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ABSTRACT
Phosphorylation exerts a crucial role in multiple biological cellular processes which

is catalyzed by protein kinases and closely related to many diseases. Identification of

kinase–substrate relationships is important for understanding phosphorylation and

provides a fundamental basis for further disease-related research and drug design.

In this study, we develop a novel computational method to identify kinase–substrate

relationships based on multiple kernel learning. The comparative analysis is

based on a 10-fold cross-validation process and the dataset collected from the

Phospho.ELM database. The results show that ksrMKL is greatly improved in

various measures when compared with the single kernel support vector machine.

Furthermore, with an independent test dataset extracted from the PhosphoSitePlus

database, we compare ksrMKL with two existing kinase–substrate relationship

prediction tools, namely iGPS and PKIS. The experimental results show that

ksrMKL has better prediction performance than these existing tools.
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INTRODUCTION
As one of the most essential and widespread post-translational modifications in

eukaryotes, phosphorylation exerts a crucial role in multiple biological cellular processes

which includes regulation of metabolism, DNA repair, gene expression, membrane

transport and cellular differentiation (Hunter, 2000; Schlessinger, 2000; Trost & Kusalik,

2011). Phosphorylation activities are catalyzed by protein kinases that regulate a variety of

cellular processes, most of which are related to diseases (Hunter, 2000; Manning et al.,

2002; Trost & Kusalik, 2013; Zhou et al., 2004). Recent studies (Sharma et al., 2014) show

that more than 70% of all proteins (substrates) in human can be catalyzed by protein

kinases. Moreover, abnormal activity of protein kinases often causes disease by altering the

phosphorylation of substrate proteins, especially in cancer, where protein kinases regulate

various cellular processes including movement, apoptosis and cell growth (Bajpai, 2009;

Manning et al., 2002; Singh et al., 2005). Therefore, identification of protein kinases

responsible for phosphorylation contributes to a better understanding of potential
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molecular mechanisms and provides a fundamental basis for further disease-related

research and drug design.

Therefore, various experimental approaches including low-throughput (Lin et al.,

2003; Salinas et al., 2004) and high-throughput (Han et al., 2010; Song et al., 2009;

Villén et al., 2007) biological techniques have been developed to identify kinase–substrate

relationships. However, low-throughput experimental approaches identify relationships

one-by-one manner, resulting in an expensive, time-consuming and labor-intensive

process. In contrast, high-throughput biological techniques (e.g., high-throughput mass

spectrometry (Villén et al., 2007)) can detect thousands of phosphorylation sites in a

single experiment (Han et al., 2010; Song et al., 2009), but cannot provide the

corresponding kinase information regarding phosphorylation sites. Considering that

the number of newly discovered phosphorylation sites has been exponentially

increasing, the huge gap between verified sites and limited kinase information

hampers studies of phosphorylation mechanisms as well as the regulatory role of kinases

in cellular processes. As a result, the development of new computational methods is

required to be developed to help biologists in selecting target kinases and designing

related experiments.

Over the past few decades, a variety of computational methods for the identification of

kinase–substrate relationships have been developed, most of which build predictive

models using local sequence information as kinase catalysis usually occur on the target

protein with a specific yet conserved motif (Miller & Blom, 2009). For example, Song et al.

(2012) develop a software package, namely iGPS, which employs the predictor in GPS 2.0

(Xue et al., 2008) with local sequence information to discover protein kinases targeting

experimentally identified phosphorylation sites. In the meanwhile, by encoding the local

sequence of a phosphorylation site with the composition monomer spectrum, Zou et al.

(2013) develop a computational tool, namely PKIS, to identify protein kinases for known

phosphorylation sites. In addition to the above methods, the recent use of substrate

functional information to predict kinase–substrate relationships is gaining increasing

attention. For instance, to improve the performance Xu et al. (2014) propose a two-step

feature selection algorithm, which takes substrate structure information and high

dimensional protein–protein interactions as input. In addition, Linding et al. (2008)

develop an online service called NetworKIN that identified kinases using sequence

similarity derived from Scansite and NetPhosK, and a probabilistic network of functional

associations extracted from the STRING (Szklarczyk et al., 2011) database.

Inspired by the above methods, we put forward a novel computational method, namely

ksrMKL, based on multiple kernel learning (MKL) (Gönen & Alpaydın, 2011) for

identifying kinase–substrate relationships. The proposed method takes advantage of not

only sequence information but also functional information regarding substrates that are

reported to contribute to phosphorylation site prediction (Gnad et al., 2007; Huang et al.,

2005; Iakoucheva et al., 2004). To efficiently utilize local sequence information and

functional information, we develop multiple kernels using the radial basis function (RBF)

(Scholkopf et al., 1997) as a kernel. Subsequently, we use MKL to combine multiple

kernels and build a support vector machine (SVM) model using the combined kernel.
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The comparative analysis is based on 10-fold cross-validation process and the collected

data from the Phospho.ELM (Dinkel et al., 2010) database. The experimental results show

that ksrMKL is greatly improved in various measures compared with a single kernel SVM

(Chang & Lin, 2011; Wang, Jiang & Xu, 2015). Furthermore, with an independent test

dataset extracted from the PhosphoSitePlus (Hornbeck et al., 2012) database, we compare

ksrMKL with two existing kinase–substrate relationship prediction tools, namely iGPS

(Song et al., 2012) and PKIS (Zou et al., 2013). The results show that ksrMKL has better

prediction performance than these existing tools.

MATERIALS AND METHODS
Data collection and preparation
In this study, we adopt an experimental identification of phosphorylation sites in human

with kinase information dataset, including 1,638 unique phosphorylation sites in 679

substrates collected from the latest version of Phospho.ELM (Dinkel et al., 2010).

Blastclust (Dondoshansky & Wolf, 2002) with a 70% threshold is used for this dataset

to avoid protein redundancy and homology (Xu et al., 2014). In terms of a specific

kinase, the phosphorylation sites that are known to be modified by this kinase are

considered as positive samples, and the phosphorylation sites that are not known to be

modified by this kinase are used as negative samples. To ensure reliable results (Li et al.,

2015; Xue et al., 2011), we analyze kinases that contain not less than 25 positive

phosphorylation sites and eventually 17 kinases are obtained. The detailed information of

this dataset is summarized in Table S1. Besides, local sequences of the corresponding

phosphorylation sites are also extracted containing seven residues upstream and seven

residues downstream. In this study, we follow the procedure described in (Wang, Jiang &

Xu, 2015) and use binary encoding to convert each amino acid of local sequence into

a 21-dimensional binary vector. The 15-length local sequence is converted to a

315-dimensional vector. In addition, several recent studies (Fan et al., 2014; Li, Du &

Xu, 2010; Xu et al., 2014) have shown that protein (substrate) function information

(e.g., PPI information) can effectively improve the prediction performance for

kinase–substrate relationships. By following these studies, we incorporate PPI

information as functional information of substrate into the proposed method. Here,

the PPI information is extracted from human data of STRING (Szklarczyk et al., 2011)

database. Finally, 16,708 proteins that interacted with the 679 substrates are obtained.

The functional information that are employed as a 16,708-length feature vectors and

the local sequence using binary encoding are incorporated to generate the final

feature vectors.

Multiple kernel learning
Recently, MKL has been widely applied in the field of bioinformatics (Brayet et al., 2014;

Nascimento, Prudêncio & Costa, 2016; Shen et al., 2014) (e.g., drug–target interaction

prediction (Nascimento, Prudêncio & Costa, 2016)), which can be used to combine

different data types with different measurements or sources. The use of multiple kernels

instead of a single kernel makes the decision function more interpretable and improves
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performance (Rakotomamonjy, Bach & Grandvalet, 2007; Zhang et al., 2016). The linear

combination of multiple kernel is defined as follows:

Kh ¼ PR
r¼1

hrKr ; hr � 0 (1)

where hr denotes the kernel weight and Kr is the r’th basic kernel. To obtain kernel weights,

various methods have been extensively studied (Aiolli & Donini, 2014, 2015; Gönen &

Alpaydın, 2011), which can be roughly divided into fixed or heuristic-based methods

and optimization-based methods. Regarding fixed or heuristic-based methods, the

combination is obtained by using fixed rules, while its effectiveness crucially hinges on

the domain at hand (Aiolli & Donini, 2015; Gönen & Alpaydın, 2011). For optimization-

based methods, the combination parameters are achieved by solving an optimization

problem formulated as a different model or directly integrated into the learning machine

(Aiolli & Donini, 2015; Gönen & Alpaydın, 2011).

In this study, we employ an optimization-based method proposed by Aiolli and

Donini, namely EasyMKL (Aiolli & Donini, 2014, 2015), which maximizes the distance

between the convex hulls of positive and negative samples on the training set (Donini

et al., 2016). In EasyMKL, the combination parameters are obtained by solving the

following formula:

max
h¼1

min
�2C

�TY
XR
r¼0

hrKr

 !
Y� þ ��2 (2)

where � is a regularization parameter, and Y is a diagonal matrix of training labels.

The domain C represents two probability distributions of the positive and negative

samples, defined as C ¼ � 2 R1
þj
P

yi¼þ1 �i ¼ 1;
P

yi¼�1 �i ¼ 1
n o

. The objective

function can be converted into a regularized empirical dual problem with the kernelPR
r¼1 hrKr . With the derivation described in Aiolli & Donini (2015), this minimax

problem can be simplified to a quadratic problem. The optimal solution �� of the
quadratic problem is equivalent to the solution of the original min–max formulation.

According to the structure of EasyMKL (Donini et al., 2016), the average kernel of all

the trace-normalized basic kernels (KA ¼ 1
R

PR
r¼1

Kr

Tr Krð Þ) can also be obtained. Taking

the optimal solution �� and the average kernel, the optimal weight for a single basic

kernel Kr is achieved through the following formula:

hr ¼ ��TY Kr=Tr Krð Þð ÞY��; 8r ¼ 1; � � � ;R (3)

After obtaining the combined kernel using Eqs. (2) and (3), the SVM algorithm is used

to build predictive models and the decision function is defined as follows:

min
f ;b;�

1

2
j fj jj2H þ C

X
i

�i

s:t: yi f xið Þ þ bð Þ � 1� �i 8i
�i � 0 8i

(4)
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where ‖f ‖H denotes the kernel in Hilbert space, which is associated with the kernel Kh.

Therefore, in terms of the kernel function, the discriminant function takes the following

form:

f xð Þ ¼
Xn
i¼1

��
i kh x; xið Þ þ b� (5)

Implementation procedures of the proposed system
The input features are divided into two different data types (including local sequence and

functional information) based on their original types. Afterward, we follow previous

studies (Hasan, Ahmad & Molla, 2017; Zhang et al., 2016) and utilize the RBF kernel

function with multiple beta values to computer the base kernels for each data type, and the

RBF kernel is defined according to K xi; xj
� � ¼ exp � b

Fnj j jjxi � xj jj2
n o

, where jFnj is the
number of features. The whole implementation of our method is summarized as follows:

1. Discretizing the parameter space of the beta (b) of the RBF kernel into five values to

obtain the set of the base kernels S ¼ Kb1 ;Kb2 ; � � � ;Kb5

� �
for each data type. In this

study, five values of beta for the base kernels are {1, 2, : : : , 5}, and finally 10 kernels are

obtained through two different data types.

2. Finding kernel weights for these 10 kernels using Eq. (3).

3. Combining these 10 kernels using Eq. (1) to obtain the combined kernel.

4. Using the combined kernel to train the predictive model for each kinase.

5. Using these models to make predictions for a potential phosphorylation site.

Performance evaluation
In this study, by following existing studies (Gao et al., 2010; Wang, Wang & Li, 2017), the

10-fold cross-validation is implemented on the known experimentally verified substrate–

kinase relationships dataset, in which the dataset is divided into ten parts, followed by

iteratively taking nine as training data and the remaining one as test data until all

parts have been tested. The receiver-operating characteristic (ROC) curve and the

corresponding area under ROC curve (AUC) are used to estimate the predictive ability of

the proposed method. Besides, other conventional measurements such as sensitivity (Sn),

F-Measure (F1), specificity (Sp), precision (Pre) and Matthews’s correlation coefficient

(MCC) are also adopted to assess the predictive performance, defined as follows:

Sn ¼ TP

FNþ TP
(6)

Sp ¼ TN

TNþ FP
(7)

Pre ¼ TP

FPþ TP
(8)
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F1 ¼ 2� Pre� Sn

Preþ Sn
(9)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TNþ FNð Þ � TNþ FPð Þ � FPþ FNð Þ � TPþ FPð Þp (10)

where TN and TP represent the number of positive and negative sites that are correctly

predicted, commonly called true negative and true positive, respectively. FP and FN

represent the number of positive and negative sites that are wrong predicted, commonly

called false negative and false positive, respectively. It is noteworthy that when the positive

and negative sites are significantly imbalanced, MCC can be used to achieve the balance

quality.

RESULTS
Evaluate performance using 10-fold cross-validation
To verify the effectiveness of ksrMKL, we firstly compare the prediction performance

before and after integrating the functional information. Two kinases are taken as examples

to illustrate the predictive performance and the corresponding ROC curves are displayed

in Figs. 1A and 1B. As shown in Figs. 1A and 1B, by combining the functional

information, ksrMKL achieves better overall performance than using local sequences only.

For example, for PKC_ALPHA (Fig. 1A), ksrMKLseq+func achieves an AUC value of 91.3%,

and the corresponding AUC value of ksrMKLseq is 87.5%. Similarly, for CDK2 (Fig. 1B),

the AUC value obtained by ksrMKLseq+func is also increased by 7.3% in comparison with

ksrMKLseq. The performance of other kinases is also displayed in Fig. S1. Admittedly, in

the field of computational bioinformatics, the ability to control false positive prediction

results is usually important (Xu & Wang, 2016). Hence, to verify the controllability, we

follow the previous studies (Wang, Wang & Li, 2017; Xu & Wang, 2016) and calculate the

true positives number of top-ranked results. Figures 1C and 1D displays the results of five

top 1%, 2%, 5%, 10% and 20% of the total samples in PKC_ALPHA (Fig. 1C) and CDK2

(Fig. 1D). Obviously, ksrMKLseq+func can obtain better performance at any percent of the

total sample when compared with ksrMKLseq. In general, these results indicate that the

functional information can effectively enhance the predictive performance of kinase–

substrate relationships, and our proposed method can successfully combine different

information.

Secondly, we make a comparison between ksrMKL and single kernel SVM with the

same features. The ROC curves and AUC values obtained using two methods can be found

in Fig. 2, indicating that ksrMKL has the highest true positive rate at each false positive

rate in PKC_ALPHA (Fig. 2A) and CDK2 (Fig. 2B). For example, for CDK2, the AUC

value of ksrMKL is 94.0%, which is higher than that obtained using SVM (90.3%).

The performance of other kinases is also displayed in Fig. S2. These results suggest

that ksrMKL has a better predictive ability compared with SVM. Additionally, to further

verify the effectiveness of ksrMKL, according to previous studies (Fan et al., 2014;
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Wang, Wang & Li, 2017), we set a threshold for each method so that the specificity of each

method is equal to 90.0% (medium) or 95.0% (high). Then, the corresponding

measurements are calculated and the results are presented in Table 1. With specificity of

95.0%, all other measurements are higher than that with SVM. When specificity is

reduced to 90.0%, the measurement of both methods increases and ksrMKL shows

consistently higher performance in all the above measurements compared with SVM.

In summary, ksrMKL can achieve better performance in kinase–substrate relationship

prediction compared with the conventional single kernel-based SVM method.

Comparison with existing kinase–substrate relationship tools
In this section, we compare ksrMKL with two common kinase–substrate relationship

prediction tools, namely iGPS (Song et al., 2012) and PKIS (Zou et al., 2013), to further

verify the advantages of our method. Since iGPS and PKIS use the dataset extracted from

Phospho.ELM database to build prediction models, the dataset should at least be divided

Figure 1 Comparison of ROC curves and the fraction of retrieved kinase–substrate relationships

using different information. Panels (A and B) represent the ROC curves of PKC_ALPHA and CDK2

using different information, respectively. Panels (C and D) represent the fraction of retrieved kinase–

substrate relationships of PKC_ALPHA and CDK2 using different information, respectively. The blue

lines/bars represent our proposed method constructed with local sequence, and the green lines/bars

represent our proposed method built with local sequence and functional information together.

Full-size DOI: 10.7717/peerj.4182/fig-1
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into training and test datasets, which will inevitably result in over-estimation of prediction

performance (Xu et al., 2014). To solve this problem, we build an independent test dataset

from the latest PhosphoSitePlus (Hornbeck et al., 2012) database, which excludes the existing

phosphorylation sites deposited in Phospho.ELM (9.0). We take the above two kinases as

examples to demonstrate predictive performance and the results can be found in Fig. 3.

As shown in Fig. 3, compared with other methods, ksrMKL achieves a better overall

performance in PKC_ALPHA (Fig. 3A) and CDK2 (Fig. 3B). For example, for PKC_ALPHA,

the AUC achieved by ksrMKL is 17.5% and 8.5% higher than iGPS and PKIS, respectively.

Likewise, for CDK2, the corresponding AUC values are 84.8%, 56.0% and 73.3% for

ksrMKL, iGPS and PKIS, respectively. Figure S3 displays the performance of other kinases.

Additionally, the comparisons of Sn, MCC, Pre and F1 with two kinases at the two

stringency levels are also drawn on Fig. 4, indicating that in almost all cases ksrMKL

achieves the best performance in PKC_ALPHA (Figs. 4A and 4C) and CDK2 (Figs. 4B and 4D).

Taking CDK2 as an example, with specificity of 95.0% (Fig. 4B), the Sn, MCC, Pre and F1

values of ksrMKL are increased by 19.7%, 18.2%, 17.7% and 14.6% compared with

iGPS and make an improvement of 25.2%, 23.9%, 23.3% and 20.2% when compared

with PKIS, respectively. When the specificity is reduced to 90.0% (Fig. 4D), ksrMKL has

an improvement of 26.3%, 19.8%, 17.2% and 12.2% compared with iGPS. Likewise, in

comparison with PKIS, the Sn, MCC, Pre and F1 values are increased by 30.0%, 22.8%,

19.9% and 14.4%, respectively. Table S2 lists the results for other kinases. According to

Table S2, at the high stringency level, the Sn, MCC, F1 and Pre values of ksrMKL on

average are increased by 12.1%, 7.2%, 6.0% and 4.1% compared with iGPS and have an

improvement of 22.6%, 12.5%, 10.3% and 7.2% in comparison with PKIS, respectively.

Furthermore, the controllability of false positive prediction results is also employed to

estimate the predictive performance of these three methods. Figure 5 shows the results of

five top 1%, 2%, 5%, 10% and 20% of the total samples. ksrMKL makes most of the

Figure 2 Comparison of ROC curves with different methods. Panels (A and B) represent the ROC

curves of PKC_ALPHA and CDK2 using different methods, respectively. The green lines represent our

proposed method (ksrMKL) and the blue lines represent SVM method.

Full-size DOI: 10.7717/peerj.4182/fig-2
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known sites higher ranks than other tools investigated in this study. For example, for

PKC_ALPHA (Fig. 5A), at the top 20% the proposed method achieves a fraction of

true positives of 60.8% and the values of iGPS and PKIS are 45.3% and 44.9%,

respectively. Similarly, for CDK2 (Fig. 5B), we can obtain similar results. In summary,

the aforementioned analysis suggest that ksrMKL improves the prediction of kinase–

substrate relationships when compared with existing tools.

Table 1 Comparison of predictive performance using different methods at high (Sp = 95.0%) and

medium (Sp = 90.0%) stringency level.

Kinases Methods Sp = 95% Sp = 90%

Sn (%) MCC (%) F1 (%) Pre (%) Sn (%) MCC (%) F1 (%) Pre (%)

GSK3b SVM 43.9 25.6 25.9 18.4 48.8 19.4 18.1 11.1

ksrMKL 56.1 32.9 31.9 22.3 65.9 27.4 23.7 14.4

CDK2 SVM 51.0 32.6 33.3 24.8 64.7 29.5 27.2 17.2

ksrMKL 66.7 42.3 41.5 30.1 82.4 38.3 33.3 20.9

Lck SVM 57.8 35.1 34.4 24.5 77.8 34.3 29.3 18.0

ksrMKL 60.0 36.4 35.5 25.2 80.0 35.3 30.0 18.5

EGFR SVM 55.6 31.0 29.4 20.0 66.7 26.3 21.8 13.0

ksrMKL 58.3 32.5 30.7 20.8 77.8 31.2 25.0 14.9

Abl SVM 50.0 25.8 24.0 15.8 63.3 22.9 18.1 10.6

ksrMKL 66.7 34.6 30.8 20.0 76.7 28.3 21.5 12.5

PKCa SVM 32.0 25.9 30.6 29.4 50.0 29.0 32.9 24.5

ksrMKL 57.0 45.4 48.7 42.5 73.0 43.6 44.6 32.2

Fyn SVM 60.0 31.1 28.1 18.4 70.0 25.6 19.8 11.5

ksrMKL 66.7 34.6 30.8 20.0 86.7 32.3 24.0 13.9

ATM SVM 62.7 39.9 39.5 28.8 70.6 32.5 29.3 18.5

ksrMKL 94.1 57.9 53.9 37.8 98.0 45.8 38.5 23.9

Figure 3 Comparison of ROC curves with existing tools on the independent dataset. Panels (A and B)

represent the ROC curves of PKC_ALPHA and CDK2 using different tools on the independent dataset,

respectively. The red lines represent our proposed method (ksrMKL), and the green and blue lines

represent iGPS and PKIS tools, respectively. Full-size DOI: 10.7717/peerj.4182/fig-3
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Analysis of the predicted potential relationships
In the above section, we have validated that ksrMKL has good prediction performance in

kinase–substrate relationships. However, due to the difficulty of experimental verification,

the computational method requires the ability to detect unknown relationships

between phosphorylation site and protein kinase (Xu & Wang, 2016). Consequently, we

analyze the top 20 ranked candidate phosphorylation sites that are not modified by a

corresponding kinase in our dataset and then try confirming these results by mining the

literature and searching the UniProtKB database. Table 2 displays the detailed top 20

Figure 4 Comparison of Sn, MCC, F1 and Pre values of different tools on the independent dataset.

Panels (A and B) represent the performance of PKC_ALPHA and CDK2 at specificity of 95.0%,

and Panels (C and D) represent the performance of PKC_ALPHA and CDK2 at specificity of 90.0%.

The x-axis represents sensitivity, Matthew correlation coefficient, F1-measure and precision, respectively.

Full-size DOI: 10.7717/peerj.4182/fig-4

Figure 5 Comparison of the ability of different tools in retrieve kinase–substrate relationships.

Panels (A and B) represent the fraction of retrieved kinase–substrate relationships of PKC_ALPHA

and CDK2 using different tools on the independent dataset, respectively. The red lines represent our

proposed method (ksrMKL), and the green and blue lines represent iGPS and PKIS tools, respectively.

Full-size DOI: 10.7717/peerj.4182/fig-5
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potential phosphorylation sites of CDK2 and the related information of substrates.

We find some phosphorylation sites have been demonstrated to be modified by CDK2.

For example, from the UniProtKB database, it can be found that the phosphorylation site

Ser640, Ser964 and Ser975 of RBL1 can be modified by CDK2 (http://www.uniprot.org/

uniprot/P28749#ptm_processing). Furthermore, in Table S3, we also list the top 20

ranked potential phosphorylation sites for MAPK1, in which Tyr325 and Tyr331 of FOS

(P01100) has been confirmed to be modified by this kinase (http://www.uniprot.org/

uniprot/P01100#ptm_processing). These results demonstrate that ksrMKL has the ability

to discover potential kinase–substrate relationships, which could be conducive to further

experimental verification.

DISCUSSION AND CONCLUSION
Phosphorylation exerts a crucial role in multiple biological cellular processes which is

catalyzed by protein kinases and closely related to many diseases. Therefore, identification

of potential protein kinases for experimentally verified phosphorylation sites is

important for understanding molecular mechanisms and provides a fundamental basis

for further disease-related research and drug design. Considering the labor-intensiveness

and high cost of experimental identification, efficient and rapid protein kinase

identification computational methods are urgently needed. Accordingly, we develop

a computational method to identify protein kinases based on MKL. Under a 10-fold

cross-validation process and an independent test dataset, ksrMKL has better prediction

performance than existing computational tools including single kernel SVM, which

indicates that MKL could be very useful for the identification of protein kinases.

Furthermore, through the analysis of the predicted potential kinase modified

phosphorylation sites, we find that some highly ranked results have been confirmed in the

UniProtKB database, which suggest that ksrMKL can be used to discover potential protein

kinases for experimentally verified phosphorylation sites and further help subsequent

experimental verification.

The improvement of ksrMKL relative to other methods could be attributed to two

factors. First, we take advantage of sequence information as well as functional information

Table 2 Information of top 20 potential phosphorylation sites for CDK2 kinase.

Ranking UniProt ID Protein name Position Score Ranking UniProt ID Protein name Position Score

1 P28749 RBL1 369 0.909 11 P28749 RBL1 964 0.542

2 Q08999 RBL2 401 0.750 12 Q08999 RBL2 672 0.542

3 P28749 RBL1 975 0.742 13 P17480 UBTF 201 0.505

4 Q08999 RBL2 1035 0.682 14 P38936 CDKN1A 98 0.494

5 P28749 RBL1 640 0.617 15 P38398 BRCA1 988 0.459

6 P17480 UBTF 117 0.577 16 P38936 CDKN1A 57 0.418

7 P46527 CDKN1B 178 0.570 17 Q13415 ORC1 273 0.412

8 Q13415 ORC1 258 0.564 18 P17480 UBTF 484 0.362

9 Q15796 SMAD2 8 0.559 19 P31350 RRM2 20 0.266

10 P46527 CDKN1B 10 0.558 20 P06401 PGR 294 0.259
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of substrates to construct a predictive model. Second, in our proposed method, different

kernels use input coming from different heterogeneous information sources and

combining these kernels would increase the generalization of the model. Although

ksrMKL exhibits excellent performance in kinase identification, it can be further

improved from various perspectives. For instance, other biological information

(e.g., structure information of substrates) could be incorporated to further improve

performance. In addition, the functional information used in this study is extracted

from the STRING (Szklarczyk et al., 2011) database, and there are many other related

databases (e.g., MINT (Licata et al., 2012)), which can be included to further improve

the performance of our proposed method. Moreover, more experimentally verified

phosphorylation sites with associated kinase information deposited in other

bioinformatics resources can be combined to build better prediction models, as more

training data usually improves classification performance.
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