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Several neurological disorders characterized by cognitive deficits, including Alzheimer’s disease, down syndrome, and epilepsy
exhibit abnormal spine density and/or morphology. Actin-based cytoskeleton network dynamics is critical for the regulation of
spine morphology and synaptic function. In this paper, I consider the functions of drebrin A in cell shaping, spine plasticity,
and synaptic function. Developmentally regulated brain protein (drebrin A) is one of the most abundant neuron-specific binding
proteins of F-actin and its expression is increased in parallel with synapse formation. Drebrin A is particularly concentrated in
dendritic spines receiving excitatory inputs. Our recent findings point to a critical role of DA in dendritic spine structural integrity
and stabilization, likely via regulation of actin cytoskeleton dynamics, and glutamatergic synaptic function that underlies the
development of spontaneous recurrent seizures in pilocarpine-treated animals. Further research into this area may provide useful
insights into the pathology of status epilepticus and epileptogenic mechanisms and ultimately may provide the basis for future
treatment options.

1. Introduction

The human brain is composed by hundred billion neurons
interconnected in order to form functional neuronal net-
works that control higher brain functions, such as learning,
thoughts, emotions, and memory throughout life. The com-
munication between neurons within neuronal networks is
mediated via synapses. Tight control mechanisms of the
formation, growth, and connectivity of synapses are crucial
for accurate neural network activity and normal brain func-
tion. For example, the development, remodeling, and elim-
ination of excitatory synapses on dendritic spines represent
ways of refining the microcircuitry in the brain. Thus, when
processes involved in structural synapses and/or synaptic
function go awry, either during normal aging or in disease,
dysfunction of the organism occurs.

2. Dendritic Spines and Functions

Dendritic spines are tiny protrusions from the dendritic
tree that serve as the postsynaptic component for the vast

majority of excitatory synapses in the central nervous system
[1–4]. These protrusions are found on most excitatory and
some inhibitory neurons [2, 3, 5, 6]. The dendritic spine
consists of a bulbous head connected to the dendritic shaft
by a narrow neck [1, 7]. The narrow neck of the spine
forms a spatially isolated compartment where molecular
signals can rise and drop without diffusing to neighboring
spines along the parent dendrite, thus allowing the isolation
and/or amplification of received signals. Such limitation of
molecular signals to one spine may participate to the “axonal
inputs specificity,” permitting a given set of axon terminals
to induce alterations only within synapses that are specific
to their postsynaptic contacts and not at other synapses on
the same neuron formed by different axon terminals [3, 8].
Thus, it is widely accepted that dendritic spine constitutes
a postsynaptic biochemical compartment that separates the
synaptic space from the dendritic shaft and allows each spine
to function as a partially independent unit [2, 9]. In addition
to constitute sites for the development of glutamatergic
neuronal networks, these dendritic protrusions might be
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cellular substrates for synaptic transmission and plasticity
[3, 10].

Numerous studies have shown that spines are highly
motile structures, and their shape, size, and density change
during development and adulthood. During development,
dendritic protrusions start out as filopodia, which evolve di-
rectly into dendritic spines or lead to the formation of shaft
synapses from which spines rise at later stages of synapto-
genesis [11–13]. In adults, these changes are influenced by
several factors, including synaptic activity and plasticity [14–
16], and are also associated with learning [17], aging [18], as
well as diseases. Indeed, abnormal changes in spine density
and morphology are observed in many neurological disor-
ders characterized by cognitive deficits, such as Alzheimer’s
disease (AD), down syndrome, fragile X syndrome, and epi-
lepsy [2, 3, 19]. Because spine morphology is closely associ-
ated with synaptic function, altered spines in disease condi-
tions are likely to have diverse functional effects leading to
the neurological symptoms of such disorders. The molecular
mechanisms by which physiological and pathological stimuli
modulate dendritic spine structure and function are not
fully understood, but may involve regulation of the actin
cytoskeleton [3, 4, 20].

3. Dendritic Spines and Actin Cytoskeleton

The actin filament (F-actin) is one of the most abundant
cytoskeleton elements found in dendritic spines [21–24].
These actin filaments are thought to be the most convincing
key site for the molecular mechanisms regulating spine plas-
ticity [4, 25–28]. In addition, time-lapse studies showed
that actin-based plasticity in dendritic spines is activity-
dependent [27]. Consistent with this observation, it has been
shown that long-term potentiation (LTP), a well-described
form of experimental synaptic plasticity, is associated with
enhanced F-actin content in dendritic spines in vivo [29]
and in vitro [30, 31]. Therefore, the identification of the
molecular basis underlying the spine plasticity and function
are fundamental to understand the mechanisms of synaptic
plasticity in physiological conditions as well as in some neu-
rological disorders.

4. Drebrin A in Dendritic Spine Plasticity and
Synaptic Function

Several proteins that bind to actin filaments govern the
actin cytoskeleton properties. The adult isoform of drebrin,
drebrin A (DA), a major neuron-specific binding protein of
F-actin, emerges as a convincing candidate protein for
providing particular characteristics to the actin cytoskeleton
of dendritic spines [32–35]. DA is specifically and highly
enriched in dendritic spines of mature neurons [36–39] and
is shown to inhibit the actin-binding activity of tropomyosin,
fascin and α-actinin [40, 41]. In vitro, DA also blocks the
interaction between actin and myosin [36, 42], indicating
that it modulates actin filament contractility. In fibroblasts,
the overexpression of DA causes reorganization and stabi-
lization of actin filaments leading to the alteration in their
cell morphology [35, 38, 43] (see Figure 1(a)), and that these

effects are mediated by its actin-binding domain [35, 38].
Such transfections in mature hippocampal neurons revealed
that DA increases dendritic spine length, size, and density
[35, 38] (see Figures 1(b) and 1(c)), and again these effects
require the actin-binding domain of DA [35, 38]. Conversely,
the reduction of DA expression by antisense oligonucleotide
treatment in developing hippocampal neurons significantly
decreases the width and density of filopodia spines [44, 45].
Overall, these observations strongly suggest that DA regulates
the physiological dendritic spine plasticity via regulation of
actin cytoskeleton reorganization and dynamics. In addition
to its role in cell shape and dendritic spine plasticity, DA
might play a role in regulating synaptic function. Indeed,
our electrophysiological data revealed that overexpression
of DA in cultured mature hippocampal neurons increases
excitatory and inhibitory synaptic transmission leading to
the alteration of the normal excitatory-inhibitory (E/I)
balance in favor of excitation [35, 38].

5. Drebrin A in Reactive Synaptic Plasticity

Some of the molecular mechanisms that are involved in spine
plasticity under physiological conditions could also be reused
in the disease states, but may be activated in an extreme or
inappropriate manner leading to the pathological changes
in dendritic structure and dynamics. Thus, we hypothesized
that DA is one of the regulators of actin filaments during
the physiopathological conditions such as reactive dendritic
spine plasticity. Since a thorough analysis of the molecular
mechanisms underlying synaptic dysfunction in various neu-
rological disorders is difficult to perform using postmortem
human tissue, several laboratories have produced animal
models that mimic some symptoms of a particular neuro-
logical disorder. For this purpose, we tested our hypothesis,
relying on a well-characterized experimental model of tem-
poral lobe epilepsy (TLE) induced by pilocarpine in adult
rats (see Figure 2). This model was selected because a
dynamic reorganization of the glutamatergic network, in-
cluding neurodegeneration [47–50], neurogenesis [51–
53], neo-spinogenesis, morphogenesis [54, 55], and neo-
synaptogenesis associated with an aberrant sprouting of
granule cell axons [47, 56, 57], is well established in the
dentate gyrus (DG). This reactive plasticity contributes to
the dentate granule-cell hyperexcitability that could lead to
the emergence of recurrent spontaneous seizures. The dy-
namic reorganization begins after the initial period of
status epilepticus following pilocarpine injection, continues
during the silent period when animals display a normal
behavior, and reaches a plateau at the chronic stage when the
animals have developed spontaneous recurrent seizures (see
Figure 2). Altogether, these data indicate that in pilocarpine-
induced seizures, DA is not critical for spinogenesis and
morphogenesis but is rather involved in the structural
integrity and stabilization of dendritic spines of hippocampal
granule cells. This likely occurs via regulation of the actin
cytoskeleton dynamics, and glutamatergic synaptic function
that underlies the development of recurrent spontaneous
seizures described in the pilocarpine model [39].
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Figure 1: Drebrin A overexpression affects the morphology of cultured CHO-K1 cells and dendritic spines plasticity of cultured mature
hippocampal neurons. In contrast to GFP (A), CHO-K1 cells transfected with DA-GFP (A′) display striking morphological changes
characterized by the formation of several processes frequently branched. Blue color reveals nuclear staining by Hoechst 33258. Mature
hippocampal neurons were transfected at 21 days in vitro with GFP (B) and DA-GFP (B′). After 2 days of transfection (23 days in vitro),
neurons were fixed and then examined by a confocal microscope. Striking morphological changes are observed between dendritic spines
of GFP- and those of DA-GFP neurons. Indeed, the dendrites of DA-GFP neurons display longer spines (inset in B′) compared with those
found in GFP neurons (inset in (B)). Some spines labeled with DA-GFP can reach over 5 μm (inset in (B′), see asterisk). Scale bars: 5 μm in
(A), (A′), (B), and (B′) and 2 μm in insets. (c) Table showing the spine length, density, and head width of GFP, DA-GFP, GFP-DAΔABS, and
GFP-ABS neurons. GFP: green fluorescent protein; DA-GFP: drebrin A fused to GFP; GFP-DAΔABS: drebrin A without its actin binding site
(ABS) fused to GFP; GFP-ABS: actin binding site of drebrin A fused to GFP; P: probability; NS: not significant.



4 International Journal of Cell Biology

Latent stage Chronic stage

1st spontaneous 
seizure

Injection of pilocarpine (i.p),
a muscarinic cholinergic agonist

Diazepam

Adult rat: 

Animals displayed an 
apparently normal behaviour 

Animals have developed 
spontaneous recurrent seizures

Pilocarpine model: a model of t emporal lobe epilepsy induced by pilocarpine in adult rat

    Status
epilepticus
     (SE)

3 hr

200–290 gr

3–16 weeks1–2 weeks

Figure 2: Scheme illustrating a model of temporal lobe epilepsy induced by pilocarpine in adult rat. Adult rats were injected intraperitoneally
(i.p.) with pilocarpine hydrochloride, a muscarinic cholinergic agonist. The injection produces a status epilepticus (SE) that is stopped after
3 hr by a single injection of diazepam to reduce mortality of the animals. The rats were then observed periodically in the vivarium for general
behavior and occurrence of spontaneous seizures for a period of 16 weeks. Pilocarpine-treated animals were analyzed at several postinjection
intervals: during the latent period, when animals displayed an apparently normal behavior (1 and 2 weeks), and during the chronic stage,
when the animals have developed spontaneous recurrent limbic seizures (8–16 weeks). It has been previously demonstrated in this model
of pilocarpine-treated rats, by using in vivo electroencephalographic recordings that the first spontaneous seizures occur during the third
week after status epilepticus [46]. In this model, a dynamic reorganization of the glutamatergic network, including neurodegeneration,
neurogenesis, neo-spinogenesis, spine morphogenesis, and neo-synaptogenesis associated with an aberrant sprouting of granule cell axons,
is well established in the dentate gyrus.

5.1. Drebrin A May Be Involved in the Structural Integrity and
Stabilization of Dendritic Spines at a Chronic Stage of Epilepsy.
Under physiological conditions, mossy cells, the major type
of neurons within the hilar region of the hippocampal
DG, receive excitatory inputs on their characteristic “thorny
excrescences” from mossy fiber axons of the dentate gran-
ule cells [59–61]. Thorny excrescences are predominantly
present on the proximal dendrites of cells displaying a mossy
appearance, hence their name [62]. Mossy cells in turn send
their axonal projections to the ipsi- and contra-lateral inner
molecular layer (IML) and form excitatory synapses mainly
onto proximal dendritic spines of granule cells [61, 63–67].
It has been reported that spiny hilar mossy cells and their
axon terminals degenerate in the human TLE and in the
pilocarpine model [48, 57]. The degeneration of mossy cells
and their axon terminals after pilocarpine-induced seizures
results in a deinnervation of their postsynaptic targets, gran-
ule cell dendrites within the IML. Several other experimental
paradigms such as entorhinal cortex lesion or hippocampal
deafferentation with severe loss of presynaptic input cause
alterations of postsynaptic target structures, including a loss
of dendritic spines [68–71]. According to our results, one of
the effects of this deinnervation is a significant decrease in
the immunolabeling of Bassoon, a specific marker of pre-
synaptic active zones, in the IML 1-2 weeks after pilo-
carpine treatment [39]. The subsequent recovery of Bassoon
immunolabeling in the IML 12 weeks after pilocarpine
treatment is likely due to the formation of aberrant sprouting
of mossy fibers after status epilepticus [47, 56, 57], which has
been shown to be involved in the establishment of functional
excitatory synaptic boutons on granule cell dendrites [57, 72,
73]. If the recovery in Bassoon immunolabeling at chronic
stage reflects an increased number of synaptic terminals due
to mossy fiber sprouting, then we would expect a significant

reexpression of DA in granule cell dendritic spines associated
with newly formed synapses. Indeed, our data clearly show
an increase in the expression of DA protein which coincides
with an increase in Bassoon-containing terminals at 12
weeks after pilocarpine injection, further suggesting that the
increase in DA protein levels occurs in dendritic spines that
are associated with newly formed synapses.

In addition to the degeneration of mossy cells and their
synaptic inputs in the IML, dendrites of dentate granule cells
display a global spine loss immediately after the status epi-
lepticus induced by injection of pilocarpine. This spine loss
is transitory and is followed by a recovery in spine density
that begins 3 days after status epilepticus and reaches a
plateau level 15–35 days later. Conversely, these spine den-
sities are still low in comparison with control values [54, 55,
74]. Interestingly, the recovery proportion depends on spine
morphology. Indeed, mushroom-shaped spines recover
slower, and partially, than thin spines bearing a clear neck
[54, 55]. Based on our results, one of the effects of this
spine loss consists in a significant reduction of DA im-
munolabeling observed in the IML 1 and 2 weeks after
pilocarpine treatment, when spinogenesis and spine mor-
phogenesis occur (see Figure 3). This finding is consistent
with the work of Takahashi and colleagues [44, 45], showing
that downregulation of DA by antisense oligonucleotide
treatment significantly decreases the density of filopodia
spines. Therefore, our data indicate that DA is not crucial in
the recovery of these plastic changes in spine shape and
density after the initial acute seizures-induced by pilocarpine,
in contrast to other actin-binding proteins such as acidic
calponin [58]. Indeed, several lines of evidence reinforce
this idea based on the following observations: (1) in mature
neurons, acidic calponin is localized mostly in dendritic
spines [75]; (2) overexpression of acidic calponin in cultured
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Figure 3: Comparison of immunohistochemical labeling for drebrin A in hippocampal formation from control (Ctl; (a)) and pilocarpine-
treated animals at 1 week (b), 2 weeks (c), and 12 weeks (d). The major difference compared to Ctl animals (a) is observed in the molecular
layer (M) and in the hilus (H). In the pilocarpine-treated rats at 1 week (b) and 2 weeks (c), DA immunolabeling is strongly decreased in
the inner molecular layer (IML) and in the H when compared with Ctl rats (a), whereas no difference is observed in pilocarpine-treated
animals at 12 weeks (Chronic; (d)). The loss of labeling in these regions contrasted with the preservation of the levels of immunolabeling in
the outer molecular layer (OML) and granule cell layer (G). Scale bars = 50 μm in ((a), (b), (c), and (d)). (e) Table showing the comparison
of % optical density for drebrin A protein in H and IML between control and pilocarpine-treated animals at 1, 2, and 12 weeks. H: hilus;
IML: inner molecular layer; P: probability, NS: not significant. Modified with permission from [39].



6 International Journal of Cell Biology

OML

IML

G

H

Control

(a)

OML

IML

G

H1 week

(b)

OML

IML

G

H

2 weeks

(c)

OML

IML

G

H
Chronic

(d)

Acidic calponin
      protein Optical density (%), P

Control

Pilocarpine-treated rats

1 week

2 weeks

16 weeks

G
100% 100%

IML

123%,<0.001

110%,<0.001

112%,<0.001

170%,<0.001

148%,<0.001

98.8%,<0.001

(e)

Figure 4: Comparison of immunohistochemical labeling for acidic calponin in hippocampal formation from control (Ctl; a) and
pilocarpine-treated animals at 1 week (b), 2 weeks (c), and 16 weeks (d). In a Ctl rat (a), immunolabeling for acidic calponin in the dentate
gyrus (DG) is mainly found in astrocytes (arrows) and cells located along the infragranular region of the granule cell layer (G). A diffuse
staining is evenly observed in all parts of the molecular layer (M) including the inner molecular layer (IML). In pilocarpine-treated animals
at 1 and 2 weeks, immunolabeling for acidic calponin is substantially increased in IML of the DG compared with Ctl (a) and to pilocarpine-
treated rats at 16 weeks (d). In all pilocarpine-treated animals, immunolabeling for acidic calponin is also found in astrocytes (see arrows)
located in the M. Scale bars = 50 μm in (a), (b), (c), and (d). (e) Table showing the comparison of % optical density for acidic calponin
protein in G and IML between Ctl and pilocarpine-treated animals at 1, 2, and 16 weeks. G: granule cell layer; IML: inner molecular layer;
P: probability; NS: not significant. Modified with permission from [58].
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Figure 5: Potential signaling pathways and molecular mechanisms mediating dendritic spine injury and drebrin A loss in epilepsy.
Acute seizure or chronic epileptogenesis may lead to activation of calcium-dependent phosphatase, calcineurin, which in turn causes
cofilin dephosphorylation either directly or indirectly via an intermediary phosphatase, known as slingshot. Cofilin activity can also be
regulated by phosphorylation via the PAK-LIM-kinase pathway. Thus, higher slingshot and/or lower PAK/LIM kinase activities in the
hippocampi with epilepsy, leading to less phosphorylation of cofilin, would potentially increase cofilin binding to F-actin, and this could
cause depolymerization of F-actin, leading to the prevention and/or dissociation of drebrin from its actin-binding site. This would result in
drebrin A translocation to the cytosol leading to its degradation by active caspase. Ultimately, the breakdown of the actin cytoskeleton in
dendrites can lead to synaptic dysfunction in epilepsy.

HEK 293 cells induces major morphological changes through
a reorganization of actin filaments [76]; (3) such transfec-
tions in primary cultures of rat hippocampal neurons causes
an elongation of spines and an increase of their density [77];
(4) the increase in the immunolabeling for acidic calponin
is observed at the latent period (1-2 weeks after pilocarpine
injection) [58] (see Figure 4), a period of important remod-
eling of dendritic spine shape and density in dentate granule
cells [54, 55]; finally, the main in vitro effect of the calponin
family is to inhibit actomyosin activity [78, 79]. Altogether,
these observations indicate that acidic calponin may affect
the organization and the dynamics of actin filaments, leading
to the plasticity in the shape and density of dendritic spines
after status epilepticus.

The fact that the recovery of DA protein expression is
observed at the chronic stage (see Figure 3), when functional
glutamatergic synapses are being established may indicate a
critical role of DA in the structural integrity and stabilization
of dendritic spines and synaptic function at this period. In
addition to DA, other actin-binding proteins such as synap-
topodin may contribute to these functions. In favor of this
idea, the work of Roth et al. [80] showed that the expression

of synaptopodin protein, also enriched in dendritic spines, is
induced at the chronic stage and is associated with synaptic
remodeling processes following kainate-induced epilepsy in
rat. Nevertheless, we cannot completely exclude the possi-
bility that the subsequent recovery of DA protein expression
at the chronic stage after transient reduction reflects in part
the plastic changes in spine shape and density induced by
DA on outgrowing dendrites of newly formed granule cells
subsequent to pilocarpine-induced neurogenesis [51–53].
This hypothesis is supported by recent data [35, 38], showing
that overexpression of DA in mature hippocampal neurons
induces a significant increase in spine length, size, and den-
sity. These spine plastic changes might be related to the
properties of the drebrin family, which is shown to stimulate
polymerization via profilin [81–83], bundling, and stabiliza-
tion of actin filaments [35, 38, 84, 85]. Therefore, it seems
that the period of spinogenesis on dendrites of newly formed
granule cells coincides with the period when the mossy fiber
sprouting reaches a plateau level [47, 56, 57], suggesting
that these new spines might be involved in the formation
of aberrant functional synapses with newly formed mossy
fiber terminals. Indeed, our data showed that the increase in
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Figure 6: Scheme illustrating the potential role of drebrin A in reactive synaptic plasticity after pilocarpine-induced seizures. Drebrin A
together with other proteins such as synaptopodin might be more involved in the structural integrity and stabilization of dendritic spines
of hippocampal granule cells, and glutamatergic synaptic function that underlies the development of spontaneous recurrent seizures in
pilocarpine animals, at chronic stage, whereas acidic calponin could contribute to the plastic changes in shape and density occurring after
status epilepticus.

DA protein levels in the IML at chronic stage occurs within
dendritic spines that are adjacent to terminals labeled for
vGlut1, a glutamatergic presynaptic marker, and Bassoon.
Altogether, our observations suggest that the main part of
DA recovery in the IML at chronic stage occurs in new spines
located on preexisting granule cell dendrites.

5.2. Molecular Mechanisms Mediating Drebrin A Loss at a
Latent Stage of Epilepsy. At least three molecular mecha-
nisms have been considered to explain the loss of DA in
pilocarpine-treated animals. First, drebrin has been charac-
terized as a substrate of caspase-6 [86], which is activated
in epilepsy [87–90]. Thus, direct breakdown by caspases is a
possible reason for the failure to detect drebrin immunore-
activity in the IML. Second, the cleavage of cytoskeletal
proteins such as fodrin [91], which is observed in epilepsy,
could lead to the release of drebrin from the membrane
compartment into the cytosol. This view is supported by
a protease such as calpain, which might well be involved
[91]. A third potential mechanism involves the activation
of a calcium-dependent phosphatase, calcineurin (CaN), via
its regulation of the actin-depolymerizing factor, cofilin [92,
93]. Cofilin is an actin-binding protein, which when dephos-
phorylated binds to F-actin and causes its depolymerization
[94, 95]. Recent studies indicated that CaN induces cofilin
dephosphorylation either directly [96] or indirectly via the
slingshot phosphatase [93, 97–99]. Cofilin activity can also
be regulated by phosphorylation via the PAK-LIM-kinase
pathway [93, 100, 101]. In all cases, higher slingshot and/or
lower PAK/LIM kinase activities in the hippocampi with ep-
ilepsy leading to a decrease in cofilin phosphorylation, would
potentially increase cofilin binding to F-actin, and this could

prevent and/or dissociate drebrin from its actin-binding site.
As a result, drebrin would be translocated to the cytosol and
degraded by caspase [86–90, 102] and/or by calpain, because
of its several calpain cleavage sites enriched in proline,
glutamate, serine, and threonine (PEST sites) [36, 86, 103].
This idea is supported by in vitro data obtained from cultured
hippocampal neurons treated with soluble Aβ1-42 oligomer
as well as in vivo experiments in which intracerebral injec-
tions of PAK inhibitors in rodents induce translocation of
drebrin from the membrane to the cytosol [104]. Ultimately,
the alteration of the actin cytoskeleton dynamics in dendrites
can lead to synaptic dysfunction in epilepsy [92, 93, 105] (see
Figure 5). Obviously, all these molecular mechanisms can
take place simultaneously to participate in drebrin loss and
dendritic injury in the IML of pilocarpine-treated animals.

5.3. Drebrin A May Be Involved in Synaptic Function at a
Chronic Stage of Epilepsy: Functional Implications in Epilepsy.
Besides its role in cell shape and dendritic spine plasticity,
DA may play a role in synaptic function. Indeed, it has
been shown that DA induces spinous clustering of the post-
synaptic density (PSD) scaffold protein, PSD-95 [44] as well
as activity-dependent synaptic targeting of NMDA receptors
[45]. Upon induction of LTP in the hippocampus, drebrin
expression is enhanced within dendritic spines [29]. Consis-
tent with this observation, we showed that the recovery in
DA protein levels in the IML occurs within dendritic spines
that are involved in the formation of aberrant functional
glutamatergic synapses with the newly formed mossy fiber
terminals of presumed granule cells. In addition, the reduc-
tion of DA mediated by antisense oligonucleotides causes
cognitive deficits [106]. Recently, we reported the functional
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role of DA in regulating synaptic transmission. Indeed, the
overexpression of DA induces an increase in glutamatergic
but not GABAergic synapses and results in the alteration
of the normal excitatory-inhibitory (E/I) ratio in favor of
excitation in mature hippocampal neurons [35, 38]. As
epilepsy involves hyperexcitable neurons, a basic assumption
links the pathogenesis of epilepsy and the generation of
synchronized neuronal activity with an imbalance between
inhibitory and excitatory neurotransmission in favor of the
latter [107, 108]. Thus, we propose that DA may serve as
one of the molecular factors leading to the alteration of the
normal excitatory-inhibitory balance in favor of excitation
observed in the DG at the chronic stage of epilepsy [109].
In this context, our studies identified DA as a potential target
in order to modulate hyperexcitability in epilepsy.

6. Conclusions

Based on all these findings, we conclude that DA together
with other proteins such as synaptopodin might be more
involved in the structural integrity and stabilization of den-
dritic spines. These effects are probably mediated via reg-
ulation of actin cytoskeleton dynamics, and glutamatergic
synaptic function that underlies the development of spon-
taneous seizures in pilocarpine animals at chronic stage. In
contrast, acidic calponin could contribute to the plastic chan-
ges in shape and density occurring after a status epilepticus
described in pilocarpine model [54, 55, 92] (see Figure 6).
Further insights into the mechanisms how actin-based spine
plasticity is induced by seizures could have a major impact in
preventing the long-term negative consequences of epilepsy
and ultimately may provide the basis for future treatment
options.
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