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Abstract
Phosphoinositides are master regulators of multiple cellular processes: from
vesicular trafficking to signaling, cytoskeleton dynamics, and cell growth. They
are synthesized by the spatiotemporal regulated activity of
phosphoinositide-metabolizing enzymes. The recent observation that some
protein modules are able to cluster phosphoinositides suggests that alternative
or complementary mechanisms might operate to stabilize the different
phosphoinositide pools within cellular compartments. Herein, we discuss the
different known and potential molecular players that are prone to engage
phosphoinositide clustering and elaborate on how such a mechanism might
take part in the regulation of intracellular trafficking and signal transduction.
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Introduction
Phosphoinositides (PIs) are essential phospholipids that control, 
either directly or indirectly, multiple cellular functions including 
membrane trafficking, signal transduction, cell growth, cytoskeletal 
dynamics, lipid transport/exchange between organelles, and the 
regulation of transmembrane proteins1,2. PIs are the phosphorylated 
products of phosphatidylinositol. The reversible phosphorylation 
of the inositol ring at positions 3, 4, and 5 gives rise to the seven PI 
isoforms identified in eukaryotic cells (Figure 1). Inter-conversion 
of the phosphate group(s) is selectively tuned by numerous kinases 
and phosphatases, precisely regulated in space and time3 (Figure 1). 
The active metabolism of PIs is intimately linked to their role as 
precursors of second messengers during signal transduction4. The 
accumulation of the different PI species in specific membrane 
compartments is also directly related to their role in vesicular traf-
ficking including endocytosis and exocytosis, endosome dynamics 
and trafficking from and towards the Golgi, among many others5 
(Figure 1). Proteins with multiple trafficking functions are tar-
geted to various membrane compartments based on the selective 
recognition of their PI-binding motifs. The distribution of protein 
residues folded in a 3D structure provides the PI-binding motifs 
with a “PI code”, which is based on the stereospecific recognition 
of the unique phosphate group’s organization around the inositol 
ring6 (Figure 1). There are at least 11 different structured motifs 

with a wide range of affinities and specificities for the different 
PI species. They include the PH (pleckstrin homology), the FYVE 
(Fab1, YOTB, Vac1, and EEA1), the PX (Phox homology), the 
ANTH and ENTH (AP180 and Epsin N-terminal homology), and 
the FERM (4.1, ezrin, radixin, moesin) modules.

PIs and the lateral organization of membranes: the 
needle in a haystack
Cellular membranes are highly heterogeneous composites built of 
different types of lipids and proteins. For instance, in eukaryotic 
cells, more than 1000 different lipid species build up the different 
membrane compartments7. Lipid molecules freely diffuse in the 2D 
membrane plane (D ~2.6 × 10-7 cm2·s-1)8 and interact with protein 
effectors based on their association (K

on
) and dissociation (K

off
) rates. 

As a result, lipid-protein interactions are, in general, highly dynamic 
and thus strongly depend on their respective local concentration.

PIs constitute less than 1% of the steady-state cell lipids7, yet they 
work as unique docking sites for the multiple PI effectors on mem-
branes, which in turn either compete or cooperate with each other 
to interact with downstream partners and elicit specific responses. 
Thus, what are the driving mechanisms that ensure such a thor-
ough spatiotemporal recognition and membrane association of host  
PI-binding motifs?

Figure 1. The seven phosphoinositide isoforms identified in eukaryotic cells are phosphorylated derivatives of phosphoinositols, 
which can be metabolized by different phosphatases and kinases. Representation of the phosphatidylinositol phospholipid structure: 
the inositol ring can be phosphorylated in three different positions and is linked to a diacylglycerol backbone by a phosphodiester linker. 
Schematics of the localization of the different PI isoforms on the cellular compartments.
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An attractive hypothesis is that PIs might be organized as special-
ized membrane subdomains with distinct organelle localizations5. 
PI pools within the same compartment are locally synthesized 
thanks to the spatiotemporal regulation of different PI-metabolizing 
enzymes3,5. In addition, small GTPases of the ARF and RAB family 
also contribute to the generation and regulation of PI turnover on 
membranes9.

Considering the diffusion coefficient of lipid molecules within the 
membrane plane, it is likely that complementary mechanisms need 
to operate in order to spatially preserve the turnover of different 
PI subdomains. Indeed, several mechanisms have been reported 
in the literature to play roles as selective and reversible PI sinks 
by locally sequestering and releasing PIs. This is the case for the 
myristoylated alanine-rich C-kinase substrate (MARCKS) protein 
and the growth-associated protein 43 (GAP43)10. The unstructured 
basic cluster on the effector domain of the MARCKS protein is 
able to bind up to at least three PI(4,5)P

2
 molecules by means 

of nonspecific electrostatic interactions at physiologic pH. The 
Ca2+/calmodulin complex reversibly controls the association of 
MARCKS with the plasma membrane11. Interestingly, a growing 
number of studies report the local enrichment of PI subdomains 
independently of the catalytic activity of PI-metabolizing enzymes. 
Jahn and co-workers have shown that the SNAP receptor protein 
syntaxin-1A co-clusters with PI(4,5)P

2
 via electrostatic interactions 

with its juxtamembrane polybasic sequence12. The segregation of 
PI(4,5)P

2
 microdomains by syntaxin-1A has been proposed to work 

as a molecular beacon at sites of synaptic vesicle docking during 
exocytosis13. Similar polybasic clusters to that of the MARCKS pro-
tein or syntaxin-1A are found in the cytosolic membrane interface 
of many plasma membrane proteins14,15, including the epidermal 
growth factor receptor (EGFR) and the NMDA receptor as well as 
the voltage-gated potassium and calcium ion channels11. In vitro 
studies have shown that divalent cations such as Ca2+ are also 
capable of clustering together PI(4,5)P

2
 molecules, although the 

exact correlation with the activity of ion channels inside the cell 
has yet to be established. Following in vitro approaches on giant 
unilamellar vesicles (GUVs), clustering of PI(4,5)P

2
 was initially 

reported for ezrin16. Later on, using the yeast endocytic F-BAR/
BAR domains, Lappalainen and co-authors have shown that the 
scaffolding effect of these proteins leads to the formation of stable 
PI(4,5)P

2
 microdomains with reduced lateral diffusion in the mem-

brane plane17,18. Since then, the list of proteins involved in the for-
mation of PI(4,5)P

2
 clusters has been extended to other endocytic 

proteins such as Epsin2, AP180, and the N-BAR domain proteins 
amphiphysin1 and BIN119. So far, the formation of PI clusters has 
been mainly restricted to PI(4,5)P

2
, possibly owing to its multiple 

regulatory functions at the plasma membrane. In addition, PI(4,5)P
2
 

is more abundant than other more elusive PI isoforms and has 
therefore been the focus of many studies for several years.  
However, we recently reported that the monophosphate PIs PI4P 
and PI5P can also be clustered19.

PI clustering is a diffusion-driven process
PI clustering has initially been proposed to originate from elec-
trostatic interactions and, to a lesser extent, from hydrogen bond-
ing between PI headgroups. PI molecules appear thus sequestered 
beneath positively charged surfaces, which results in a significant 

reduction of lateral diffusion in the membrane plane17. The number 
of PI molecules that interact with basic residues is determined by 
the negative net charge of the PIs at a given pH. For instance, the 
charge of the PI(4,5)P

2
 molecules at pH 3 is −1.5e, whereas at 

pH 7.4, which is close to the pH of the cytosol (7.2), it is −4e20. 
For a N-BAR homodimer of charge +8e, one could estimate that 
at cytosolic pH, the stoichiometry of PI-interacting molecules per 
protein module is 2:1, which gives an estimated 1.5-fold increase 
of local PI(4,5)P

2
. However, experimental studies have shown that 

the binding of the N-BAR module on PI-containing membranes 
induces a local enrichment of at least 10-fold19. How could such a 
difference in the local PIs’ enrichment be explained?

Theoretical studies have shown that the binding of a positively 
charged protein with a negatively charged membrane induces lipid 
demixing near to the protein surface19,21. This phenomenon is the 
result of the combination of electrostatic interactions and an entro-
pic effect. Upon protein-membrane binding, charged lipids diffuse 
in the plane of the membrane towards the protein surface to preserve 
charge neutrality (Figure 2). In the case of monovalent lipids such 
as phosphatidylserine (PS), lipid demixing is almost negligible as 
a result of the fast K

on
/K

off
 rates between the protein and the mem-

brane, which prevents charged lipids to locally segregate22 (Figure 2, 
left panel). However, for multivalent lipids such as some PI species, 
the transient interaction with a positively charged protein gener-
ates an electrostatic potential well, which results in a reduction of 
the K

on
/K

off
 rates and in protein diffusion. Consequently, transient 

demixing of PI molecules can take place22 (Figure 2, right panel). As 
shown by numerical simulations and consistent with the estimated 
~10-fold increase from experimental data, PIs can cluster together 
up to nine lipid molecules per protein module. The trajectory of PI 
molecules in the plane of the membrane showed the existence of PI-
protein dissociation events, thus pointing out that clustered PI mol-
ecules are not sequestered19. Importantly, this behavior is observed 
at initial physiological relevant concentrations of 1% PI(4,5)P

2
.

PI demixing has been reported in both flat and curved membranes. 
In the latter case, the segregation of PI molecules is likely to be 
amplified by membrane curvature since it is reported to significantly 
reduce protein diffusion23 and lipid dynamics17. This is in agreement 
with recent molecular simulations that show that clustering of lipids 
such as PIs and GM3 correlates with membrane curvature8.

The “PI clustering” toolbox: electrostatic interactions 
and beyond
Local segregation of PIs into submicron domains has been mostly 
described for proteins with the intrinsic property to polymerize on 
membranes, such as the BAR domain family. Proteins of the BAR 
family can sense and generate membrane curvature, owing to the 
scaffolding structure that results from the homodimerization of the 
BAR module. Association of BAR proteins with membranes takes 
place through electrostatic interactions between positively charged 
amino acids on the concave/convex face of the dimeric module and 
acidic phospholipids24. PI clustering has been reported for proteins 
with F-BAR, BAR, N-BAR, and I-BAR modules17–19. The tendency 
of multivalent PIs to engage lipid demixing over the monovalent PS 
provides BAR proteins with some specificity to generate PI sub-
domains at the plasma membrane, where PI(4,5)P

2
 and PI(3,4,5)P

3
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are the predominant affected PI isoforms. According to the struc-
tural homology within members of the BAR superfamily, it is likely 
that the formation of PI-enriched microdomains could be a general 
feature of any protein hosting a BAR module. Combination of the 
BAR module with PI-binding motifs within the same protein might 
provide an additional layer of regulation and, possibly, production 
of monophosphate PI pools in other organelles than the plasma 
membrane, as observed in the case of BIN119. This suggests that the 
property of PI clustering might be extrapolated to some members 
of the sorting nexin (SNX) family holding a BAR module and a PX 
motif25, although this link has yet to be established.

The clustering of PIs is, however, not necessarily associated with 
the intrinsic ability of proteins to self-assemble. Indeed, the tran-
sient segregation of PIs is likely to generate a positive feedback 
loop. As a result, proteins that selectively interact with PIs can 
locally accumulate on PI-enriched areas, independently of their 
ability to polymerize, as observed for the ENTH and ANTH 
domains19. Therefore, PI clustering seems to be a general prop-
erty of proteins that directly interact with PIs via electrostatic 
interactions with more or less specificity for a given PI isoform. 
Accordingly, natively unstructured polybasic protein domains have 
also been shown to induce local segregation of PIs at the plasma 
membrane, as observed for MARCKS, GAP43, CAPS23, and 
syntaxin-1A10,13. The number of proteins that associate with acidic 
lipids at the plasma membrane through polybasic sequences is 
large14,15. For instance, several small GTPases have been shown to 
interact with plasma membrane PI(3,4,5)P

3
 and PI(4,5)P

2
 by means 

of polybasic clusters26.

PI clustering might be solely limited to ionic protein-lipid interac-
tions, although it is tempting to speculate that alternative or com-
plementary mechanisms might take on the stabilization of PI pools. 
For instance, recent studies have shown that the pinning of the 
cytoskeleton on membranes preserves liquid-ordered and liquid-
disordered (Lo-Ld) phase coexistence at physiological tempera-
tures (37°C)27,28. The polymerization of actin cytoskeleton was also 
shown to promote segregation of lipid phases in in vitro models29. 
These observations are in agreement with the “picket fence” model, 
which predicts that the cytoskeletal network might act as a diffu-
sion barrier for lipids and proteins30. The exact partition of PI(4,5)P

2
 

into Lo-Ld domains is not yet clear, but the depletion of choles-
terol with methyl-β-cyclodextrin was shown to reduce PI(4,5)P

2
 

levels at the plasma membrane31. The partition of PI(4,5)P
2
 to 

cholesterol-dependent domains was also reported using the tar-
geting of a 5-phosphatase32. In addition, the sequestration of 
syntaxin-1A microdomains at sites of synaptic vesicle exocytosis 
in the plasma membrane was shown to require the formation of 
cholesterol and PI(4,5)P

2
-mediated clusters, which are both distinct 

from lipid “rafts”12,33. An interesting observation is that Ld domains 
were found to align along actin fibers independently of the lipid 
phase to which actin was pinned28. This might be explained by 
local changes in membrane curvature induced by the actin network. 
Indeed, Ld domains appear to favor lipid sorting and membrane 
deformation34. Recently, numerical simulations have shown that 
clustering of lipids such as PI(4,5)P

2
 correlates with membrane 

curvature8. The exact contribution of membrane curvature itself in 
PI clustering is not yet established, but lipid packing defects asso-
ciated with membrane curvature might favor a better exposure of 

Figure 2. Schematic representation on how phosphoinositide (PI)-binding motifs can engage local demixing of PIs on cellular 
membranes. As an example, lateral view of the ENTH domain of Epsin (PDB code 1H0A) in cyan upon binding to a membrane that contains 
monovalent lipids such as phosphatidylserine (PS) (in orange, left panel) or PI(4,5)P2 (in magenta, right panel). Cyan arrows represent the 
Kon/Koff rates of the ENTH domain binding on membranes, being faster for PS over PI(4,5)P2. As a result, transient demixing of PI(4,5)P2 
molecules can take place. The diffusion of PS and PI(4,5)P2 in the plane of the membrane is depicted by orange and magenta arrows, 
respectively. Right panel shows a top view of PI(4,5)P2 clustering coarse-grain molecular dynamics simulations (as described in 19) on 
spontaneous membrane biding of an ENTH domain. The panels are snapshots at t = 0 μs and 4 μs of the individual position of PI(4,5)P2 
molecules (in magenta) along the simulation. Scale bar, 1 nm.
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PI(4,5)P
2
 headgroups19,35. Here, one will have to take into account 

in future experiments the nature of the fatty acids present on PI 
molecules, which might also impact on the rigidity and shape of the 
lipid bilayers to which they belong.

PI clustering: a novel regulator of intracellular 
trafficking and signaling?
Importantly, after PI clustering, protein-PI dissociation can still 
take place independently of the initial concentration of PIs19. This 
suggests that PI clusters are more dynamic than initially anticipated 
and that a given PI cluster could sequentially interact with different 
effectors. Thus, PI clustering induced by an upstream protein could 
favor the recruitment of a downstream PI-binding partner, provid-
ing a mechanism to coordinate trafficking or signaling events.

One process that PI clustering could regulate is clathrin-mediated 
endocytosis (CME). Indeed, the F-BAR, ANTH, ENTH, and N-BAR 
domains are present in central molecular players involved in 
CME36. All of these protein modules have been shown to engage 
local segregation of PI(4,5)P

2
17,19, which is the key PI isoform in 

CME. Therefore, PI clustering could participate in the spatiotemporal  

regulation of CME based on the affinity constant of the different 
protein intermediates and their interaction with PI(4,5)P

2
. A hypo-

thetical example of how PI clustering might operate in CME is 
shown in Figure 3, although the number of PI(4,5)P

2
 effectors 

implicated in CME is much larger (see Table 1). The polymeriza-
tion of the N-BAR module along the bud neck is likely to establish 
a diffusion barrier37, highly enriched in PIs, which would thereby be 
shielded from the activity of kinases and phosphatases. These fea-
tures might be relevant at different stages of clathrin-coated vesicle 
biogenesis. Indeed, the metabolic evolution of PIs during CME has 
been shown to be important for the maturation of clathrin-coated 
vesicles38. In addition, the segregation of lipid phases has been 
reported to generate sufficient line tension to induce membrane 
scission39. It is therefore possible that the PI demixing induced by 
BAR proteins plays an additional role in line tension-mediated fis-
sion at the last stage of CME, as suggested by theoretical studies40.

It is tempting to propose that the coordinated action of PIs and 
scaffolding protein complexes, in particular BAR proteins, is a  
general feature of the biogenesis of transport vesicles67. For instance, 
the N-BAR protein Arfaptin 1 has been shown to participate in  

Figure 3. Schematics of the potential role of phosphoinositide (PI) clustering to coordinate cell trafficking events: example of 
the biogenesis of a clathrin-coated vesicle. The F-BAR domain (Protein Data Bank [PDB] code 2V0O) of FCHo2 binds to the plasma 
membrane, driving PI(4,5)P2 segregation into clusters. The local PI(4,5)P2 enrichment drives the binding of Epsin through the interaction of 
its ENTH domain (PDB code 1H0A) with PI(4,5)P2. The Asn-Pro-Phe (NPF) domain of Epsin can interact with the EH domain (PDB code 3FIA) 
of Intersectin, which in addition hosts a PH domain (PDB code 1MAI) that binds to PI(4,5)P2. The dynamics of the system is likely influenced 
by the affinity constant of the PI(4,5)P2-binding motifs, which will determine the Kon/Koff of PI(4,5)P2-mediated membrane binding, and by the 
affinity constant between the different protein domains.
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the biogenesis of secretory storage granules through the interaction 
with PI4P at the trans-Golgi network68. The ArfGAP ASAP1 also 
carries a BAR module along with a PI-binding motif and has been 
shown to provide a platform to regulate Arf4 and Rab8/Rab11-
mediated targeting of rhodopsin transport carriers to cilium69. 
Finally, some members of the SNX family also hold a BAR module 
in addition to the characteristic PX domain, which typically binds 
to PI3P6. The SNX-BAR proteins are implicated in tubule-based 
endosomal sorting70. This includes the two retromer subunits SNX1 
and SNX2, SNX5, and SNX6 or SNX4 among others71,72. One may 
speculate that the formation of PI clustering together with the bind-
ing affinity for different PI effectors might be linked to the ability of 
SNX-BAR proteins to define tubular endosomal subdomains.

PI clustering could also play an important role in the coordina-
tion of signaling events. Interestingly, the juxtamembrane segment 
of the EGFR, which is implicated in the activation of the recep-
tor, is also composed of a cluster of basic residues that interact 
with PI(4,5)P

2
73,74. Indeed, natively unstructured polybasic pro-

tein domains have been shown to engage PI(4,5)P
2
 clustering11.  

The interaction of the EGFR with PI(4,5)P
2
 is required for the 

activation and downstream signaling of the receptor at the plasma 
membrane and seems also to regulate its fate in the endosomal com-
partments. The first observation that PI4P 5-kinase activity generat-
ing PI(4,5)P

2
 pools was associated with the EGFR and required for 

appropriate activation and downstream signaling originates from 

the early 90s75. Later studies demonstrated that PI(4,5)P
2
 cluster-

ing induced by the binding and antiparallel dimerization of the 
juxtamembrane segments of two associated EGFRs can lead to 
the activation of the receptor even in the absence of ligand76. This 
property was suggested to be important at a high density of EGFR 
monomers (>800/µm2), as is often observed in aberrant activation 
of the receptor in cancers73,77. In this condition, formation of EGFR 
nanoclusters takes place as a result of the electrostatic interaction 
between PI(4,5)P

2
 molecules at the plasma membrane and the jux-

tamembrane region of the receptor78.

Recent evidence demonstrates that PI(4,5)P
2
 generated on endo-

somes is required for the appropriate sorting of active EGFR 
towards multivesicular bodies and further termination of the signal. 
This process relies on the recruitment of the endosomal type Iγ PIP 
kinase, PIPKIγi5, that gets targeted to early endosomes by asso-
ciation with SNX5, an effector of PI(4,5)P

2
. The kinase will then 

increase local pools of PI(4,5)P
2
, also required for association of 

SNX5 with Hrs proteins that will then interact with ubiquitinated 
EGFR and ensure its proper sorting79.

It is noteworthy that most of the tyrosine kinase receptors of the 
EGFR family harbor a polybasic juxtamembrane domain that could 
play the same role in terms of ligand free activation or sorting 
and signal transduction (e.g. insulin-like growth factor 1 receptor 
[IGF1R], vascular endothelial growth factor receptor [VEGFR], 

Table 1. PI(4,5)P2 effectors implicated in CME. The table shows an overview of all the possible 
options that exist in the PI(4,5)P2-mediated protein recruitment during the different stages of CME. 
Notice that although the interaction with PI(4,5)P2 is mostly electrostatically driven, some effectors 
hold structured motifs with specific affinities/selectivity for PI(4,5)P2. In addition, effectors can 
act as either monomers or larger assemblies, although PI(4,5)P2 clustering can engage the local 
accumulation of proteins that typically do not self-assemble as a result of positive feedback19.

Mammalia 
n protein

Function PI(4,5)P2 
interaction

Self- 
assembly

References

FCHo 1/2 Membrane curvature (F-BAR) Charge dependent Yes 17,41,42

AP2 Adaptor complex α subunit 
C-μ2 subunit

No 43,44

Intersectin Scaffolding protein PH domain Yes 45–47

AP180, CALM Adaptor of AP2 and clathrin ANTH domain No 48,49

HIP1-HIP1R Links actin to clathrin ANTH domain No 49,50

Epsin Membrane bending ENTH domain No 49,51

Amphiphysin Membrane curvature (N-BAR) Charge dependent Yes 19,24,52

Endophilin Membrane curvature (N-BAR) Charge dependent Yes 24,53

Syndapin Membrane curvature (F-BAR) Charge dependent Yes 17,54,55

SNX 9/18 Membrane curvature (BAR) PX domain Yes 56,57

Dynamin Scission PH domain Yes 58–60

OCRL PI 5-phosphatase PH domain No 61

Numb Cargo adaptor (Notch) PTB/PI domain No 62,63

Dab2 Cargo adaptor (LDLR) DH domain No 64–66

ARH Cargo adaptor (LDLR) PTB/PI domain No 65,66
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platelet-derived growth factor receptor [PDGFR], and fibroblast 
growth factor receptor 1 [FGFR1], among others)76. Although 
PI clustering being a general feature of membrane-associated 
polybasic domains provides an attractive hypothesis to activate 
receptors and trigger signaling, work is still needed to define whether 
it is a broad mechanism or applies only to some specific proteins.

Conclusions
The spatiotemporal remodeling of PI pools within distinct 
organelles is an intrinsic feature that makes possible the orchestra-
tion of PI-mediated cellular functions. Indeed, PIs are constantly 
subjected to the activity of PI-metabolizing enzymes and must be 
in addition accessible to effectors. Because the lateral diffusion of 
lipid molecules within the membrane plane is extremely fast, PI 
clustering comes up as a realistic mechanism to locally preserve 
newly metabolized PI pools on cellular membranes. Indeed, Balla 
and co-workers already anticipated that PI4P replenishment from 
the Golgi was not essential to preserve the plasma membrane 
pool, although it does contribute to its formation80. Irvine and  
co-authors also showed that the maintenance of the steady-
state pool of PI(4,5)P

2
 at the plasma membrane does not require 

localization of its synthetic precursor PI4P on the same cellular 
compartment81. It is tempting to speculate that PI clusters might 
work as potential platforms to coordinate PI-mediated protein 
interactions or as molecular beacons, as previously proposed13. 
Nevertheless, the myriad of protein modules capable of engaging 
PI clustering is becoming broad. Based on structural homolo-
gies, one might predict that the list will progressively increase. An 
interesting feature to point out is that PI clustering seems to be a 
general mechanism for either multivalent or monophosphate PIs19. 
The precise regulatory role of PI clustering in trafficking and sig-
nal transduction has still to be established, but it certainly opens 
up exciting perspectives in the field. For instance, PI clustering 
might orchestrate the different steps in carrier biogenesis. Also, the 
ability of cellular receptors to engage PI clustering might 

determine their sorting to the appropriate compartment. The physi-
ological implication of PI clustering in living organisms has yet 
to be established. Recent studies have already shown that the oli-
gomerization of Sec14-nodulin proteins controls the localization 
of PI(4,5)P

2
 and signaling landscape in polarized membrane 

morphogenesis in Arabidopsis thaliana root hairs82,83. Despite 
the role of PIs in many cellular processes, certain PI isoforms 
and functions have often been elusive due to the lack of detec-
tion or labeling strategies, which is typically limited to the use of 
PI-binding motifs with all of the associated side effects. The 
development of novel experimental strategies capable of detecting 
the intrinsic dynamics of PIs or of exploiting the recently developed 
sub-100nm life cell imaging techniques84 will be key to unraveling 
the regulatory role of PI clustering.
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