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Abstract

Our recent study (referred as Study 1) showed that the triterpenoid oleanolic acid (OA) was able to produce a sustained
correction of hyperglycemia beyond treatment period in type 2 diabetes (T2D) mice with liver as a responsible site. To
follow up the previous observations, the present study (referred as Study 2) investigated the possible role of acetylation of
FoxO1 and associated events in this therapeutic memory by characterizing the pathways regulating the acetylation status
during and post-OA treatments. OA treatment (100 mg/kg/day for 4 weeks, during OA treatment) reduced hyperglycemia in
T2D mice by ,87% and this effect was largely (,70%) maintained even 4 weeks after the cessation of OA administration
(post-OA treatment). During OA treatment, the acetylation and phosphorylation of FoxO1 were markedly increased (1.5 to
2.5-fold) while G6Pase expression was suppressed by ,80%. Consistent with this, OA treatment reversed pyruvate
intolerance in high-fat fed mice. Histone acetyltransferase 1 (HAT1) content was increased (.50%) and histone deacetylases
(HDACs) 4 and 5 (not HDAC1) were reduced by 30–50%. The OA-induced changes in FoxO1, G6Pase, HAT1 and HDACs
persisted during the post-OA treatment period when the increased phosphorylation of AMPK, SIRT1 content and reduced
liver triglyceride had subsided. These results confirmed the ability of OA to control hyperglycemia far beyond treatment
period in T2D mice. Most importantly, in the present study we demonstrated acetylation of FoxO1 in the liver is involved in
OA-induced memory for the control of hyperglycemia. Our novel findings suggest that acetylation of the key regulatory
proteins of hepatic gluconeogenesis is a plausible mechanism by the triterpenoid to achieve a sustained glycemic control
for T2D.
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Introduction

Type 2 diabetes (T2D) is a major disease with serious

consequences [1]. As hyperglycemia is a major cause of the organ

damages, it is essential to control the hyperglycemia effectively to

prevent its complications [2]. Recent studies including ours have

indicated that triterpenoid compounds may emerge as potential

anti-diabetic drugs with distinct therapeutic properties [3,4]. In

humans, triterpenoids have demonstrated promising therapeutic

effects for diabetic complications such as nephropathy [5] where

prolonged hyperglycemia is a major culprit [6].

Several mechanisms have been proposed to be involved in the

anti-diabetic effects of triterpenoids. For example, in both L6

myotubes and 3T3-L1 adipocytes, triterpenoids have been found

to stimulate the translocation of GLUT4 from cytosol to plasma

membrane via the AMP-activated protein kinase (AMPK)

pathway [4]. AMPK has been reported as a major cellular target

of several anti-diabetic small molecules, namely metformin [7],

thiazolidinedione (pioglitazone and rosiglitazone) [8] and berber-

ine (BBR) [9]. Interestingly, our recent studies showed that these

triterpenoids may activate AMPK by a mechanism entirely

different from these anti-diabetic small molecules [10]. Addition-

ally, triterpenoids has been found to suppress mitochondrial ROS,

inflammation and glucose-6-phosphatase (G6Pase) expression in

the liver of db/db mice [11]. These studies described above indicate

that triterpenoids might be a valuable source for the discovery of

new efficacious anti-diabetic drugs. Moreover, as reviewed

recently, the mechanism for the anti-diabetic properties of

triterpenoids is unlikely to be confined to the simultaneous

presence of AMPK activation [3], particularly after the removal

of the treatment.
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Oleanolic acid (OA) is a pentacyclic triterpenoid abundantly

available in the plant kingdom and it has been used for the

treatment of lung cancer [12]. We recently observed that OA was

able to substantially reduce hyperglycemia in a mouse model of

T2D generated by high-fat diet (HF) plus low doses of

streptozotocin (STZ) injections and this effect was sustained for

at least 4 weeks after the cessation of its administration (referred as

Study 1) [13]. With the use of glucose tracers, we identified the

suppression of hepatic glucose production as a source of the

sustained normalization of blood glucose in Study 1 [13].

However, the mechanism involved remained to be investigated.

Acetylation of key regulators has been suggested to involve in

metabolic memory to normalize hyperglycemia [14,15]. To follow

up the previous observation in Study 1, the present study (referred

as Study 2) investigated the possible role of acetylation of FoxO1

and associated events in this therapeutic memory by comparing

their responses during and post-OA treatments. To ensure the

consistency of the treatments, Study 2 was performed under

similar designs and experimental conditions as Study 1 but in

different cohorts of mice.

Materials and Methods

Animal experiments
Ten-week-old male C57BL/6J mice (Animal Resources Centre,

Perth, Australia) were housed at 2261uC on a 12-hour light/dark

cycle with free access to water and food. After one week of

acclimatization, mice were fed ad libitum a standard lab chow (CH)

diet (12% calories from fat, 65% calories from carbohydrate and

23% calories from protein) or a HF diet (45% calories from fat, 35%

calories from carbohydrates and 20% calories from protein) for 10

weeks to generate insulin resistance as described previously [16].

HF-fed mice were then injected with vehicle (saline) or low doses of

STZ (40 mg/kg/day, to block the compensatory secretion of

insulin) for 5 consecutive days to generate a T2D mouse model

(T2D mice) [17,18]. Once hyperglycemia (fasting blood glucose .

14 mM) was developed, one group of T2D mice received OA

(100 mg/kg/day) in the HF diet for 4 weeks (during OA treatment,

T2D-OA) before tissue collection; another group of T2D mice

received OA (100 mg/kg/day) in the HF diet for 2 weeks and then

fed an OA-free HF diet for another 4 weeks (post-OA treatment,

T2D-OA) before tissues collection, while the rest of the mice

remained on either the CH or HF diet. Body weight, food intake

and blood glucose were monitored weekly. Mice were sacrificed by

cervical dislocation. All experiments were carried out with the

approval of the Animal Ethics Committees of the Royal Melbourne

Institute of Technology University (Project #1012) in accordance

with the guidelines of the National Health and Medical Research

Council of Australia.

Measurement of oxygen consumption in isolated
mitochondria

Mitochondria were isolated as described previously [9]. Briefly,

rat livers were homogenized in medium containing 250 mM

sucrose, 10 mM Tris-HCl, 1 mM EGTA, and 1% fatty acid free

BSA, pH 7.4. Mitochondrial respiration was measured at 37uC
with a Clark-type oxygen electrode (Strathkelvin Instruments,

Scotland) in a respiration medium containing 225 mM mannitol,

75 mM sucrose, 10 mM Tris-HCl, 10 mM KH2PO4, 10 mM

KCl, 0.8 mM MgCl2, 0.1 mM EDTA and 0.3% fatty acid-free

BSA, pH 7.0. The effects of different compounds were determined

in the presence of excess ADP (2.4 mM), using substrate

combinations targeting either Complex I (5 mM pyruvate plus

2 mM malate) or Complex II (10 mM succinate plus 4 mM

rotenone) of the respiratory chain.

Assessment of blood glucose, blood insulin and liver
triglyceride

Blood glucose was measured using a glucometer (AccuCheck II,

Roche, Australia) while insulin was determined by radioimmuno-

assay (Linco/Millpore, USA). At the end of the study, mice were

killed by cervical dislocation and the relevant tissue samples were

immediately freeze-clamped. Triglyceride levels in plasma and

liver were determined by a Peridochrom triglyceride GPO-PAP kit

(Roche Diagnostics, USA) [19].

Assessment of glucose and pyruvate tolerance
Intraperitoneal glucose tolerance tests (ipGTT, 1.0 g glucose/kg

body weight) were performed after 5–7 hours fasting after 2 weeks

of OA administration and 2 weeks after the cessation of OA

administration. Blood glucose levels were measured at 0, 15, 30,

60 and 90 min and plasma insulin levels were sampled at 0, 15, 30

and 60 min. The effect of OA on hepatic glucose production from

Table 1. Metabolic responses during and post OA administration in T2D mice induced by HF-STZ.

During OA treatment Post-OA treatment

CH T2D T2D-OA CH T2D T2D-OA

Body weight (g) 29.860.5 27.760.3 25.361.4**{ 31.960.8 30.260.7 29.360.7*

Caloric intake (kcal/mouse/day) 13.660.7 12.260.6 10.960.7 10.960.5 12.261.2 14.161.3

Blood glucose (mM) 9.660.2 21.360.4** 11.161.2{{ 10.060.5 26.361.3** 14.862.3{{

ipGTT AUC (mM 690 min) 1442638 2902671** 20456171**{{ 1494671 26096131** 1838698**{{

Blood insulin (pg/ml) 361637 306645 240621** 367629 301663 212612**

Blood insulin (5–60 min, pg/ml) 417637 181613** 241628**{ 441636 191618** 280637**

Plasma triglyceride (mM) 1.160.1 2.160.2** 1.360.2{{ 1.660.1 2.060.4* 1.860.1

Liver triglyceride (mmol/g) 7.660.9 16.860.9** 11.360.6*{{ 12.960.9 18.960.9** 24.962.3**

During treatment: 4-week administration of oleanolic acid (OA, 100 mg/kg/day in HF diet). Parameters were measured within the last 2 weeks of treatment. Post-
treatment: 2-week administration of OA (100 mg/kg/day in HF diet) followed by feeding with an OA-free HF diet for 4 weeks. Parameters were measured within the
last 2 weeks of the post-treatment period. CH, chow fed mice (normal control); T2D, HF-fed mice with STZ injections (untreated T2D); T2D-OA, T2D with OA treatment.
AUC, area under the curve of blood glucose levels during an ipGTT. Data are shown as means 6 SE. * p,0.05, ** p,0.01 vs. corresponding CH; { p,0.05, {{ p,0.01 vs.
corresponding T2D. n = 7–8 mice per group.
doi:10.1371/journal.pone.0107231.t001
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gluconeogenesis was examined in another cohort of mice. Briefly,

mice fed a HF diet for 8 weeks were treated with OA at the same

dose (100 mg/kg/day) in the HF diet for the last 2 weeks. The

pyruvate tolerance test (PTT) was performed with an intraperi-

toneal injection of sodium pyruvate (2.0 g/kg body weight in

1xPBS) after overnight fasting. Blood glucose levels were measured

at 0, 15, 30, 60 and 90 min.

Western blot analysis
Freeze-clamped liver tissues were homogenized in ice-cold RIPA

lysis buffer at pH 7.5 supplemented with protease and phosphatase

inhibitor cocktails. Protein levels in tissue homogenates were

determined using the bi-cinchonnic acid method (Bio-Rad Labora-

tories Inc., USA). Liver lysates containing equal amount of proteins

were resolved by SDS-PAGE. Activation of key insulin signaling

proteins and levels of lipogenic and gluconeogenic enzymes were

examined by immunoblotting using specific antibodies. Forkhead box

protein O1 (FoxO1), p-FoxO1Ser256, HDAC4, p-HDAC4Ser632,

HDAC5, p-HDAC5Ser498, HDAC1, AMPK, p-AMPKThr172, acetyl-

CoA carboxylase (ACC), p-ACCSer79, fatty acid synthase (FAS),

stearoyl-CoA desaturase 1 (SCD1), Akt, p-AktSer473, glycogen

synthase kinase 3b (GSK3b) and p-GSK3bSer9 were obtained from

Cell Signaling (USA). Acetyl-FoxO1lys259, 262 and 271 and sterol

regulatory element-binding protein 1c (SREBP-1c) were purchased

from Santa Cruz (USA). HAT1 and sirtuin 1 (SIRT1) were from

Abcam and Millipore (USA) respectively. Quantitative densitometry

Figure 1. Changes in phosphorylation and acetylation of FoxO1 and the gene expression of PEPCK and G6Pase in the liver. Mice liver
samples were freeze-clamped after 4 weeks of OA administration (During OA treatment) (A) or 4 weeks after the cessation of OA administration (Post-
OA treatment) (B). Liver lysates from mice were immunoblotted with phosphorylated (p-), acetylated (ac-), total (t-) FoxO1 and quantified for
statistical analysis. A separate aliquot of liver sample was extracted for quantitative analysis of the gene expression of PEPCK and G6Pase. Data are
mean 6 SE. *p,0.05, **p,0.01 vs. T2D mice. n = 5–8 mice per group.
doi:10.1371/journal.pone.0107231.g001
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analysis was performed using Image Lab software (Bio-Rad

Laboratories Inc., USA).

Quantitative real-time PCR
Total RNA was extracted from liver tissues with TRIZOL

(Invitrogen, USA) according to manufacturer’s instructions.

Reverse transcription was performed with 0.125 mg of RNA using

a high capacity cDNA reverse transcription kit (Applied Biosys-

tems, USA). Real time PCR was conducted using IQ SYBR Green

Supermix (Bio-Rad Laboratories Inc., USA). The gene expression

from each sample was analyzed in duplicates and normalized

against the housekeeper 18S. The primer sequences (Genework,

Australia) (59 to 39) were as follows: 18S, CGCCGCTAGAGGT-

GAAATTCT (sense) and CGAACCTCCGACTTTCGTTCT

(antisense); phosphoenolpyruvate carboxykinase (PEPCK), CCA-

CAGCTGCTGCAGAACA (sense) and GAAGGGTCGCA-

TGGCAAA (antisense); G6Pase, AACGCCTTCTATGT-

CCTCTTTC (sense) and GTTGCTGTAGTAGTCGGTGTCC

(antisense). All reactions were performed on the iQTM 5 Real

Time PCR Detection System (Bio-Rad Laboratories Inc., USA).

Statistical Analysis
Data are presented as mean 6 SE. One-way analysis of

variance (ANOVA) was used for comparison of relevant groups.

When significant variations were found, the Dunnett’s multiple

comparisons test was applied. Differences at p#0.05 were

considered to be statistically significant.

Results

Sustained correction of hyperglycemia induced by OA
treatment

We first confirmed the effects of OA treatment on glucose and

lipid metabolism in a model of T2D mice [13]. HF-feeding and

low-dose of STZ injections induced typical characteristics of the

late stage of T2D including hyperglycemia (.2 fold), hypertri-

glyceridemia (,80%) and hepatic steatosis (2.2-fold) (all p,0.01

vs. CH-fed mice, Table 1 left panel). OA treatment (T2D-OA)

normalized hyperglycemia and hypertriglyceridemia in T2D mice

and significantly reduced hepatic steatosis (by 33%) (all p,0.01 vs.

T2D mice, Table 1 left panel). The T2D-OA group also displayed

improved glucose tolerance (30%, p,0.01, Table 1 left panel) and

slightly greater plasma insulin availability during ipGTT. While

body weight was reduced by ,9% (p,0.01, Table 1 left panel),

there was no significant change in caloric intake or plasma insulin

levels in OA-treated T2D mice. 4 weeks after the termination of

OA, these mice still maintained a normalized glucose level and

improved glucose tolerance (both p,0.01 vs. T2D mice, Table 1

right panel) despite a full regain of body weight and hepatic

steatosis (p.0.05 vs. T2D mice, Table 1 right panel).

Changes in FoxO1 activity and the expression of its
downstream gluconeogenic genes

Liver plays an essential role to maintain glucose homeostasis

particularly during fasted states by gluconeogenesis. FoxO1, one of

the key regulators, mediates the expression of key genes (G6Pase

and PEPCK) in the hepatic gluconeogenic pathway. We firstly

examined the changes of FoxO1 and its downstream genes. T2D

mice showed decreased phosphorylation of FoxO1 (1.0060.07

vs.1.4360.10 of CH mice, p,0.05, n = 5–8) and increased total

content of FoxO1 (1.0060.13 vs. 0.7560.12 of CH mice, n = 5–8)

compared to non-diabetic CH mice. The phosphorylation of

FoxO1 in the liver was augmented by 1.7-fold and 1.4-fold during

and post-OA treatment, respectively (Fig. 1A, B). In line with the

increased phosphorylation of FoxO1, its total content was reduced

by 50% both during (p,0.01, Fig 1A) and after the treatment (p,

0.05, Fig 1B). These results were consistent with our previous

observations in Study 1 [13].

In addition, acetylation of FoxO1 has been reported to reduce

the expression of key enzymes in gluconeogenesis [14,15,20].

However, the possible role of acetylation was not investigated in

Study 1 [13]. In the present study, we reasoned whether or not the

sustained glycemic control initiated by OA might result from the

long-term acetylation of FoxO1. In T2D mice, the acetylation of

FoxO1 was markedly reduced compared to non-diabetic CH mice

(1.0060.07 vs. 1.4860.08 of CH mice, p,0.05, n = 5–8). OA

treatment restored the acetylation of FoxO1 at the specific residues

of lysine 259, 262 and 271 (1.7-fold, p,0.01 vs. T2D, Fig 1A).

The removal of OA did not alter the increased acetylation of

FoxO1 established by the treatment (Fig 1B).

Along with this, the mRNA expression of G6Pase, which is a

rate-limiting regulator for gluconeogenesis, was also found to be

up-regulated in the T2D mice (1.0060.17 vs. 0.7260.15 of CH

mice, during OA treatment; 1.0060.27 vs. 0.5960.21 of CH

mice, post-OA treatment, all n = 5–8). Consistent with the changes

in FoxO1, the gene expression of G6Pase was down-regulated in

Figure 2. Effect of OA treatment on pyruvate tolerance test in high-fat fed mice. Mice were fed with HF diet for 8 weeks and treated with
OA (100 mg/kg/day) in the HF diet for the last 2 weeks. The pyruvate tolerance test was performed with an intraperitoneal injection of sodium
pyruvate (2.0 g/kg body weight in 1xPBS) after overnight fasting. Left panel, blood glucose levels were measured at 0, 15, 30, 60 and 90 min; Right
panel, incremental area under the curve (iAUC). CH: chow fed mice; HF: high-fat fed mice; HF-OA: high-fat fed mice treated with OA (100 mg/kg/day
in diet for 2 weeks). Data are mean 6 SE. *p,0.05, vs. T2D mice. {p,0.05 vs. CH mice. n = 6–8 mice per group.
doi:10.1371/journal.pone.0107231.g002
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the T2D mice during OA treatment (,80%, Fig 1A), which was

maintained in post-OA treatment (,50%, both p,0.05 vs. T2D

mice, Fig. 1B). Although there was a trend of the down-regulation

of PEPCK during OA treatment, which is another rate-limiting

regulator for gluconeogenesis, this trend was not sustained after

the cessation of OA treatment.

Figure 3. Changes in histone acetyl-transferase 1 and Class IIa histone deacetylases in the liver. Mice liver samples were freeze-clamped
after 4 weeks of OA administration (During OA treatment) (A) or 4 weeks after the cessation of OA administration (Post-OA treatment) (B). Liver
lysates from mice were immunoblotted with HAT1, phosphorylated (p-) and total (t-) HDAC 4 and 5 (Class IIa HDACs) and quantified for statistical
analysis. Data are mean 6 SE. *p,0.05, **p,0.01 vs. T2D mice. n = 5–8 mice per group.
doi:10.1371/journal.pone.0107231.g003
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Effect of OA on hepatic glucose production from
pyruvate

To determine whether OA affects hepatic glucose production in
vivo, we next examined the effect of OA treatment on pyruvate

tolerance in HF-fed mice. As shown in Fig. 2, HF feeding

significantly induced pyruvate intolerance compared with CH-fed

mice, as indicated by a 50% increase in the incremental area

under the curve (iAUC) of blood glucose (322.6620.9 vs.

210.8628.0 mM of CH mice, p,0.05, n = 6–8). OA dramatically

suppressed the increased glucose production in HF-fed mice by

,40% (p,0.05).

Changes in histone acetyltransferase and deacetylases in
the liver

Recent studies indicate that acetylation of key transcription

factors can maintain an induced phenotype even the trigger is no

longer present [15,21]. Protein acetylation is regulated by histone

acetyltransferases (HATs) and deacetylases (HDACs) [22]. We

found that the content of Class IIa HDACs, namely HDAC4

(1.0060.11 vs. 0.7060.03 of CH mice, p,0.05, n = 5–8) and

HDAC5 (1.0060.25 vs. 0.5760.08 of CH, p,0.05, n = 5–8) were

elevated in the liver of T2D mice whereas the expression of HAT1

was not altered in T2D mice (1.0060.08 vs. 0.8060.04 of CH

mice, p.0.05, n = 5–8).

As shown in Fig. 3A, OA treatment induced an 80% increase in

HAT1 content in T2D mice (p,0.05 vs. T2D mice) while the

expression of HDAC4 and HDAC5 were markedly reduced (50%,

p,0.05). The reduced expression of these HDACs was associated

with increases in their phosphorylation (1.5–3-folds, p,0.01),

which is indicative of protein deactivation [22]. Removal of OA

did not alter the pattern of changes in HAT1 content and the

acetylation of HDAC4 and HDAC5 (Fig. 3B). In comparison,

there was no significant change in the protein levels of HDAC1 (a

Class I HDAC) in response to OA treatment (Fig. 4A, B). The

expression of SIRT1 was reduced in the liver of T2D mice

compared to non-diabetic CH mice (1.0060.05 vs. 1.4860.10 of

CH mice, p,0.05, n = 5–8) and OA treatment induced a 50%

increase (p,0.05 vs. T2D mice, Fig. 4A) in the expression of

SIRT1 (a Class III HDAC). However, this increase was not

maintained after the cessation of OA treatment (Fig. 4B).

Changes in the AMPK pathway and its downstream key
lipogenic enzymes in the liver

Triterpenoids have been shown to activate AMPK [4] and

activated AMPK can phosphorylate/acetylate FoxO1 to suppress

hepatic gluconeogenesis [23,24]. However, the possible role of

AMPK and its downstream targets in the metabolic response

following OA treatment was not examined in Study 1 [13]. We

found in the present study that phosphorylation of AMPK was

reduced in T2D mice (1.0060.13 vs. 2.0860.24 of CH-fed mice,

p,0.01, n = 5–8). OA administration restored the phosphoryla-

tion of AMPK (2-fold, p,0.05, Fig. 5A) and its downstream

effector ACC (1.7-fold, p,0.05, Fig. 5A). The expression of the

mature form of SREBP-1c (mSREBP-1c), SCD-1 and FAS were

increased in T2D mice compared to non-diabetic mice (1.0060.16

vs. 0.8060.06 of CH mice; 1.0060.29 vs. 0.5160.19 of CH mice,

p,0.05; 1.0060.14 vs. 0.8860.15 of CH mice, all n = 5–8,

respectively). Consistent with the effect on AMPK and ACC, OA

treatment significantly reduced the levels of mature SREBP-1c

(mSREBP-1c by 58%), FAS (by 50%) and SCD-1 (by 61%) (all p,

0.05 vs. T2D mice, Fig. 5A). However, the effect of OA on the

phosphorylation of AMPK and ACC were not maintained after

cessation of OA (Fig. 5B). Coincided with the subsided activation

Figure 4. Changes in Class I HDAC and SIRT1 in the liver. Mice liver samples were freeze-clamped after 4 weeks of OA administration (During
OA treatment) (A) or 4 weeks after the cessation of OA administration (Post-OA treatment) (B). Liver lysates from mice were immunoblotted with
HDAC1 (Class I HDAC) and SIRT1 (Class III HDAC) and quantified for statistical analysis. Data are mean 6 SE. *p,0.05, vs. T2D mice. n = 5–8 mice per
group.
doi:10.1371/journal.pone.0107231.g004
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of AMPK, the protein levels of mSREBP1c, FAS and SCD-1 were

returned to similar levels as the T2D group (Fig. 5B).

Metformin, rosiglitazone and BBR for their anti-diabetic effects

and these agents also activate AMPK via inhibiting mitochondrial

respiration [9,25,26]. We therefore examined whether OA may

also inhibit the respiration of mitochondria isolated from the rat

liver using BBR as a positive control. As shown in Fig. 6, OA

treatment had no effects on mitochondrial respiration regardless of

substrates supplied for Complex I (pyruvate plus malate) or

Complex II (succinate with the presence of rotenone). Similar

results were observed in mitochondria isolated from the skeletal

muscle (data not shown). In contrast to OA, BBR attenuated

mitochondrial respiration in a dose-dependent manner via

inhibition of Complex I.

Changes in phosphorylation of Akt and GSK3b in the liver
As FoxO1-induced suppression of hepatic gluconeogenesis is

also under the regulation of Akt [27], we examined the

phosphorylation of Akt as well as its downstream target GSK3b
as a proxy of their enzymatic activity. T2D mice exhibited reduced

phosphorylation of Akt (1.0060.06 vs. 1.9760.09 of CH mice, p,

0.01, n = 5–8) and its downstream effector, GSK3b (1.0060.08 vs.

1.6060.21 of CH mice, p,0.05, n = 5–8) throughout the course of

experiment. As shown in Fig. 7, the phosphorylation of Akt was

Figure 5. Changes in the AMPK pathway and its downstream key lipogenic enzymes in the liver. Mice liver samples were freeze-clamped
after 4 weeks of OA administration (During OA treatment) (A) or 4 weeks after the cessation of OA administration (Post-OA treatment) (B). Liver
lysates from mice were immunoblotted with phosphorylated (p-) or total (t-) AMPK, and ACC, mature form of SREBP-1c (mSREBP-1c), SCD-1, FAS and
quantified for statistical analysis. Data are mean 6 SE. *p,0.05 vs. T2D. n = 5–8 mice per group.
doi:10.1371/journal.pone.0107231.g005
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increased by approximately 2 folds during OA treatment (Fig. 7A)

and this increase was sustained after the cessation of OA treatment

(Fig. 7B). A similar pattern of changes in the phosphorylation of its

downstream target GSK3b was observed both during and post-

OA treatments.

Discussion

Oleanolic acid (OA), a pentacyclic triterpenoid abundantly

available in the plant kingdom [12], has been shown to be effective

in treating various diseases such as diabetic nephropathy [5,28]

and cancer [12] in humans. We previously observed in Study 1

that OA ameliorated hyperglycemia beyond the cessation of its

administration only in T2D mice, but not in T1D mice [13]. The

same study also showed that the anti-hyperglycemic effect of OA

was largely independent of its moderate effect on food intake

during the period of OA administration. Indeed, the effect of

triterpenoids in reducing hyperglycemia in T2D mice is consistent

with a recent study in db/db mice using an OA analogue [5,28].

The present study showed that the reduced hyperglycemia was

maintained without any reduction in food intake during the period

of post-OA treatment (Table 1). However, the molecular mech-

anisms underlying the sustained anti-hyperglycemic effects of OA

were not investigated. The present study (Study 2) confirmed that

the metabolic effect on hyperglycemia induced by OA in T2D is

memorized after the period of the treatment. As our previous study

revealed that the liver is a major target site [13], we next

investigated the molecular mechanisms underlying this sustained

anti-hyperglycemic effects (metabolic memory) with a focus on

FoxO1, a master transcription factor regulating hepatic gluconeo-

genesis. The present study found that OA triggered a marked

increase in the phosphorylation and acetylation of FoxO1 and

these post-translational regulations were memorized, leading to

the sustained inhibition of G6Pase expression (hence potentially

reducing hepatic glucose production) well beyond the cessation of

OA treatment. This mechanism is supported by a subsequent

study showing the suppression of the increased hepatic glucose

production from the gluconeogenesis with pyruvate as the

substrate in HF-fed mice. These findings indicate, for the first

time, a plausible mechanism of the metabolic memory for the

therapeutic effect of a triterpenoid on hepatic glucose metabolism

and glycemic control in a mouse model of T2D.

Liver is a major metabolic organ to maintain plasma glucose

levels particularly during fasted states by gluconeogenesis or

glycogenolysis. Excess hepatic glucose production is a major cause

of hyperglycemia in T2D due to a diminished ability of insulin to

suppress gluconeogenesis and/or glycogenolysis [29], namely

hepatic insulin resistance. G6Pase is a rate-limiting enzyme

controlling hepatic glucose production and this enzyme is largely

regulated at the level of mRNA expression [30]. While we have

observed a suppression of G6Pase in post-OA treatment in Study

1, whether G6Pase was already suppressed during OA treatment

was not studied [13]. The present study showed that G6Pase

expression was reduced during OA treatment along with the

attenuation of hepatic steatosis. As a result, both the fasting

hyperglycemia and pyruvate intolerance of OA-treated T2D mice

were almost reduced to the normal level of CH-fed mice,

suggesting the anti-hyperglycemic properties of OA are most

likely due to the inhibition of hepatic glucose production.

Moreover, the anti-hyperglycemic effect of OA observed in the

present study is consistent with a recent study in db/db mice

showing reduced hyperglycemia and hepatic G6Pase expression in

response to OA treatment [11].

Hepatic gluconeogenesis is under the direct regulation of

FoxO1, which mediates the expression of key genes of gluconeo-

genic pathway including G6Pase [31]. The transcriptional activity

of FoxO1 is regulated by post-translational modifications which

determine its subcellular location, molecular half-life, and/or

DNA-binding activity [32]. Amongst these modifications, both

phosphorylation and acetylation have been reported to dampen

the transcriptional activity of FoxO1. Phosphorylation at serine

256 has been demonstrated to suppress FoxO1 transactivation by

promoting its nuclear to cytosol shuttling [33]. Furthermore,

acetylation at the various lysine residues has been found to

attenuate the DNA binding activity of FoxO1 along with an

increased sensitivity to the serine phosphorylation mediated by Akt

[34,35]. Indeed, we found for the first time that OA treatment

triggered a marked and persistent acetylation of FoxO1 at lysine

Figure 6. Effect of OA on the respiration of isolated mitochondria from the liver. Mitochondria from rat liver were isolated and the effects
of OA/BBR were determined in the presence of excess ADP (2.4 mM), using substrate combinations targeting either Complex I (5 mM pyruvate plus
2 mM malate) or Complex II (10 mM succinate plus 4 mM rotenone) of the respiratory chain. Data are mean 6 SE. *p,0.05, **p,0.01 vs. vehicle
control (0 mM). n = 3 per group.
doi:10.1371/journal.pone.0107231.g006
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259, 262 and 271 residues. The phosphorylation/acetylation of

FoxO1 leads to its expulsion from the nucleus into the cytosol for

ubiquitination-dependent proteasome degradation [36], this may

explain the reduced expression of this protein in response to OA

treatment.

Acetylation is controlled by HATs and HDACs [37], and this is

crucial to the regulation of non-histone proteins, particularly

FoxO1 [38]. Intriguingly, the increase in FoxO1 acetylation was

sustained after the cessation of OA treatment and there was a

matching increase in HAT1 and the serine phosphorylation of two

specific Class IIa HDACs, namely HDAC4 and HDAC5. The

phosphorylation of these HDACs potentially provides docking

sites for the chaperone protein 14-3-3 which in turns promotes

their nuclear export into the cytosolic compartments where they

remain inactive [39,40]. Additionally, HATs may play a direct

role in regulating FoxO1 independent of HDACs. For example,

increased HAT activity acetylates (thus represses) FoxO-mediated

responses in C2C12 cells in response to dexamethasone and

starvation [41], which are known to increase hepatic gluconeo-

genesis. The concomitant increased availability of HAT1 and

decreased activity of Class IIa HDACs initiated by OA are likely to

trigger a sustained shift in the equilibrium of FoxO1 modification

towards enhanced protein acetylation status. Importantly, this shift

in acetylation of FoxO1 is sustained beyond the period of OA

treatment. Thus, our novel findings suggest acetylation may act in

concert with phosphorylation to constitute a metabolic memory on

Figure 7. Changes in the phosphorylation of Akt and GSK3b in the liver. Mice liver samples were freeze-clamped after 4 weeks of OA
administration (During OA treatment) (A) or 4 weeks after the cessation of OA administration (Post-OA treatment) (B). Liver lysates from mice were
immunoblotted with phosphorylated (p-) or total (t-) Akt and GSK3b, and quantified for statistical analysis. Data are mean 6 SE. *p,0.05, **p,0.01
vs. T2D mice. n = 5–8 mice per group.
doi:10.1371/journal.pone.0107231.g007
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FoxO1, repressing its transcriptional activity on gluconeogenic

genes leading to the long-lasting glycemic control in the OA-

treated mice.

One of the most intriguing novel observations in the present

study is that the changes in Class IIa HDACs, HAT1, FoxO1 and

G6Pase appeared to be memorized long after the direct action by

OA per se. Although the sustained phosphorylation of FoxO1 at

serine 256 strongly correlates with the increased activity of Akt as

well as the persistent improvement of glycemic control, these

changes are not due to the increased blood insulin level in both

during and post-OA treatment. Class IIa HDACs play a

regulatory role in physiological insulin action including the

suppression of glucose uptake and glucose transporters expression

in skeletal muscles [42,43], and reduction of the acetylation of the

insulin receptor substrate interfering with the proper insulin signal

transduction in the liver [44]. This may explain the effects on

glycemic control during OA treatment.

Activation of AMPK has been shown to induce the inhibitory

acetylation of FoxO1 via phosphorylation of HDAC 4 and 5, and

down-regulate G6Pase expression in the liver [14,45]. Consistent

with our previous reports [4,10], the present study found that

AMPK pathway was activated during OA administration. As

AMPK can suppress lipid synthesis by inhibiting SREBP-1c

[7,10], which is a master transcriptional factor of lipogenic

enzymes, this may explain the reduction in ACC, FAS and SCD-1

during OA administration. However, the sustained reduction in

hyperglycemia after the cessation of OA treatment is clearly

independent of the lipogenic pathway in the liver because the

effects on SREBP-1c, ACC, FAS and SCD-1 have all subsided.

These results also indicate that FoxO1 is unlikely to be a key

regulator of lipogenic enzymes in the present study as previously

suggested [46]. While activated AMPK can explain the suppres-

sion of hepatic gluconeogenesis by phosphorylating and acetylat-

ing FoxO1 as reported [23,24], the sustained changes in HAT1

and Class IIa HADCs after the cessation of OA treatment do not

require the simultaneous presence of chronic activation of AMPK.

Thus far, we are not aware of similar report for other anti-diabetic

agents which activate AMPK by different mechanisms. Further

studies are needed to investigate whether the activation of AMPK

is a prerequisite for the initiation of metabolic memory as reported

for its effect on viral infection [21].

Apart from AMPK, Akt is another key regulator of FoxO1-

induced suppression of hepatic gluconeogenesis [27]. Interestingly,

the OA-induced increase in Akt phosphorylation is sustained 4

weeks after the cessation of OA treatment. This suggests that the

sustained activation of Akt may also mediate the suppression of

FoxO1 and G6Pase expression. It has been reported that the

phosphorylation of Akt can be increased by chronic inhibition of

HDACs [47,48]. The inhibition of HDAC4 and 5 (increased

phosphorylation) in the present study is consistent with this notion.

As recently reviewed [3,12], OA widely presents in the plant

kingdom such as olive products. It has been tested in humans for

other conditions including the treatment for cancer [12] and

hepatitis without serious toxicity reported [3]. An analogue of OA

has also been shown to significantly improve diabetic nephropathy

in humans [5,28]. These reports suggest that OA may have a

favorable safe profile in humans. While specific clinical trials are

required to determine the safety of OA, our findings in this study

provide a proof of principle for the potential use of OA or its

analogues for the treatment of T2D.

In summary, our findings of the memorized changes in Class IIa

HDACs, acetylation and phosphorylation of FoxO1 in Study 2

provide novel insights into the mechanisms underlying the

persistent anti-hyperglycemic effects observed post-OA treatment

(Fig. 8). These modifications constitute a metabolic memory at the

post-translational level leading to a suppression of hepatic

gluconeogenesis via FoxO1 inhibition. Although the proposed

mechanism requires further study, our results suggest a potential of

pentacyclic triterpenoid class compounds as a long-lasting

therapeutic approach for T2D. In a broader sense, our mecha-

nistic data on OA also provide a basis for targeting Class IIa

HDACs and FoxO1 in the gluconeogenic pathway for the

sustained treatment of T2D.
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Figure 8. Proposed role of the hepatic HDACs/FoxO1 axis in
the sustained reduction of hyperglycemia post-OA treatment.
Administration of oleanolic acid stimulates AMPK activity which leads to
an increased inhibitory phosphorylation of class IIa HDACs. The
suppression of class IIa HDACs (and their possible reduction in the
nucleus) induces acetylation and phosphorylation of FoxO1 as
suggested [14]. The sustained inactivation of FoxO1 either by its
acetylation and/or phosphorylation may contribute to the persistent
anti-hyperglycemia effect of OA on HF-STZ induced T2D mice. The
mechanism for the sustainability of these effects in the absence of
AMPK activation (depicted in the shadow area) during the period of
post-OA treatment is yet to be determined.
doi:10.1371/journal.pone.0107231.g008
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