). Another component of the
Zic2-controlled program is the Netrin receptor Unc5c. Unc5c is
expressed in a subset of cRGCs that transiently project to the
opposite retina during early postnatal stages. Netrin1 is expressed
in the ventral diencephalon to impede the growth of these retino-
retinal axons into the optic chiasm. In iRGCs, Zic2 binds to
regulatory regions near the Unc5c locus and represses its
expression in order to facilitate their growth into the diencephalic
region (Murcia-Belmonte et al., 2019) (Figure 1). Thus, Zic2 binds to
the regulatory regions of many genes, including EphB1, different
components of the Wnt pathway and Unc5c, to specify iRGCs and
regulate their guidance at the midline.

The positive correlation between the number of ipsilateral
axons and the expression of Zic2 in the retina of different species
pointed to this TF as a determinant of iRGCs identity across
evolution. In addition to being expressed in the developing
mouse retina, Zic2 is expressed in ferrets in a larger retinal area
that coincides with the zone occupied by iRGCs in this species.
In humans, Zic2 and EphB1 are both expressed in the temporal
half of the retina also coinciding with the location of iRGCs and,

in Xenopus, Zic2 is expressed in the retina during
metamorphosis when a late-born ipsilateral projection is
generated. However, in zebrafish and chicken Zic2 is not
expressed in RGCs during development and accordingly
these species lack an ipsilateral projection (Herrera et al.,
2003; Lambot et al., 2005; Murcia-Belmonte et al., 2019;
Vigouroux et al., 2021). Interestingly, ectopic expression of
Zic2 in zebrafish RGCs leads to the appearance of an ectopic
ipsilateral projection (Vigouroux et al., 2021), revealing that
Zic2 is able to activate a transcriptional module that controls
midline avoidance even in species that naturally lack an
ipsilateral projection. Recent reports have shown that non-
teleost bony fish also have an ipsilateral retinal projection
(Vigouroux et al., 2021) but the function of this projection is
still unknown and future experiments are needed to uncover
this question and also to dilucidate the regulatory mechanisms
that control this ancient ipsilateral projection.

Further functional experiments in chick and mice
demonstrated that Zic2 does not only determines axon
midline avoidance in the visual system but also in other types
of ipsilateral neurons such as the thalamocortical projections and
the late-born population of excitatory interneurons (dILB)
located in the dorsal horns of the spinal cord. dILB neurons
are born very close to the dorsal midline (Alaynick et al., 2011;
Gross et al., 2002; Helms and Johnson, 2003; Lewis, 2006; Müller
et al., 2002; Petkó and Antal, 2012). These cells but not their
inhibitory counterpart dILA neurons that project locally and
contralaterally (Escalante and Klein, 2020; Tulloch et al., 2019),
express Zic2 which, in turn, is necessary and sufficient to define
their ipsilateral trajectory (Escalante et al., 2013) (Figure 2).
Chromatin immunoprecipitation experiments in a cell line and
in spinal neurons, demonstrated that Zic2 is able to bind to the
promoter of another Eph receptor, EphA4. Further functional
experiments in chick and mice also confirmed that, instead of
regulating EphB1 as in the visual system, in spinal neurons Zic2
controls the expression of EphA4 (Escalante et al., 2013; Luo et al.,
2015; Morenilla-Palao et al., 2019). As EphB1, EphA4 binds to
ephrinBs to mediate axon repulsion and it has been shown that
ephrinB1, ephrinB2 and ephrinB3 are all expressed at the spinal
cord midline (Kullander et al., 2001; Kullander et al., 2003;
Escalante et al., 2013; Paixão et al., 2013; Klein and Kania,
2014; Haimson et al., 2021).

All together, these observations point to the existence of
several gene programs that control axonal laterality in
ipsilateral spinal neuron populations with dispar ontogeny.
Early born dl1 neurons locate far away from the midline
because the ventricle and the subventricular zone (SVZ),
which is rich in progenitor cells, occupy the medial region of
the dorsal tube. As progenitors exit the cell cycle, the SVZ shrinks
and the somas of the late born dILB neurons locate close to the
midline. In contrast to the dl1i population whose axons never
approach the midline and their projection patterns rely on Lhx
factors, dILB neurons are born in close contact with the midline
and their axons need to be repelled as soon as they start growing
in order to project ipsilaterally. Thus, it is not surprising that
although both populations, dI1i and dILB neurons project
ipsilaterally, they developed alternative strategies to control the

FIGURE 1 | Transcriptional control of ipsilateral trajectories in the visual
system. The TF Zic2 controls the trajectory of ipsilateral RGC axons through
the transcriptional upregulation of the tyrosine receptor EphB1, which in turn
mediates repulsion from glial cells at the midline that express ephrinB2.
Concomitantly, Zic2 induces the expression of several Wnt receptors and
cytoplasmic proteins to inhibit the attractive response towards Wnt5a -also
expressed at the midline-experienced by contralateral RGCs. Zic2 also
represses the expression of the Netrin1 receptor Unc5c in iRGCs to allow
axon growth through a Netrin1-expressing area at the chiasm.
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guidance of their respective axons (Escalante et al., 2013)
(Figure 2).

CONCLUSION

Despite the increasing number of rapidly emerging innovative
techniques that largely facilitates research on the transcriptional
mechanisms regulating gene expression, only a handful of TFs
have been convincingly shown to control genetic programs
involved in the regulation of axonal behaviors. In the last
decade, the interest to understand how neural circuits function
has exponentially increased and the development and application
of genetically encoded, magnetic and thermal tools to manipulate
neuronal circuits is helping us to disentangle brain connectivity
and circuits function. However, it is surprising that in the era of
next generation sequencing and single cell transcriptomic
approaches (Escalante et al., 2020) there are still very few
studies taking advantage of these technologies to elucidate the
genetic programs that precisely control the definition of axonal
trajectories. Incorrect circuit wiring during embryonic
development may have a huge impact in the adult individual
and we are still far from understanding how circuits are built in
the first place. Future efforts devoted to understand the regulatory
logic underlying neuronal trajectories will certainly contribute to
prevent pathologies derived from neural circuits miswiring.
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FIGURE 2 | Axon guidance strategies in different subtypes of spinal cord neurons. dI1 neurons are born early in neural tube development and are separated from
the midline by the subventricular zone, populated by progenitor cells. Expression of Lhx2 in dl1 neurons activates a contralateral program, in part through the
upregulation of Robo3. Ipsilateral dI1 neurons do never confront midline cues and project their axons into the ipsilateral lateral funiculus, likely through
the expression of Robo2 and possibly mediated by Lhx9. Later, by the time that dILB neurons are born, progenitor neurons have already differentiated and
postmitotic neurons distribute at both sides of the dorsal midline. In this scenario, EphA4 and likely other guidance molecules, are controlled by Zic2 to ensure midline
repulsion and ipsilateral projection through the dorsal and lateral funiculi. These TFs are downregulated following development and are not expressed in adulthood.
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