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    Chapter 2   

 Taking Bioinformatics to Systems Medicine       

      Antoine   H.  C.     van     Kampen        and     Perry   D.     Moerland      

  Abstract 

   Systems medicine promotes a range of approaches and strategies to study human health and disease at a 
systems level with the aim of improving the overall well-being of (healthy) individuals, and preventing, 
diagnosing, or curing disease. In this chapter we discuss how bioinformatics critically contributes to sys-
tems medicine. First, we explain the role of bioinformatics in the management and analysis of data. In 
particular we show the importance of publicly available biological and clinical repositories to support sys-
tems medicine studies. Second, we discuss how the integration and analysis of multiple types of omics data 
through integrative bioinformatics may facilitate the determination of more predictive and robust disease 
signatures, lead to a better understanding of (patho)physiological molecular mechanisms, and facilitate 
personalized medicine. Third, we focus on network analysis and discuss how gene networks can be con-
structed from omics data and how these networks can be decomposed into smaller modules. We discuss 
how the resulting modules can be used to generate experimentally testable hypotheses, provide insight into 
disease mechanisms, and lead to predictive models. Throughout, we provide several examples demonstrat-
ing how bioinformatics contributes to systems medicine and discuss future challenges in bioinformatics 
that need to be addressed to enable the advancement of systems medicine.  

  Key words     Bioinformatics  ,   Information management  ,   Biological networks  ,   Multi-omics  ,   Integrative 
bioinformatics  ,   Top-down systems biology  ,   Systems medicine  

1      Introduction 

 Systems medicine fi nds its roots in systems biology, the scientifi c 
discipline that aims at a  systems-level  understanding of, for example, 
biological networks, cells, organs, organisms, and populations. It 
generally involves a combination of wet-lab experiments and com-
putational (bioinformatics) approaches. Systems medicine extends 
systems biology by focusing on the application of systems-based 
approaches to clinically relevant applications in order to improve 
patient health or the overall well-being of (healthy) individuals [ 1 ]. 
Systems medicine is expected to change health care practice in the 
coming years. It will contribute to new therapeutics through the 
identifi cation of novel disease genes that provide drug candidates 



18

less likely to fail in clinical studies [ 2 ,  3 ]. It is also expected to 
 contribute to fundamental insights into networks perturbed by dis-
ease, improved prediction of disease progression, stratifi cation of 
disease subtypes, personalized treatment selection, and prevention 
of disease. To enable systems medicine it is necessary to character-
ize the patient at various levels and, consequently, to collect, inte-
grate, and analyze various types of data including not only clinical 
(phenotype) and molecular data, but also information about cells 
(e.g., disease-related alterations in organelle morphology), organs 
(e.g., lung impedance when studying respiratory disorders such as 
asthma or chronic obstructive pulmonary disease), and even social 
networks. The full realization of systems medicine therefore 
requires the integration and analysis of environmental, genetic, 
physiological, and molecular factors at different temporal and spa-
tial scales, which currently is very challenging. It will require large 
efforts from various research communities to overcome current 
experimental, computational, and information management 
related barriers. In this chapter we show how bioinformatics is an 
essential part of systems medicine and discuss some of the future 
challenges that need to be solved.  

2    Bioinformatics and High-Throughput Experimental Technologies 

   To understand the contribution of bioinformatics to systems medi-
cine, it is helpful to consider the traditional role of bioinformatics 
in biomedical research, which involves basic and applied (transla-
tional) research to augment our understanding of (molecular) pro-
cesses in health and disease. The term “bioinformatics” was fi rst 
coined by the Dutch theoretical biologist Paulien Hogeweg in 
1970 to refer to the study of information processes in biotic sys-
tems [ 4 ]. Soon, the fi eld of bioinformatics expanded and bioinfor-
matics efforts accelerated and matured as the fi rst (whole) genome 
and protein sequences became available. The signifi cance of bioin-
formatics further increased with the development of high- 
throughput experimental technologies that allowed wet-lab 
researchers to perform large-scale measurements. These include 
determining whole-genome sequences (and gene variants) and 
genome-wide gene expression with next-generation sequencing 
technologies (NGS;  see  Table  1  for abbreviations and web links) 
[ 5 ], measuring gene expression with DNA microarrays [ 6 ], identi-
fying and quantifying proteins and metabolites with NMR or (LC/
GC-) MS [ 7 ], measuring epigenetic changes such as methylation 
and histone modifi cations [ 8 ], and so on. These, “omics” tech-
nologies, are capable of measuring the many molecular building 
blocks that determine our (patho)physiology. Genome-wide 
 measurements have not only signifi cantly advanced our  fundamental 
understanding of the molecular biology of health and disease but 
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   Table 1 
  Abbreviations and websites   

 Abbreviation  Full  Website 

 ASD  Autism spectrum disorder 

 BBMRI  Biobanking and BioMolecular resources 
Research Infrastructure 

   http://bbmri-eric.eu     

 CASyM  Coordinating Action Systems Medicine    https://www.casym.eu     

 CGHub  The cancer genome hub    https://cghub.ucsc.edu     

 DIGGIT  Driver-gene inference by genetical- genomics and 
information theory 

 DREAM  Dialogue on reverse engineering assessment and 
methods 

   http://dreamchallenges.org     

 EBI  European Bioinformatics Institute    http://www.ebi.ac.uk     

 ELIXIR  European life-sciences infrastructure for biological 
information 

   http://www.elixir-europe.org     

 ENCODE  Encyclopedia of DNA Elements    https://www.encodeproject.org     

 eQTL  Expression quantitative trait loci 

 GTEx  Genotype- Tissue Expression project    http://www.gtexportal.org/
home     

 GWAS  Genome wide association study 

 ICGC  International Cancer Genome Consortium    https://icgc.org     

 IMI  European Innovative Medicines Initiative    http://www.imi.europa.eu     

 IMPROVER  Industrial methodology for process verifi cation    https://sbvimprover.com     

 ISCB  International Society of Computational Biology    http://www.iscb.org     

 LC/GC MS  Liquid/gas chromatography - mass spectroscopy 

 MGI  Mouse Genome Informatics    http://www.informatics.jax.org     

 NCBI  National Center for Biotechnology Information    http://www.ncbi.nlm.nih.gov     

 NGS  Next generation sequencing 

 NMR  Nuclear magnetic resonance 

 PheWAS  Phenome-wide association study 

 SIB  Swiss Institute of Bioinformatics    http://www.isb-sib.ch     

 SNP  Single nucleotide polymorphism 

 TCGA  The Cancer Genome Atlas    http://cancergenome.nih.gov     

 WGCNA  Weighted gene co-expression network analysis    http://labs.genetics.ucla.edu/
horvath/htdocs/
CoexpressionNetwork     
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have also contributed to new (commercial) diagnostic and prog-
nostic tests [ 9 ,  10 ] and the selection and development of (person-
alized) treatment [ 11 ]. Nowadays, bioinformatics is therefore 
defi ned as “Advancing the scientifi c understanding of living sys-
tems through computation” (ISCB), or more inclusively as 
“Conceptualizing biology in terms of molecules and applying 
‘informatics techniques’ (derived from disciplines such as applied 
mathematics, computer science and statistics) to understand and 
organize the information associated with these molecules, on a 
large scale” [ 12 ].

   It is worth noting that solely measuring many molecular com-
ponents of a biological system does not necessarily result in a 
deeper understanding of such a system. Understanding biological 
function does indeed require detailed insight into the precise func-
tion of these components but, more importantly, it requires a thor-
ough understanding of their static, temporal, and spatial 
interactions. These interaction networks underlie all (patho)physi-
ological processes, and elucidation of these networks is a major task 
for bioinformatics and systems  medicine  .  

    The developments in experimental technologies have led to chal-
lenges that require additional expertise and new skills for  biomedi-
cal   researchers:

 ●     Information management.  Modern biomedical research proj-
ects typically produce large and complex  omics data sets  , some-
times in the order of hundreds of gigabytes to terabytes of 
which a large part has become available through public data-
bases [ 13 ,  14 ] sometimes even prior to publication (e.g., 
GTEx, ICGC, TCGA). This not only contributes to knowl-
edge dissemination but also facilitates reanalysis and meta- 
analysis of data, evaluation of hypotheses that were not 
considered by the original research group, and development 
and evaluation of new bioinformatics methods. The use of 
existing data can in some cases even make new (expensive) 
experiments superfl uous. Alternatively, one can integrate pub-
licly available data with data generated in-house for more com-
prehensive analyses, or to validate results [ 15 ]. In addition, the 
obligation of making raw data available may prevent fraud and 
selective reporting. The management (transfer, storage, anno-
tation, and integration) of data and associated meta-data is one 
of the main and increasing challenges in bioinformatics that 
needs attention to safeguard the progression of systems 
medicine.  

 ●    Data analysis and interpretation . Bioinformatics data analysis 
and interpretation of omics data have become increasingly 
complex, not only due to the vast volumes and complexity of 
the data but also as a result of more challenging research ques-
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tions. Bioinformatics covers many types of analyses including 
nucleotide and protein sequence analysis, elucidation of ter-
tiary protein structures, quality control, pre-processing and 
statistical analysis of omics data, determination of genotype- 
phenotype relationships, biomarker identifi cation, evolution-
ary analysis, analysis of gene regulation, reconstruction of 
biological networks, text mining of literature and electronic 
patient records, and analysis of imaging data. In addition, bio-
informatics has developed approaches to improve experimental 
design of omics experiments to ensure that the maximum 
amount of information can be extracted from the data. Many 
of the methods developed in these areas are of direct relevance 
for systems medicine as exemplifi ed in this chapter.    

 Clearly, new experimental technologies have to a large extent 
turned biomedical research in a data- and compute-intensive 
endeavor. It has been argued that production of omics data has now-
adays become the “easy” part of biomedical research, whereas the 
real challenges currently comprise information management and 
bioinformatics analysis. Consequently, next to the wet-lab, the com-
puter has become one of the main tools of the  biomedical researcher  .   

3    Bioinformatics  and Systems Medicine   

 Bioinformatics enables and advances the management and analysis 
of large omics-based datasets, thereby directly and indirectly con-
tributing to systems medicine in several ways (Fig.  1 ):

     1.    Design of new omics experiments [ 16 – 18 ].   
   2.    Information management of omics and clinical data 

(Subheading  4 ).   
   3.    Quality control and pre-processing of omics data. Pre- 

processing typically involves data cleaning (e.g., removal of 
failed assays) and other steps to obtain quantitative measure-
ments that can be used in downstream data analysis.   

   4.    (Statistical) data analysis methods of large and complex omics- 
based datasets. This includes methods for the integrative analy-
sis of multiple omics data types (Subheading  5 ), and for the 
elucidation and analysis of biological networks (top-down sys-
tems medicine; Subheading  6 ).    

  Systems medicine comprises top-down and bottom-up 
approaches. The former represents a specifi c branch of 
 bioinformatics, which distinguishes itself from bottom-up 
approaches in several ways [ 3 ,  19 ,  20 ]. Top-down approaches use 
omics data to obtain a holistic view of the components of a biologi-
cal system and, in general, aim to construct system-wide static 
functional or physical interaction networks such as gene 
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co-expression networks and protein-protein interaction networks. 
In contrast, bottom-up approaches aim to develop detailed mecha-
nistic and quantitative mathematical models for sub-systems. These 
models describe the dynamic and nonlinear behavior of interac-
tions between known components to understand and predict their 
behavior upon perturbation. However, in contrast to omics-based 
top-down approaches, these mechanistic models require informa-
tion about chemical/physical parameters and reaction stoichiom-
etry, which may not be available and require further (experimental) 
efforts. Both the top- down and bottom-up approaches result in 
testable hypotheses and new wet-lab or in silico experiments that 
may lead to clinically relevant fi ndings.  

4     Information Management for Systems Medicine 

   Biomedical research and, consequently, systems medicine are 
increasingly confronted with the management of continuously 
growing volumes of molecular and clinical data, results of data 
analyses and in silico experiments, and mathematical models. Due 

4.1  Public Databases 
in Systems Medicine

  Fig. 1    The contribution  of   bioinformatics ( dark grey boxes ) to systems medicine 
( black box ). (Omics) experiments, patients, and public repositories provide a wide 
range of data that is used in bioinformatics and systems medicine studies       
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to policies of scientifi c journals and funding agencies,  omics data   is 
often made available to the research community via public data-
bases. In addition, a wide range of databases have been developed, 
of which more than 1550 are currently listed in the  Molecular 
Biology Database Collection   [ 14 ] providing a rich source of bio-
medical information. Biological repositories do not merely archive 
data and models but also serve a range of purposes in systems med-
icine as illustrated below from a few selected examples. The main 
repositories are hosted and maintained by the major bioinformatics 
institutes including EBI, NCBI, and SIB that make a major part of 
the raw experimental omics data available through a number of 
primary databases including GenBank [ 21 ], GEO [ 22 ], PRIDE 
[ 23 ], and Metabolights [ 24 ] for sequence, gene expression, 
MS-based proteomics, and MS-based metabolomics data, respec-
tively. In addition, many secondary databases provide information 
derived from the processing of primary data, for example pathway 
databases (e.g., Reactome [ 25 ], KEGG [ 26 ]), protein sequence 
databases (e.g., UniProtKB [ 27 ]), and many others. Pathway data-
bases provide an important resource to construct mathematical 
models used to study and further refi ne biological systems [ 28 , 
 29 ]. Other efforts focus on establishing repositories  integrating 
information   from multiple public databases. The integration of 
pathway databases [ 30 – 32 ], and genome browsers that integrate 
genetic, omics, and other data with whole-genome sequences [ 33 , 
 34 ] are two examples of this. Joint initiatives of the bioinformatics 
and systems biology communities resulted in repositories such as 
BioModels, which contains mathematical models of biochemical 
and cellular systems [ 35 ], Recon 2 that provides a community- 
driven, consensus “ metabolic reconstruction  ” of human metabo-
lism suitable for computational modelling [ 36 ], and SEEK, which 
provides a platform designed for the management and exchange of 
systems biology data and models [ 37 ]. Another example of a data-
base that may prove to be of value for systems medicine studies is 
 MalaCards  , an integrated and annotated compendium of about 
17,000 human diseases [ 38 ]. MalaCards integrates 44 disease 
sources into disease cards and establishes gene-disease associations 
through integration with the well-known  GeneCards   databases 
[ 39 ,  40 ]. Integration with GeneCards and cross-references  within 
  MalaCards enables the construction of networks of related diseases 
revealing previously unknown interconnections among diseases, 
which may be used to identify drugs for off-label use. Another class 
of repositories are (expert-curated) knowledge bases containing 
domain knowledge and data, which aim to provide a single point 
of entry for a specifi c domain. Contents of these knowledge bases 
are often based on information extracted (either manually or by 
text mining) from literature or provided by domain experts 
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[ 41 – 43 ]. Finally, databases are used routinely in the analysis, inter-
pretation, and validation of experimental data. For example, the 
Gene  Ontology   (GO) provides a controlled vocabulary of terms 
for describing gene products, and is often used in gene set analysis 
to evaluate expression patterns of groups of genes instead of those 
of individual genes [ 44 ] and has, for example, been applied to 
investigate HIV-related cognitive disorders [ 45 ] and polycystic 
kidney disease [ 46 ].  

   Several repositories such as miR2Disease [ 47 ], PeroxisomeDB 
[ 41 ], and Mouse Genome Informatics (MGI) [ 43 ] include asso-
ciations between genes and disorders, but only provide very lim-
ited phenotypic information. Phenotype databases are of particular 
interest to systems medicine. One well-known phenotype reposi-
tory is the OMIM database, which primarily describes single-gene 
(Mendelian) disorders [ 48 ]. ClinVar is another example and pro-
vides an archive of reports and evidence of the relationships among 
medically important human variations found in patient samples 
and phenotypes [ 49 ]. ClinVar complements dbSNP (for single- 
nucleotide polymorphisms) [ 50 ] and dbVar (for structural varia-
tions) [ 51 ], which both provide only minimal phenotypic 
information. The integration of these phenotype repositories with 
genetic and other molecular information will be a major aim for 
bioinformatics in the coming decade enabling, for example, the 
identifi cation of comorbidities, determination of associations 
between gene (mutations) and disease, and improvement of dis-
ease classifi cations [ 52 ]. It will also advance the defi nition of the 
“human phenome,” i.e., the set of phenotypes resulting from 
genetic variation in the human genome. To increase the quality 
and (clinical) utility of the phenotype and variant databases as an 
essential step towards reducing the burden of human genetic dis-
ease, the Human Variome Project coordinates efforts in standard-
ization, system development, and (training) infrastructure for the 
worldwide collection and sharing of genetic variations that affect 
 human   health [ 53 ,  54 ].  

   To implement and advance systems medicine to the benefi t of 
patients’ health, it is crucial to integrate and analyze  molecular data   
together with de-identifi ed individual-level clinical data comple-
menting general phenotype descriptions. Patient clinical data refers 
to a wide variety of data including basic patient information (e.g., 
age, sex, ethnicity), outcomes of physical examinations, patient his-
tory, medical diagnoses, treatments, laboratory tests, pathology 
reports, medical images, and other clinical outcomes. Inclusion of 
clinical data allows the stratifi cation of patient groups into more 
homogeneous clinical subgroups. Availability of clinical data will 
increase the power of  downstream data analysis   and modeling to 
elucidate molecular mechanisms, and to identify molecular 
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biomarkers that predict disease onset or progression, or which 
guide treatment selection. In biomedical studies clinical informa-
tion is generally used as part of patient and sample selection, but 
some omics studies also use clinical data as part of the bioinformat-
ics analysis (e.g., [ 9 ,  55 ]). However, in general, clinical data is 
unavailable from public resources or only provided on an aggre-
gated level. Although good reasons exist for making clinical data 
available (Subheading  2.2 ), ethical and legal issues comprising 
patient and commercial confi dentiality, and technical issues are the 
most immediate challenges [ 56 ,  57 ]. This potentially hampers the 
development of systems medicine approaches in a clinical setting 
since  sharing and integration   of clinical and nonclinical data is con-
sidered a basic requirement [ 1 ].  Biobanks   [ 58 ] such as BBMRI 
[ 59 ] provide a potential source of biological material and associ-
ated (clinical) data but these are, generally, not publicly accessible, 
although permission to access data may be requested from the bio-
bank provider. Clinical trials provide another source of clinical data 
for systems medicine studies, but these are generally owned by a 
research group or sponsor and not freely available [ 60 ] although 
ongoing discussions may change this in the future ([ 61 ] and refer-
ences therein). 

 Although clinical data is not yet available on a large scale, the 
 bioinformatics and medical informatics   communities have been 
very active in establishing repositories that provide clinical data. 
One example is the Database of Genotypes and Phenotypes 
(dbGaP) [ 62 ] developed by the NCBI. Study metadata, summary- 
level (phenotype) data, and documents related to studies are pub-
licly available. Access to de-identifi ed individual-level (clinical) data 
is only granted after approval by an NIH data access committee. 
Another example is  The Cancer Genome Atlas (TCGA)     , which 
also provides individual-level molecular and clinical data through 
its own portal and the Cancer Genomics Hub (CGHub). Clinical 
data from  TCGA   is available without any restrictions but part of 
the lower level sequencing and microarray data can only be 
obtained through a formal request managed by dbGaP. 

 Medical patient records provide an even richer source of  phe-
notypic information  , and has already been used to stratify patient 
groups, discover disease relations and comorbidity, and integrate 
these records with molecular data to obtain a systems-level view of 
phenotypes (for a review see [ 63 ]). On the one hand, this integra-
tion facilitates refi nement and analysis of the human phenome to, 
for example, identify diseases that are clinically uniform but have 
different underlying molecular mechanisms, or which share a 
pathogenetic mechanism but with different genetic cause [ 64 ]. On 
the other hand, using the same data, a phenome-wide association 
study ( PheWAS  )    [ 65 ] would allow the identifi cation of unrelated 
phenotypes associated with specifi c shared genetic variant(s), an 
effect referred to as pleiotropy. Moreover, it makes use of 
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information from medical records generated in routine clinical 
practice and, consequently, has the potential to strengthen the link 
between biomedical research and clinical practice [ 66 ]. The power 
of phenome analysis was demonstrated in a study involving 1.5 
million patient records, not including genotype information, com-
prising 161 disorders. In this study it was shown that disease phe-
notypes form a highly connected network suggesting a shared 
genetic basis [ 67 ]. Indeed, later studies that incorporated genetic 
data resulted in similar fi ndings and confi rmed a shared genetic 
basis for a number of different phenotypes. For example, a recent 
study identifi ed 63 potentially pleiotropic associations through the 
analysis of 3144 SNPs that had previously been implicated by 
genome-wide association studies ( GWAS)         as mediators of human 
traits, and 1358 phenotypes derived from patient records of 13,835 
individuals [ 68 ]. This demonstrates  that   phenotypic information 
extracted manually or through text mining from patient records 
can help to more precisely defi ne (relations between) diseases. 
Another example comprises the text mining of psychiatric patient 
records to discover disease correlations [ 52 ]. Here, mapping of 
disease genes from the  OMIM database   to information from medi-
cal records resulted in protein networks suspected to be involved in 
psychiatric diseases.   

5     Integrative Bioinformatics 

 Integrative bioinformatics comprises the integrative (statistical) 
analysis of multiple omics data types. Many studies demonstrated 
that using a single omics technology to measure a specifi c molecu-
lar level (e.g., DNA variation, expression of genes and proteins, 
metabolite concentrations, epigenetic modifi cations) already pro-
vides a wealth of information that can be used for unraveling 
molecular mechanisms underlying disease. Moreover,  single-omics 
disease signatures   which combine multiple (e.g., gene expression) 
markers have been constructed to differentiate between disease 
subtypes to support diagnosis and prognosis. However, no single 
technology can reveal the full complexity and details of  molecular 
networks   observed in health and disease due to the many interac-
tions across these levels. A  systems medicine strategy   should ideally 
aim to understand the functioning of the different levels as a whole 
by integrating different types of omics data. This is expected to 
lead to biomarkers with higher predictive value, and novel disease 
insights that may help to prevent disease and to develop new thera-
peutic approaches. Integrative bioinformatics can also facilitate the 
prioritization and characterization of genetic variants associated 
with complex human diseases and traits identifi ed by  GWAS   in 
which hundreds of thousands to over a  million   SNPs are assayed in 
a large number of individuals. Although such studies lack the 
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statistical power to identify all disease-associated loci [ 69 ], they 
have been instrumental in identifying loci for many common dis-
eases. However, it remains diffi cult to prioritize the identifi ed vari-
ants and to elucidate their effect on downstream pathways 
ultimately leading to disease [ 70 ]. Consequently, methods have 
been developed to prioritize candidate  SNPs   based on integration 
with other (omics) data such as gene expression, DNase hypersen-
sitive sites, histone modifi cations, and transcription factor-binding 
sites [ 71 ]. 

   The integration of multiple omics data types is far from trivial and 
various approaches have been proposed [ 72 – 74 ]. One approach is 
to link different types of omics measurements through common 
database identifi ers. Although this may seem straightforward, in 
practice this is complicated as a result of technical and standardiza-
tion issues as well as a lack of biological consensus [ 32 ,  75 – 77 ]. 
Moreover, the integration of data at the level of the central dogma 
of molecular biology and, for example, metabolite data is even 
more challenging due to the indirect relationships between genes, 
transcripts, and proteins on the one hand and metabolites on the 
other hand, precluding direct links between the database identifi ers 
of these molecules. 

 Statistical data integration [ 72 ] is a second commonly applied 
strategy, and various approaches have been applied for the joint 
analysis of multiple data types (e.g., [ 78 ,  79 ]). One example of 
statistical data integration is provided by a TCGA study that mea-
sured various types of omics data to characterize breast cancer 
[ 80 ]. In this study 466 breast cancer samples were subjected to 
whole-genome and -exome sequencing, and SNP arrays to obtain 
information about somatic mutations, copy number variations, 
and chromosomal rearrangements. Microarrays and RNA-Seq 
were used to determine mRNA and microRNA expression levels, 
respectively.  Reverse-phase protein arrays (RPPA)      and DNA meth-
ylation arrays were used to obtain data on protein expression levels 
and DNA methylation, respectively. Simultaneous statistical 
 analysis of different data types via a “cluster-of-clusters” approach 
using consensus clustering on a multi-omics data matrix revealed 
that four major breast cancer subtypes could be identifi ed. This 
showed that the intrinsic subtypes (basal, luminal A and B, HER2) 
that had previously been determined using gene expression data 
only could be largely confi rmed in an integrated analysis of a large 
number of breast tumors.  

   Single-level omics data has extensively been used to identify 
disease- associated biomarkers such as genes, proteins, and metabo-
lites. In fact, these studies led to more than 150,000 papers docu-
menting thousands of claimed biomarkers, However, it is estimated 
that fewer than 100 of these are currently used for routine clinical 
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practice [ 81 ]. Integration of multiple omics data types is expected 
to result in more robust and predictive disease profi les since these 
better refl ect disease biology [ 82 ]. Further improvement of these 
profi les may be obtained through the explicit incorporation of 
interrelationships between various types of measurements such as 
microRNA–mRNA target, or gene methylation–microRNA (based 
on a common target gene). This was demonstrated for the predic-
tion of short-term and long-term survival from serous cystadeno-
carcinoma TCGA data [ 83 ].   

6      Biological Networks 

 According to the recent  CASyM roadmap  : “Human disease can be 
perceived as perturbations of complex, integrated genetic, molecu-
lar and cellular networks and such complexity necessitates a new 
approach.” [ 84 ]. In this section we discuss how (approximations) 
to these networks can be constructed from  omics data   and how 
these networks can be decomposed in smaller modules. Then we 
discuss how the resulting modules can be used to generate experi-
mentally testable hypotheses, provide insight into disease mecha-
nisms, lead to predictive diagnostic and prognostic models, and 
help to further subclassify diseases [ 55 ,  85 ] (Fig.  2 ). Such top- down 

Module activity
• Identification of active modules
• Sample-specific pathway activity
• Network-based disease signatures

gene

Prior knowledge

Transcription factor binding

Protein-protein interaction

Gene expression

Data Networks

Top-down network reconstruction
• Co-expression networks
• Mutual information networks
• Bayesian networks
• Functional association networks
• Transcriptional regulatory

networks

Module-based approaches
• Module decomposition: weighted

gene co-expression network 
analysis

• Correlation of modules with
external information

• Multi-omics

  Fig. 2    Overview of network-based approaches for systems medicine (Subheading  6 )       
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network-based approaches will provide medical doctors with molec-
ular level support to make personalized treatment decisions.

     In a top-down approach the aim of network reconstruction is to 
infer the connections between the molecules that constitute a bio-
logical network. Network models can be created using a variety of 
 mathematical and statistical techniques   and data types. Early 
approaches for network inference (also called  reverse engineering  ) 
used only gene expression data to reconstruct gene networks. 
Here, we discern three types of  gene network inference algorithms   
using methods based on (1) correlation-based approaches, (2) 
information-theoretic approaches, and (3) Bayesian networks [ 86 ]. 

  Co-expression networks   are an extension of commonly used 
 clustering techniques  , in which genes are connected by edges in a 
network if the amount of correlation of their gene expression pro-
fi les exceeds a certain value. Co-expression networks have been 
shown to connect functionally related genes [ 87 ]. Note that con-
nections in a co-expression network correspond to either direct 
(e.g., transcription factor-gene and protein-protein) or indirect 
(e.g., proteins participating in the same pathway) interactions. In 
one of the earliest examples of this approach,  pair-wise correlations   
were calculated between gene expression profi les and the level of 
growth inhibition caused by thousands of tested anticancer agents, 
for 60 cancer cell lines [ 88 ]. Removal of associations weaker than 
a certain threshold value resulted in networks consisting of highly 
correlated genes and agents, called relevance networks, which led 
to targeted hypotheses for potential single-gene determinants of 
chemotherapeutic susceptibility. 

  Information-theoretic approaches   have been proposed in order 
to capture nonlinear dependencies assumed to be present in most 
biological systems and that cannot be captured by   correlation- based 
distance measures  . These approaches often use the concept of 
mutual information, a generalization of the correlation coeffi cient 
which quantifi es the degree of statistical (in)dependence. An exam-
ple of a network inference method that is based on mutual infor-
mation is ARACNe, which has been used to reconstruct the human 
B-cell gene network from a large compendium of human B-cell 
gene expression profi les [ 89 ]. In order to discover regulatory 
interactions,  ARACNe   removes the majority of putative indirect 
interactions from the initial mutual information-based gene net-
work using a theorem from information theory, the data process-
ing inequality. This led to the identifi cation of  MYC  as a major hub 
in the B-cell gene network and a number of novel  MYC  target 
genes, which were experimentally validated. Whether information- 
theoretic approaches are more powerful in general than correlation- 
based approaches is still subject of debate [ 90 ]. 

  Bayesian networks   allow the description of statistical depen-
dencies between variables in a generic way [ 91 ,  92 ]. Bayesian 
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networks are directed acyclic networks in which the edges of the 
network represent conditional dependencies; that is, nodes that are 
not connected represent variables that are conditionally indepen-
dent of each other. A major bottleneck in the reconstruction of 
Bayesian networks is their computational complexity. Moreover, 
Bayesian networks are acyclic and cannot capture feedback loops 
that characterize many biological networks. When time-series 
rather than steady-state data is available, dynamic Bayesian net-
works provide a richer framework in which cyclic networks can be 
reconstructed [ 93 ]. 

 Gene (co-)expression data only offers a partial view on the full 
complexity of cellular networks. Consequently, networks have also 
been constructed from other types of high-throughput data. For 
example, physical protein-protein interactions have been measured 
on a large scale in different organisms including human, using 
affi nity capture-mass spectrometry or yeast two-hybrid screens, 
and have been made available in public databases such as BioGRID 
[ 94 ]. Regulatory interactions have been probed using chromatin 
immunoprecipitation sequencing (ChIP-Seq) experiments, for 
example by the ENCODE consortium [ 95 ]. 

 Using  probabilistic techniques  , heterogeneous types of experi-
mental evidence and prior knowledge have been integrated to con-
struct functional association networks for human [ 96 ], mouse [ 97 ], 
and, most comprehensively, more than 1100 organisms in the 
 STRING database   [ 98 ]. Functional association networks can help 
predict novel pathway components, generate hypotheses for bio-
logical functions for a protein of interest, or identify disease- related 
genes [ 97 ]. Prior knowledge required for these approaches is, for 
example, available in curated biological pathway databases, and via 
protein associations predicted using text mining based on their co-
occurrence in abstracts or even full-text articles. Many more inte-
grative network inference methods have been proposed; for a review 
see [ 99 ]. The integration of gene expression data with ChIP data 
[ 100 ] or transcription factor-binding motif data [ 101 ] has shown 
to be particularly fruitful for inferring transcriptional regulatory 
networks. Recently, Li et al. [ 102 ] described the results from a 
regression-based model that predicts gene expression using 
ENCODE (ChIP-Seq) and TCGA data (mRNA expression data 
complemented with copy number variation, DNA methylation, and 
microRNA expression data). This model infers the regulatory activ-
ities of expression regulators and their target genes in acute myeloid 
leukemia samples. Eighteen key regulators were identifi ed, whose 
activities clustered consistently with cytogenetic risk groups. 

  Bayesian   networks have also been used to integrate multi- 
omics data. The combination of  genotypic and gene expression 
data   is particularly powerful, since DNA variations represent nat-
urally occurring perturbations that affect gene expression detected 
as expression quantitative trait loci ( eQTL        ).  Cis -acting eQTLs 
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can then be used as constraints in the construction of directed 
Bayesian networks to infer causal relationships between nodes in 
the network [ 103 ].  

   Large  multi-omics datasets   consisting of hundreds or sometimes 
even thousands of samples are available for many commonly 
occurring human diseases, such as most tumor types (TCGA), 
Alzheimer’s disease [ 104 ], and obesity [ 105 ]. However, a major 
bottleneck for the construction of accurate gene networks is that 
the number of gene networks that are compatible with the experi-
mental data is several orders of magnitude larger still. In other 
words,  top-down network inference   is an underdetermined prob-
lem with many possible solutions that explain the data equally well 
and individual gene-gene interactions are characterized by a high 
false-positive rate [ 99 ]. Most network inference methods therefore 
try to constrain the number of possible solutions by making certain 
assumptions about the structure of the network. Perhaps the most 
commonly used strategy to harness the complexity of the gene net-
work inference problem is to analyze experimental data in terms of 
biological modules, that is, sets of genes that have strong interac-
tions and a common function [ 106 ]. There is considerable evidence 
that many biological networks are modular [ 107 ]. Module-based 
approaches effectively constrain the number of parameters to esti-
mate and are in general also more robust to the noise that charac-
terizes  high-throughput omics   measurements. A detailed review of 
module-based techniques is outside the scope of this chapter (see, 
for example [ 108 ]), but we would like to  mention a few examples 
of successful and commonly used modular approaches. 

 Weighted gene co-expression network analysis 
( WGCNA)        decomposes a co-expression network into modules 
using clustering techniques [ 109 ]. Modules can be summarized by 
their module eigengene, a weighted average expression profi le of 
all gene member of a given module. Eigengenes can then be cor-
related with external sample traits to identify modules that are 
related with these traits. Parikshak et al. [ 110 ] used WGCNA to 
extract modules from a co-expression network constructed using 
fetal and early postnatal brain development expression data. Next, 
they established that several of these modules were enriched for 
genes and rare de novo variants implicated in  autism spectrum dis-
order (ASD).   Moreover, the ASD-associated modules are also 
linked at the transcriptional level and 17 transcription factors were 
found acting as putative co-regulators of ASD-associated gene 
modules during neocortical development. WGCNA can also be 
used when multiple omics data types are available. One example of 
such an approach involved the integration of transcriptomic and 
proteomic data from a study investigating the response to SARS- 
CoV infection in mice [ 111 ]. In this study WGCNA-based gene 
and  protein co-expression modules   were constructed and 
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integrated to obtain module-based disease signatures. Interestingly, 
the authors found several cases of identifi er-matched transcripts 
and proteins that correlated well with the phenotype, but which 
showed poor or anticorrelation across these two data types. 
Moreover, the highest correlating transcripts and peptides were 
not the most central ones in the co-expression modules.  Vice versa , 
the transcripts and proteins that defi ned the modules were not 
those with the highest correlation to the phenotype. At the very 
least this shows that integration of omics data affects the nature of 
the disease signatures. 

 Identifi cation of active modules is another important  integra-
tive modular technique  . Here, experimental data in the form of 
molecular profi les is projected onto a biological network, for exam-
ple a protein-protein interaction network. Active modules are 
those subnetworks that show the largest change in expression for a 
subset of conditions and are likely to contain key drivers or regula-
tors of those processes perturbed in the experiment. Active mod-
ules have, for example, been used to fi nd a subnetwork that is 
overexpressed in a particularly aggressive lymphoma subtype [ 112 ] 
and to detect signifi cantly mutated pathways [ 113 ]. Some active 
module approaches integrate various types of omics data. One 
example of such an approach is PARADIGM [ 114 ], which trans-
lates pathways into factor graphs, a class of models that belongs to 
the same family of models as Bayesian networks, and determines 
sample-specifi c pathway activity from multiple functional genomic 
datasets. PARADIGM has been used in several TCGA projects, for 
example, in the integrated analysis of 131 urothelial bladder carci-
nomas [ 55 ].  PARADIGM-based analysis   of copy number varia-
tions and RNA-Seq gene expression in combination with a 
propagation-based network analysis algorithm revealed novel asso-
ciations between mutations and gene expression levels, which sub-
sequently resulted in the identifi cation of pathways altered in 
bladder cancer. The identifi cation of activating or inhibiting gene 
mutations in these pathways suggested new targets for treatment. 
Moreover, this effort clearly showed the benefi ts of screening 
patients for the presence of specifi c mutations to enable personal-
ized treatment strategies.  

   Often, published disease signatures cannot be replicated [ 81 ] or 
provide hardly additional biological insight. Also here (modular) 
network-based approaches have been proposed to alleviate these 
problems. A common characteristic of most methods is that the 
molecular activity of a set of genes is summarized on a per sample 
basis. Summarized gene set scores are then used as features in 
prognostic and predictive models. Relevant gene sets can be based 
on prior knowledge and correspond to canonical pathways, gene 
ontology categories, or sets of genes sharing common motifs in 
their promoter regions [ 115 ]. Gene set scores can also be 
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determined by projecting molecular data onto a biological net-
work and summarizing scores at the level of subnetworks for each 
individual sample [ 116 ]. While promising in principle, it is still 
subject of debate whether gene set-based models outperform 
gene-based  one  s [ 117 ].  

   The comparative analysis of networks across different species is 
another commonly used approach to constrain the solution space. 
Patterns conserved across species have been shown to be more 
likely to be true functional interactions [ 107 ] and to harbor useful 
candidates for human disease genes [ 118 ]. Many network align-
ment methods have been developed in the past decade to identify 
commonalities between networks. These methods in general com-
bine sequence-based and topological constraints to determine the 
optimal alignment of two (or more) biological networks. Network 
alignment has, for example, been applied to detect conserved pat-
terns of protein interaction in multiple species [ 107 ,  119 ] and to 
analyze the evolution of co-expression networks between humans 
and mice [ 120 ,  121 ]. Network alignment can also be applied to 
detect diverged patterns [ 120 ] and may thus lead to a better under-
standing of similarities and differences between animal models and 
human in health and disease. Information from model organisms 
has also been fruitfully used to identify more robust disease signa-
tures [ 122 – 125 ]. Sweet-Cordero and co-workers [ 122 ] used a 
gene signature identifi ed in a mouse model of lung adenocarcinoma 
to uncover an orthologous signature in human lung adenocarci-
noma that was not otherwise apparent. Bild et al. [ 123 ] defi ned 
gene expression signatures characterizing several oncogenic path-
ways of human mammary epithelial cells. They showed that these 
signatures predicted pathway activity in mouse and human tumors. 
Predictions of pathway activity correlated well with the sensitivity to 
drugs targeting those pathways and could thus serve as a guide to 
targeted therapies. A generic approach, Pathprint, for the integra-
tion of gene expression data across different platforms and species 
at the level of pathways, networks, and transcriptionally regulated 
targets was recently described [ 126 ]. The authors used their method 
to identify four stem cell-related pathways conserved between 
human and mouse in acute myeloid leukemia, with good prognos-
tic value in four independent  clinical   studies.  

   We reviewed a wide array of different approaches showing how net-
works can be used to elucidate integrated genetic, molecular, and 
cellular networks. However, in general no single approach will be 
suffi cient and combining different approaches in more complex 
analysis pipelines will be required. This is fi ttingly illustrated by the 
DIGGIT (Driver-gene Inference by Genetical-Genomics and 
Information Theory) algorithm [ 127 ]. In brief, DIGGIT identities 
candidate master regulators from an ARACNe gene co- expression 
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network integrated with copy number variations that affect gene 
expression. This method combines several previously developed 
computational approaches and was used to identify causal genetic 
drivers of human disease in general and glioblastoma, breast cancer, 
and Alzheimer’s disease in particular. This enabled identifi cation of 
KLHL9 deletions as upstream activators of two previously estab-
lished master regulators in a specifi c subtype of glioblastoma.   

7    Discussion 

 Systems medicine is one of the steps necessary to make improve-
ments in the prevention and treatment of disease through  systems 
approaches   that will (a) elucidate (patho)physiologic mechanisms 
in much greater detail than currently possible, (b) produce more 
robust and predictive disease signatures, and (c) enable personal-
ized treatment. In this context, we have shown that bioinformatics 
has a major role to play. 

 Bioinformatics will continue its role in the development, cura-
tion, integration, and maintenance of (public) biological and clini-
cal databases to support biomedical research and systems medicine. 
The bioinformatics community will strengthen its activities in vari-
ous standardization and curation efforts that already resulted in 
minimum reporting guidelines [ 128 ], data capture approaches 
[ 75 ], data exchange formats [ 129 ], and terminology standards for 
annotation [ 130 ]. One challenge for the future is to remove errors 
and inconsistencies in data and annotation from databases and pre-
vent new ones from being introduced [ 32 ,  76 ,  131 – 135 ]. An 
equally important challenge is to establish, improve, and integrate 
resources containing phenotype and clinical information. To 
achieve this objective it seems reasonable that bioinformatics and 
health informatics professionals team up [ 136 – 138 ]. Traditionally 
health informatics professionals have focused on hospital informa-
tion systems (e.g., patient records, pathology reports, medical 
images) and data exchange standards (e.g., HL7), medical termi-
nology standards (e.g., International Classifi cation of Disease 
(ICD), SNOMED), medical image analysis, analysis of clinical 
data, clinical decision support systems, and so on. While, on the 
other hand, bioinformatics mainly focused on molecular data, it 
shares many approaches and methods with health informatics. 
Integration of these disciplines is therefore expected to benefi t sys-
tems medicine in various ways [ 139 ]. 

 Integrative bioinformatics approaches clearly have added value 
for systems medicine as they provide a better understanding of bio-
logical systems, result in more robust disease markers, and prevent 
(biological) bias that would possibly occur from using single-omics 
measurements. However, such studies, and the scientifi c commu-
nity in general, would benefi t from improved strategies to dissemi-
nate and share data which typically will be produced at multiple 
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research centers (e.g.,   https://www.synapse.org    ; [ 140 ]). 
Integrative studies are expected to increasingly facilitate personal-
ized medicine approaches such as demonstrated by Chen and co- 
workers [ 141 ]. In their study they presented a 14-month 
“integrative personal omics profi le” (iPOP) for a single individual 
comprising genomic, transcriptomic, proteomic, metabolomic, 
and autoantibody data. From the whole-genome sequence data an 
elevated risk for type 2 diabetes (T2D) was detected, and subse-
quent monitoring of HbA1c and glucose levels revealed the onset 
of T2D, despite the fact that the individual lacked many of the 
known non-genetic risk factors. Subsequent treatment resulted in 
a gradual return to the normal phenotype. This shows that the 
genome sequence can be used to determine disease risk in a healthy 
individual and allows selecting and monitoring specifi c markers 
that provide information about the actual disease status. 

 Network-based approaches will increasingly be used to deter-
mine the genetic causes of human diseases. Since the effect of a 
genetic variation is often tissue or cell-type specifi c, a large effort is 
needed in constructing cell-type-specifi c networks both in health 
and disease. This can be done using data already available, an 
approach taken by Guan et al. [ 142 ]. The authors proposed 107 
tissue-specifi c networks in mouse via their generic approach for 
constructing functional association networks using low- 
throughput, highly reliable tissue-specifi c gene expression infor-
mation as a constraint. One could also generate new datasets to 
facilitate the construction of tissue-specifi c networks. Examples of 
such approaches are TCGA and the genotype-tissue expression 
(GTEx) project. The aim of GTEx is to create a data resource for 
the systematic study of genetic variation and its effect on gene 
expression in more than 40 human tissues [ 143 ]. Regardless of the 
way how networks are constructed, it will become more and more 
important to offer a centralized repository where networks from 
different cell types and diseases can be stored and accessed. 
Nowadays, these networks are diffi cult to retrieve and are scattered 
in supplementary fi les with the original papers, links to accompany-
ing web pages, or even not available at all. A resource similar to 
what the systems biology community has created with the 
BioModels database would be a great leap forward. There have 
been some initial attempts in building databases of network mod-
els, for example the CellCircuits database [ 123 ] (  http://www.cell-
circuits.org    ) and the  causal biological networks (CBN)   database of 
networks related to lung disease [ 144 ] (  http://causalbionet.com    ). 
However, these are only small-scale initiatives and a much larger 
and coordinated effort is required. 

 Another main bottleneck for the successful application of net-
work inference methods is their validation. Most network inference 
methods to date have been applied to one or a few isolated datasets 
and were validated using some limited follow-up experiments, for 
example via gene knockdowns, using prior knowledge from 
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databases and literature as a gold standard, or by generating simu-
lated data from a mathematical model of the underlying network 
[ 145 ,  146 ]. However, strengths and weaknesses of network inference 
methods across cell types, diseases, and species have hardly been 
assessed. Notable exceptions are collaborative competitions such as 
the Dialogue on Reverse Engineering Assessment and Methods 
(DREAM) [ 147 ] and Industrial Methodology for Process Verifi cation 
(IMPROVER) [ 146 ]. These centralized initiatives propose chal-
lenges in which individual research groups can participate and to 
which they can submit their predictions, which can then be indepen-
dently validated by the challenge organizers. Several DREAM chal-
lenges in the area of network inference have been organized, leading 
to a better insight into the strengths and weaknesses of individual 
methods [ 148 ]. Another important contribution of DREAM is that 
a crowd-based approach integrating predictions from multiple net-
work inference methods was shown to give good and robust perfor-
mance across diverse data sets [ 149 ]. Also in the area of systems 
medicine challenge-based competitions may offer a framework for 
independent verifi cation of model predictions. 

 Systems medicine promises a more personalized medicine that 
effectively exploits the growing amount of molecular and clinical 
data available for individual patients. Solid bioinformatics 
approaches are of crucial importance for the success of systems 
medicine. However, really delivering the promises of systems med-
icine will require an overall change of research approach that tran-
scends the current reductionist approach and results in a tighter 
integration of clinical, wet-lab laboratory, and computational 
groups adopting a systems-based approach. Past, current, and 
future success of systems medicine will accelerate this change.     
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