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Deep learning enables pathologist-
like scoring of NASH models
Fabian Heinemann*, Gerald Birk & Birgit Stierstorfer

Non-alcoholic fatty liver disease (NAFLD) and the progressive form of non-alcoholic steatohepatitis 
(NASH) are diseases of major importance with a high unmet medical need. Efficacy studies on novel 
compounds to treat NAFLD/NASH using disease models are frequently evaluated using established 
histological feature scores on ballooning, inflammation, steatosis and fibrosis. These features are 
assessed by a trained pathologist using microscopy and assigned discrete scores. We demonstrate how 
to automate these scores with convolutional neural networks (CNNs). Whole slide images of stained 
liver sections are analyzed using two different scales with four CNNs, each specialized for one of four 
histopathological features. A continuous value is obtained to quantify the extent of each feature, which 
can be used directly to provide a high resolution readout. In addition, the continuous values can be 
mapped to obtain the established discrete pathologist-like scores. The automated deep learning-based 
scores show good agreement with the trainer - a human pathologist.

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are among the most rel-
evant diseases in terms of prevalence1, reduction of quality of life2, increase in mortality3 and socio-economic 
burden on a global scale4.

NAFLD is characterized by an excess of fat (steatosis) in the liver. About 25% of the global adult population is 
affected and the prevalence is increasing1. Patients with NAFLD often exhibit obesity, diabetes, hypertension and 
an increased waist circumference, which are features of metabolic syndrome1. NAFLD can progress to NASH, a 
disease where the liver of the patient is additionally affected by varying degrees of cell death, inflammation, and 
collagen deposition. Prevalence estimates for NASH range from 1.5–6.5%1. Patients with NASH can develop 
cirrhosis5, liver failure6, and possibly hepatocellular carcinomas7.

For the treatment of NAFLD, weight loss and lifestyle changes (e.g. exercise and change in diet) are recom-
mended interventions8,9. It is also beneficial to have supporting therapeutic options at hand which directly mod-
ulate relevant molecular pathways of the liver. However, to date, no approved therapies for NASH/NAFLD are 
available9–11, though several novel compounds are in clinical trials12.

To study the efficacy of novel compounds from preclinical research, animal models of liver disease are required 
until substitute systems can fully mimic the complexity of the liver within an organism (e.g. ‘organoids’ or ‘organs 
on a chip’13,14). Frequently used models are based on the rat or mouse, where a pathophysiology comparable to 
NAFLD/NASH is induced by a high-fat diet or substances like CCl4

15–17.
A typical pre-clinical efficacy study consists of a healthy control group, a disease model group, and one or 

more disease model groups with additional administration of a novel compound. Frequently used readouts of 
efficacy studies in NAFLD/NASH are biochemical parameters, quantitative image analysis and pathologist scor-
ing of histopathological sections.

A widely used pathologist score is based on Kleiner and co-workers (in the following also referred to as the 
‘Kleiner score’), who demonstrated that ballooning, inflammation, steatosis, and fibrosis are the main histopatho-
logical features that correlate with the diagnosis of NASH18. The first three features are considered reversible. They 
are quantified in discrete so-called sub-scores (ballooning: 0–2, inflammation: 0–3, steatosis: 0–3) and summed 
up in the ‘NAS score’ (NAFLD activity score, 0–8). In addition, the mostly non-reversible fibrosis is quantified 
separately using a discrete fibrosis score of 0–4. These definitions of the respective discrete values for the four 
histopathological features rely on morphological structures (e.g. the presence of no, few, or many ballooning 
cells per liver for ballooning sub-scores 0, 1, or 2) which can be assigned by a trained pathologist by microscopic 
investigation. Typically this is done using hematoxylin and eosin (H&E) or Masson’s trichrome stained slides. 
Whereas human-based scoring is worldwide accepted, it has its drawbacks. First, it relies on expert patholo-
gists, an in-demand occupation19. The task is time-consuming and can be tiring, which may consequently affect 

Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riß, Germany. 
*email: fabian.heinemann@boehringer-ingelheim.com

OPEN

https://doi.org/10.1038/s41598-019-54904-6
mailto:fabian.heinemann@boehringer-ingelheim.com


2Scientific Reports |         (2019) 9:18454  | https://doi.org/10.1038/s41598-019-54904-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

performance. Second, it was shown that produced results exhibit inherent variability between different patholo-
gists18 and the same pathologist20. This can limit the comparability of the results. Third, the score based on Kleiner 
and colleagues produces discrete readouts with only a few unique steps which can be too coarse to quantify the 
effects of a compound.

Recent advances in deep learning21, and in particular in convolutional neural networks (CNNs, a type of 
deep learning used in image recognition), have revolutionized image analysis22 and are assumed to show at least 
human-like performance in image classification23. Due to these developments, complex image recognition tasks 
which were previously the exclusive domain of humans are now on the verge of automation. The number of appli-
cations in histopathology is rapidly growing. Examples include prostate cancer diagnosis24, non-small cell lung 
cancer diagnosis and mutation prediction11 or pathologist-like fibrosis and inflammation scoring in lung tissue25.

Here we describe a simple deep learning-based approach to automate the Kleiner score for NAFLD/NASH 
models in the rat and mouse. For each histopathological feature (fibrosis, ballooning, inflammation, steatosis), 
continuous quantities are generated which can be used directly as high-resolution readouts. Furthermore, we 
show an approach for mapping these continuous quantities to discrete pathologist scores. With corresponding 
training data, the method can be easily transferred to human tissue to build diagnostic systems.

Results and Discussion
Figure 1 shows an overview of the automated Kleiner score for NAFLD/NASH. Our workflow is based on tissue 
sections stained with Masson’s trichrome, a stain highlighting collagen (stained in blue/violet) in contrast to other 
tissue structures (stained in red/purple). After microscopy using a whole slide scanner, the images were cut into 
image tiles of two dimensions: low magnification tiles (1.32 µm/px) to identify fibrosis and high magnification 
tiles (0.44 µm/px) to identify ballooning, inflammation and steatosis. Subsequently four different CNNs were used 
to classify the tiles according to the four histological features. The spatially resolved results were then aggregated 
to obtain a single continuous readout per sample. In addition, the continuous readout was mapped to Kleiner’s 
discrete pathologist-like sub-scores on ballooning (0–2), inflammation (0–3), steatosis (0–3), and the fibrosis 
score (0–4).

A prerequisite for the classification were trained CNNs that could recognize the relevant features. For this 
purpose, a trained pathologist with >5 years of experience in scoring liver sections created training data for each 
of the four histopathological features. Classes were defined in such a way that they were simple to assign and to 
allow a mapping to the Kleiner score.

Figure 2 shows examples of the classes used to identify the four histological features. The classes for bal-
looning are shown in the top row. In ballooning the cytoplasm clears and the cells are larger as the neighboring 
hepatocytes (see arrows in the top row of Fig. 2). A simple class definition of 0 (no ballooning cell on a tile) and 
1 (a definite ballooning cell on a tile) was used. The classes for inflammation are shown in the second row. Tile 
classes of 0 (no inflammation), 1 (moderate inflammation) and 2 (severe inflammation with clear inflammatory 
foci; see materials and methods for the exact definition) were used. Here the distinction between 1 and 2 was 
required to allow the discrimination between different degrees of inflammation on a macroscopic scale (per 

Figure 1.  Overview of the workflow for the automated scoring of fibrosis, ballooning inflammation and 
steatosis, the features correlated with non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis 
(NASH). A whole slide scan stained with Masson’s trichrome is cut into tiles of two scales. Low magnification 
tiles are analyzed by a convolutional neural network (CNN) to recognize fibrosis. High magnification tiles 
are analyzed by three separated CNNs to recognize ballooning, inflammation and steatosis. The probability-
like output of the CNNs per tile results in the distribution of the histopathological features in the liver. The 
distributions are aggregated to obtain one continuous quantity per liver sample for each of the features. The 
continuous features can be used directly or mapped to discrete pathologist-like scores.
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liver). A hypothetical scoring system with only 0 and 1 would not allow differentiation between cases with weak 
inflammation in all tiles and cases with severe inflammation in all tiles and therefore have no resolution for higher 
values of the inflammation sub-score. Classes for steatosis are shown in the third row. Here the tile classes 0, 1, 
2, and 3 directly correspond to the macroscopic steatosis sub-score since the macroscopic sub-score is based on 
area covered by vacuoles, which is directly applicable to the tile level. Finally, classes for fibrosis are shown in the 
fourth row. In this case the low magnification tiles were used (three times the length compared to small tiles) since 
structures such as bridging fibrosis (class 3) and cirrhosis (class 4) require a larger field of view per tile to reveal 
sufficient information for identification. Also in this case, the classes of the tiles corresponded to the macroscopic 
definition of fibrosis since the features were already recognized on the tile level (but may vary over the tissue 
section). In all four models, we used an “ignore” class to identify all cases where liver tissue was not-sufficiently 
visible on a tile or other artifact types were present (e.g. out of focus, mostly blood, or staining artifacts), as in our 
previous work25. The “ignore” class ensured, that only tiles containing actual liver tissue were further analyzed.

Subsequently the four CNN models were trained on ~90% of the annotated tiles and evaluated using the 
remaining tiles (validation set). Table 1 presents the per tile classification performance after model training. In all 
cases, the CNNs resulted in high classification accuracies of 86.0–94.5% on the unseen validation data.

To visualize that the CNN models in fact learned the relevant histological features, we applied class activation 
maps, a method to identify image regions which were the most relevant for a classification26. Figure 3 presents 
examples for all four models, indicating that the models learned the morphologically relevant features (i.e. bal-
looning cells, inflammatory foci, steatotic areas and fibrotic bands). Methods for visual feature explanation are 
important for excluding irrelevant structures in the training data being used for classification, a potential issue 
that can be caused by non-representative training data27.

We further computed confusion matrices to quantitatively analyze whether certain types of images are par-
ticularly difficult to classify (Fig. S1). Most of the cases are either exactly right (values on diagonal) or the classi-
fied class deviates by only +/−1 compared to the ground truth, i.e. with a neighboring class. This is mostly due to 
two factors: First, some cases will represent transitions between the discrete classes (for example between fibrosis 

Figure 2.  Examples of the classes used to train the four convolutional neural networks (CNN) to recognize 
relevant features of the histopathological features in the Kleiner score. First row: ballooning, with classes 0 
(no-ballooning), 1 (ballooning cells, see arrows) and ignore (insufficient liver tissue visible on a tile). Second 
row: inflammation with classes 0 (no inflammation), 1 (moderate inflammation), 2 (severe inflammation 
with clear inflammatory foci) and ignore. Third row: steatosis with classes 0 (<5% area coverage of vacuoles), 
1 (>=5% and <33%), 2 (>=33% and <66%), 3 (>=66%) and ignore. Fourth row: fibrosis with classes 0, 
1 (perisinosiodal or periportal fibrosis), 2 (perisinosiodal and periportal fibrosis), 3 (bridging fibrosis), 4 
(cirrhosis) and ignore (not shown). Scale bars in first three rows (high magnification tiles): 50 µm, last row (low 
magnification tiles): 100 µm.
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class 0 and 1), and second, some cases are inherently difficult to classify. For example, in the ballooning CNN 
model, the presence of simultaneous cell debris and steatosis could, in a number of cases, resemble ballooning; 
using the example of inflammation, in a few cases it was challenging to discriminate red blood cells from inflam-
matory cells, i.e. when the staining was very dark. These cases were generally challenging for both the pathologist 
and the CNN models. However, for the predominant majority of cases the high levels of tile recognition accuracy 
and the confusion matrix analysis show that the CNN model classifications are in very good agreement with the 
pathologist.

After training of the four classification CNNs, these models were applied to new images. As a result, a distri-
bution of probability scores for the respective classes was obtained for the whole tissue sample. Figure 4 shows an 
example for the fibrosis model applied to a case of a fibrotic liver. Clearly, the majority of cases distribute around 
fibrosis class 3 (“bridging fibrosis”). The individual output probabilities are summarized to a single value, the 
weighted class per tile. The inset shows examples of a region with bridging fibrosis and an example of no fibrosis 
next to each other.

For the transition from individual tiles to the macroscopic scores per liver sample, the average of all tiles was 
computed, i.e. the average weighted class per liver section. This continuous readout has a range equivalent to the 
number of classes in each model, i.e. ballooning 0–1, inflammation 0–2, steatosis 0–3, and fibrosis 0–4. In the 
future, these continuous readouts might be used as improved readouts describing the extent of the four histolog-
ical features.

Figure 5 shows a plot of averaged weighted class per liver section against the ground truth of over 200 exper-
iments covering several years and various experimental conditions. Values on the horizontal axis show a wide 
distribution of states, even for a single pathologist score on the vertical axis. This highlights the much higher reso-
lution of the continuous score compared to the values of the discrete ground truth. The correlation of the discrete 
scores and the continuous scores is indicated by the stair-like shape.

To map the continuous scores to the widely adopted discrete pathologist-like scores, we applied thresholds 
to divide the score into intervals. A Monte Carlo search algorithm was implemented to find optimal thresholds 
with minimized error of the deep learning-based scores compared to the ground truth scores. Thresholds were 
randomly varied in an iterative fashion to minimize the quadratic deviation of the deep learning-based score and 
the pathologist’s ground truth. Gray shaded areas in Fig. 5 show optimized thresholds after this procedure.

Table 2 shows an evaluation of the mapping performance on the dataset to determine the thresholds. The 
mapping performance was additionally tested on an independent held-back set (test data) to better assess the 
performance on new data.

To allow estimating the expected deviation in terms of units of the pathologist score, we computed the mean 
absolute error (MAE). In addition, we computed Cohen’s κ score to quantify the agreement of DL scores with 
the pathologist’s ground truth (with κ = 1 for perfect agreement and values of κ <= 0 for random agreement). 
Further evaluation metrics can be found in Table S1.

Fibrosis (MAE = 0.14, κ = 0.81 on the test data) and steatosis (MAE = 0.04, κ = 0.91 on the test data) was 
mapped with very good agreement and very low error. Ballooning (MAE = 0.30, κ = 0.42 on the test data) and 
inflammation (MAE = 0.45, κ = 0.40) resulted in more variability compared to the ground truth, but can still be 
mapped with moderate expected error (as shown by MAE). In cases of deviations, almost all of them were in an 
adjacent class, i.e. not totally off.

Since Cohen’s κ is known for the components of the Kleiner score for the agreement levels of different pathol-
ogists18, its computation allowed a direct comparison with the agreement of the deep learning-based algorithm 
with the pathologist providing the ground truth data. The previously reported κ values for different pathologists 
were κ = 0.84 (fibrosis), κ = 0.79 (steatosis), κ = 0.56 (ballooning), and κ = 0.45 (inflammation)18. Also in this 
previous study with different human annotators, ballooning and inflammation were the most challenging features 
in terms of inter-observer variability. We therefore assume that a higher intra-observer variability for ballooning 
and inflammation can also be expected, which affects the accuracy of the obtained thresholds. Finally, the slightly 
higher performance on the train set compared to the test set indicates some amount of over-adaptation on the 
training set.

In the future, two aspects will be most beneficial to further improve and generalize the models: first, addi-
tional training of the CNN models since CNNs get increasingly better with the amount of data due to their 
very high learning capacity28. Focusing on more challenging types of images will help to further optimize the 
classification performance on such cases (e.g. discriminating ballooning from glycogen storage combined with 
(micro-)-steatosis within one cell; which represents an example of a challenging case). Second, extending the 

Classification accuracy N Number of classes
including “ignore”Train Validation Train Validation

Ballooning 94.0% 93.1% 13590 1555 3

Inflammation 86.2% 86.0% 8567 914 4

Steatosis 93.8% 94.5% 6377 737 5

Fibrosis 88.5% 86.3% 4251 465 6

Table 1.  Accuracy of tile classification performance of the four convolutional neural network (CNN) models 
on ballooning, inflammation, steatosis and fibrosis. N is the number of labeled tiles used for training and 
validation.
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training data used for the threshold determination. Here it will be of particular benefit to obtain more dense data 
distributions for all scores of the ground truth (pathologist scores) since this affects the obtained thresholds.

Conclusion
The rapid advances in deep learning-based approaches for image recognition now allow the automation of tasks 
which, until recently, were the exclusive domain of human experts.

Figure 3.  Examples of class activation maps for the four convolutional neural network (CNN) models. 
The color-coded maps highlight regions which were most discriminative for a certain class (for example a 
ballooning cell or a fibrotic band [CNN model and the selected class are shown on top]). Numbers on the top 
left in the activation map images are output probabilities for the respective classes.

Figure 4.  Conversion of individual class scores to the weighted class per tile using the fibrosis model as an 
example. A whole slide image (WSI) of a liver section stained with Masson’s trichrome (top left) and the 
corresponding distribution of the normalized neural network output confidences for the fibrosis classes 0, 
1, 2, 3 and 4. In this example, the majority of tiles are classified as fibrosis class 3. The output confidences are 
summarized as weighted class per tile. The insets show four tiles of a region with neighboring bridging fibrosis 
and an almost unaffected area. Numbers correspond to the weighted class per tile.
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Here, we described a new approach to automate the Kleiner score for liver tissue sections of animal models 
for NAFLD/NASH. The approach is based on simple computational building blocks (classification CNNs and 
threshold fitting). The annotation effort for the pathologist is kept moderate as it relies on tile sorting instead of 
the annotation of complex regions.

In addition to the discrete pathologist-like scores, the approach provides continuous valued readouts on the 
features most relevant for NASH. Although the data shown here were developed for animal models, we assume 
that they can be adapted to human samples by training with sufficient amounts of human liver tissue.

In our opinion, the pathologist of the future will be supported increasingly by automated analysis systems as 
the one described here. Such analysis systems require an increasing collaboration of pathologists with computer 
scientists. This collaboration will be crucial for improved automation, standardization and the generation of novel 
readouts.

Even if built carefully, deep learning-based systems can be mistaken, and it is therefore important to incor-
porate result verifications into an analysis workflow. Errors are particularly likely if variations in morphology or 
histological staining appear, which are not sufficiently represented in the training data. In these cases, retraining 

Figure 5.  Deep learning-based average class per liver section (horizontal) compared to the pathologist’s 
score (vertical) on (A) ballooning, (B) inflammation, (C) steatosis, and (D) fibrosis. Dots are individual liver 
sections. Pathologist’s scores on the vertical axis have added jitter for visualization purposes. To obtain the 
discrete pathologist scores used in research and the clinic, thresholds are applied to the deep learning-based 
scores. Optimized thresholds were found using a Monte Carlo algorithm. Gray shaded areas show the resulting 
intervals.

MAE
(best = 0)

Cohens κ
(best = 1)

Train Test Train Test

Ballooning 0.16 0.30 0.70 0.42

Inflammation 0.36 0.45 0.51 0.40

Steatosis 0.10 0.04 0.80 0.92

Fibrosis 0.08 0.14 0.88 0.81

Table 2.  Mean average error (MAE) and Cohen’s κ of the mapped scores. MAE indicates the typical deviation 
from the ground truth in units of the pathologist’s score with 0 as the optimal value. Cohen’s κ indicates the 
agreement of the deep learning-based approach and the ground truth with 1 as perfect agreement and values of 
0 or lower as random agreement.
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on the tile-level and using additional annotated slides for threshold mapping are recommended. With increasing 
amounts of data, these systems should become more and more robust in a wide range of possible experimental 
conditions.

As a next step, experts could define further relevant histological features of pathological processes of the liver 
(e.g. different types of inflammation). The approach described here could serve as a starting point for quantifying 
such novel features. It is completely built from open-source building blocks and can therefore be easily extended.

These features might be added to the four features shown here and result in a multi-dimensional histological 
feature vector describing the pathological trajectory of the liver. In combination with the continuous readouts, 
this could lead to histopathological readouts with improved information content and therefore optimize the use 
of the experimental animal models. This is important in terms of the ethical use of animals and an improved drug 
discovery process.

Methods
Animals.  Liver sections from previous animal studies (2014 and 2019) were reanalyzed. Mice (C57BL/6JRj) 
and rats (RjHan:WI) at different ages from Charles River (Sulzfeld, Germany), Taconic (Rensselaer, United States) 
or Janvier (Le Genest-Saint-Isle, France) were used. Animals included healthy controls and NAFLD/NASH mod-
els. The disease models comprised established approaches, such as CCl4 or CDAA17,29,30 and resulted in varying 
degrees of morphological changes correlated with NASH.

Animals were maintained in accordance with German national guidelines, legal regulations and the guidelines 
of the Association for Accreditation of Laboratory Animal Care. Experiments were performed after permission 
from the Regierungspräsidium Tübingen, Germany.

Tissue samples and staining.  Animals were sacrificed by using an overdose of pentobarbital. Livers were 
removed and the right liver lobe was fixed by incubating in para-formaldehyde and embedded in paraffin accord-
ing to standard protocols. A 3 μm thin section of a central cut of the liver lobe was stained with Masson’s tri-
chrome. Staining quality was routinely controlled by microscopy before further analysis. This reduced the chance 
of analyzing inaccurately stained samples, which might result in classification errors.

Microscopy.  Microscopic analysis of whole slides was performed with a Zeiss AxioScan Z1 scanner (Carl 
Zeiss, Jena, Germany) with a 20x objective in bright field illumination with a pixel resolution of 0.22 µm/px. 
Images were exported to BigTIFF with a factor of 1:2 at 0.44 µm/px using the software Zen Blue 2.6.(Carl Zeiss, 
Jena, Germany; https://www.zeiss.com/microscopy/int/products/microscope-software/zen.html). Also images 
from conventional bright field microscopes can be used, if acquired at 20x with the pixel resolution defined above.

Manual scoring procedure.  Liver sections were assigned to discrete scores quantifying the histopatholog-
ical features of ballooning (0–2), inflammation (0–3), steatosis (0–3) and fibrosis (0–4) following an established 
scoring system18. The scoring was performed by an experienced veterinary pathologist (B.S.) in a blinded setting 
(randomized slides without knowledge of experimental group).

Tile generation.  Image tiles in two dimensions were generated from exported BigTIFFs by evenly covering 
the image with non-overlapping adjacent tiles: Low magnification tiles were generated from an area of 897 × 897 
px² and exported with a downscaling factor of 1:3 to 299 × 299 px² at 1.32 µm/px. High magnification tiles were 
generated from an area of 299 × 299 px² and exported without further downscaling at 0.44 µm/px. Low magni-
fication tiles were used for the fibrosis model and high magnification tiles for the ballooning, inflammation and 
steatosis models. Halcon image processing software (MVTec Software GmbH, Munich, Germany) was used for 
tile generation. The final tile size of 299 × 299 px² was selected to directly match the input dimension of the CNN 
backbone used (Inception-V3). The pixel resolutions of 1.32 µm/px (fibrosis tiles) and 0.44 µm/px (ballooning, 
inflammation and steatosis tiles) allowed the pathologist to sufficiently identify the relevant features within each 
tile.

Deep learning.  For each histological feature (fibrosis, ballooning, inflammation, and steatosis), a distinct 
CNN model was trained. The Inception-V331 CNN architecture was used in the Keras32 implementation by using 
pre-trained weights from training on ImageNet33 to utilize pre-build convolutional filters. These filters were sub-
sequently fine-tuned by training with the respective dataset of histological images (fibrosis, ballooning, inflam-
mation, and steatosis). The original fully-connected layers after the last convolution were discarded and replaced 
by global average pooling, followed by a dropout layer34 with a dropout rate of 0.5 to reduce overfitting and a fully 
connected layer with outputs corresponding to the number of classes in each model (fibrosis: 6, ballooning: 3, 
inflammation: 4, steatosis: 5). Outputs were normalized to 1 using the softmax function.

The CNNs were trained with stochastic gradient descent with an initial learning rate of η = 0.5·10−4 and a 
momentum of μ = 0.9 to minimize the categorical cross-entropy loss on the validation data. If the loss on the 
validation data did not decrease for more than two epochs, the learning rate was reduced by multiplying with a 
factor of 0.2 to a minimal learning rate of η = 10−7. No further hyperparameter tuning was performed since pre-
vious experience with these parameters and Inception-V3 resulted in very good recognition performances with 
higher agreement levels in tile recognition compared to two human experts25. Class imbalances were equalized by 
oversampling. All layers were kept trainable. During training, the images were augmented by random rotations θ 
in the interval θ 

−



π π,
4 4

, horizontal and vertical flips and shifts d in width and height in the interval 
 −d [ 30, 30] px.
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Training and validation tile data for deep learning.  To train the CNN classifiers for fibrosis, balloon-
ing, inflammation, and steatosis tiles were annotated by an experienced veterinarian. Rat and mouse samples were 
combined due to their highly comparable morphology.

For fibrosis, tiles were sorted into classes 0, 1, 2, 3, 4 and ignore with labels corresponding to the macroscopic 
fibrosis score as defined by Kleiner et al.18.

For ballooning, classes 0, 1 and ignore were defined as follows: 0 corresponds to a tile without a ballooning 
cell, and 1 corresponds to a tile with one or more ballooning cells. This differs from the macroscopic sub-score 
(per liver section) with a range of 0, 1, 2 since macroscopically, the ballooning sub-scores are defined by “none” 
(0), “few” (1), or “many” (2) ballooning cells18, which cannot be reflected in the small dimensions of a tile.

For inflammation, tiles were sorted into classes 0, 1, 2 and ignore. 0 (negative or regarded as background) cor-
responds to no inflammatory cells or cell cluster of less than three inflammatory cells or less than 5 disseminated 
inflammatory cells visible on a tile, 1 to cell cluster between three and five inflammatory cells and/or between five 
and ten disseminated inflammatory cells per tile, and 2 to cluster of more than 5 inflammatory cells and/or more 
than ten disseminated inflammatory cells per tile. Also, in this case, a different definition had to be used on the 
tile level compared to the macroscopic inflammation sub-score per liver section.

For steatosis, tiles were automatically sorted into classes of 0, 1, 2, 3 and ignore according to the area covered 
by steatosis per tile (0: <5%; 1: >=5% <33%; 2: >=33% <66%; 3 >= 66%) as determined via a classical com-
puter vision approach using Halcon image processing software. Briefly, the area fraction of bright areas within a 
predefined roundness and size range were detected. Subsequently pre-sorted tiles were manually curated. This 
approach was used for this sub-score since, in our experience, computer-vision based area quantifications are 
more accurate than human assessments.

The ignore class was used in all cases to allow the CNNs to sort tiles out where insufficient information was 
shown (e.g. border with more than 50% empty space, out of focus, mostly blood, or staining artifacts). Around 
90% of the data were used for training of CNNs and 10% was randomly selected for validation to test the classi-
fier’s performance.

Class activation maps.  Class activation maps were computed according to the method described by Zhou 
et al.26 in an adaptation for Inception V3. Briefly, the last convolutional layer contains spatial information, which 
can be used for visualization. For Inception-V3, the output of the last convolutional layer (fkxy) is a tensor of 
dimension 2048 × 8 × 8, with the last two dimensions x, y in spatial direction and the first dimension k as feature 
maps (i.e. filtered image properties). The next layer, global average pooling, combines the features spatially, i.e. 

= ∑F fk x y kxy, . Subsequently, the output sc for class c is computed by a fully connected layer with weights wck (note: 
bias term is omitted as in Zhou et al.26) which is: = ∑ ∑s w fc k ck x y kxy, , or = ∑ ∑ = ∑s w f M x y( , )c x y k ck kxy x y c, , . 
Therefore, the term = ∑M x y w f( , )c k ck kxy contains spatial information which can be scaled to the input image to 
visualize the most activated areas for a decision for class c.

Processing of classification results and aggregation per liver.  The final softmax output of the CNN 
can be interpreted as a confidence vector (q0 … qc−1 qc)T for the classes of each model with ‘ignore’ as class c.

Only slides in which ignore was not the predicted class were considered further (i.e. qc ≠ arg max(q0 … qc−1 
qc)T). To correct for cases where a tile contained an amount of “ignore” (e.g. some amount of edge was present, but 
also a ballooning cell), we re-normalized the confidences to a sum of 1 without “ignore” as follows:

=
∑ =

−p
q

q( )j
j

i
C

i0
1

The normalized confidences pj were summarized as the weighted average class score 〈ipi〉:

∑=
=

−
ip ipi

i

C

i
0

1

To aggregate the entire liver sample, the average class score x of the N tiles of a liver sample was calculated:

∑ ∑=
=

−
x

N
ip1

liver i

C

i
0

1

This continuous readout can be used directly or mapped to a pathologist score.

Mapping of aggregated scores to pathologist scores.  The average class score x for liver samples was 
compared to the pathologist’s Kleiner score (ground truth) for 258 cases from 2014–2019 (Fig. 5). The mapping of 
this continuous score x to a discrete pathologist-like score a ∈ A{0, 1, …} was done by using a set of thresholds ti. 
For example, in a case of |A| = 3 discrete pathologist scores (i.e. ballooning with scores A = {0, 1, 2}), the mapping 
function s(x) is defined by:

=








≤ <
≤ <
≤ <

s x
x t

t x t
t x t

( )
0, 0
1,
2,

0

0 1

1 2

Other mapping functions were defined accordingly.
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A Monte Carlo search algorithm was implemented to find a set of optimal thresholds which minimized the 
quadratic error E of scores using the current mapping function sk(x) compared to the ground truth g Ak   (pathol-
ogists’ scores) over all k = 1 … K liver samples used to fit the optimal thresholds.

∑ ∑= −
∈ =

E f s x g( ( ) )
a A

a
g a

k k
2

k

The left sum is calculated over all unique scores in A. The right sum is calculated over all examples and meas-
ures the quadratic deviation of the mapping function sk(x) and the ground truth gk. Weighting factors fa for each 
a ∈ A = {0, 1, …} were used to compensate for imbalance of pathologist scores and are defined as.

=f K
ka

a

This compares the total number of examples K with the number of examples ka with a ground truth score of 
a, i.e. ka = |gk = a|.

Thresholds ti were initialized within the possible value range of all x such that ti−1 < ti. Empirically, an initiali-
zation of the thresholds ta to the 75th quantiles of the set of {x} corresponding to a ground truth value (pathologist 
score) of a resulted in fast convergence.

Whenever a new best set of thresholds was found, this set was used as new starting set and new thresholds 
were created by adding Gaussian distributed random numbers to the previous best set of thresholds (standard 
deviation σ = 0.15). If the error E using the new set was lower, this was used as a new best set of thresholds ti. This 
procedure was repeated until convergence of the error.

An additional dataset of 92 scored livers was not used to determine the threshold (or for the per-tile train-
ing), but rather used as held-back test set. Score mapping performance was evaluated with mean absolute error, 
weighted F1 score, weighted precision, weighted recall, accuracy and Cohen’s κ score using scikit-learn35.

Data availability
All relevant data required for training and validation of the four CNN models and for the analysis of new liver 
samples can be found at Open Science Framework (https://osf.io/p48rd/). Python scripts to generate the data 
presented in the manuscript are accessible via github: (https://github.com/FabianHeinemann/Deep_learning_
for_liver_NAS_and_fibrosis_scoring).
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