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A B S T R A C T

Automated segmentation of the aging brain raises significant challenges because of the prevalence, extent, and
heterogeneity of white matter hyperintensities. White matter hyperintensities can be frequently identified in
magnetic resonance imaging (MRI) scans of older individuals and among those who have Alzheimer’s disease.
We propose OASIS-AD, a method for automatic segmentation of white matter hyperintensities in older adults
using structural brain MRIs. OASIS-AD is an approach evolved from OASIS, which was developed for automatic
lesion segmentation in multiple sclerosis. OASIS-AD is a major refinement of OASIS that takes into account the
specific challenges raised by white matter hyperintensities in Alzheimer’s disease. In particular, OASIS-AD
combines three processing steps: 1) using an eroding procedure on the skull stripped mask; 2) adding a nearest
neighbor feature construction approach; and 3) applying a Gaussian filter to refine segmentation results, creating
a novel process for WMH detection in aging population. We show that OASIS-AD performs better than existing
automatic white matter hyperintensity segmentation approaches.

1. Introduction

Structural magnetic resonance imaging (sMRI) is widely used in
clinical practice to diagnose and manage neurodegenerative diseases,
such as Alzheimer’s disease (AD), that primarily affects older adults.
However, using automatic MRI processing techniques for brain images
of older adults can be challenging due to white matter hyperintensities
(WMHs), atrophy, and other aging pathologies. We focus on WMHs in
this article. WMHs are areas in the white matter of the brain that appear
hyperintense on a T2-weighted-Fluid-Attenuated Inversion Recovery
(T2-FLAIR) scan and appear hypointense on a T1-weighted scan as
compared to normal appearing white matter. Because the size, shape,
and positioning of WMH regions are highly heterogeneous in the brain
of older adults, using segmentation approaches developed for the brain
of healthy young adults could lead to substantial tissue miss-classifi-
cation. For example, segmentation of brain imaging data into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF) is a
crucial processing step in brain imaging studies. Existing automatic
segmentation approaches were developed for the brain images of
healthy young adults, which generally do not contain WMHs. When

WMHs are present, automatic segmentation tools that use T1-weighted
images may incorrectly classify WMHs as GM since both appear hy-
pointense. Therefore, large WMH areas could artificially increase the
estimated GM volumes in cross-sectional studies and could lead to se-
vere underestimation of GM loss in longitudinal studies. This can be a
major problem in studies that use GM volume as a general marker of
brain atrophy. Moreover, WMHs are more prevalent in older adults and
women (Van Den Heuvel et al., 2004), which may lead to differential
tissue classification performance in specific subgroups.

WMHs appear in a variety of studies both in individuals who are
clinically symptomatic or asymptomatic. In particular, WMHs are per-
vasive in studies of aging, AD, bipolar disorder (Pillai et al., 2002), and
stroke (Wong et al., 2002). WMH segmentation is crucial for correct
tissue classification as well as for estimating the WMH volume directly,
as this is often user as a marker of cerebrovascular diseases. In this
article we focus on WMH segmentation in the aging brain in general
and aging brain affected by AD in particular.

A review of existing WMH segmentation methods is provided in
Caligiuri et al. (2015). The methods are divided into three categories:
(1) supervised learning algorithms using manually-labeled tracings of
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WMHs; (2) unsupervised learning algorithms using unlabeled manual
tracings; and (3) semi-automated algorithms with various degrees of
user intervention. Supervised classification algorithms include: k-
nearest neighbors (kNN), non-parametric classification using the k
closest training samples in the feature space (Anbeek et al., 2004),
support vector machines (SVM) (Lao et al., 2008), Bayesian methods
that combine multivariate signal intensity and spatial information
(Herskovits et al., 2008), artificial neural networks (ANN) using multi-
sequence images (Dyrby et al., 2008), Gaussian mixture models
(Simões et al., 2013), logistic regression of multi-sequence images
(Sweeney et al., 2013), adaptive intensity threshold search (Yoo et al.,
2014), and deep learning approaches: (Kuijf et al., 2016; Moeskops
et al., 2018; Raidou et al., 2014), convolutional neural networks
(Ghafoorian et al., 2017). Moeskops (Moeskops et al., 2018) and col-
leagues evaluated different deep learning algorithms and their evalu-
ating metrics were higher than previously reported in the literature
using Visual Analytics methods (Kuijf et al., 2016; Raidou et al., 2014)
on the same data.

Unsupervised classification algorithms include: a two-level fuzzy
inference system based on proton density (PD) and T2-FLAIR images
(Admiraal-Behloul et al., 2005), a fuzzy connected algorithm combined
with image registration (Wu et al., 2006), and a geostatistical fuzzy c-
means clustering algorithm (Anitha et al., 2012). Semi-automated al-
gorithms include: region growing using adaptive thresholding
(Itti et al., 2001), bispectral fuzzy class means (Sheline et al., 2008), and
semi-automatic peak identification on the 2D histogram of T1 and T2
intensities (Sheline et al., 2008). Caligiuri et al. (2015) concluded that a
good WMH segmentation method should include a comprehensive
image preprocessing pipeline based on multi-sequence data that takes
into account spatial information about lesions and corrects for false
positives.

We propose OASIS-AD, an automatic supervised approach based on
logistic regression and careful development of the feature space. OASIS-
AD is an approach evolved from OASIS (Sweeney et al., 2013)(Auto-
mated Statistical Inference for Segmentation), which was developed for
automatic lesion segmentation in multiple sclerosis (MS). OASIS-AD is a
major refinement of OASIS that takes into account the specific chal-
lenges raised by WMH in AD. In particular, OASIS-AD combines three
processing steps: 1) using an eroding procedure on the skull stripped
mask; 2) adding a nearest neighbor feature construction approach; and
3) applying a Gaussian filter to refine segmentation results, thus
creating a novel WMH detection procedure, OASIS-AD. We show that
OASIS-AD performs better than existing WMH segmentation ap-
proaches using gold standard segmentations.

2. Materials and methods

In this section we introduce OASIS-AD, an automated method of
WMH segmentation with application to AD patients and older adults.
OASIS-AD has three main components: (a) development of a binary
brain tissue mask; (b) normalization of MRI intensities and creation of
smoothed volumes; and (c) two-step modeling of WMH regions. The
first step of modeling consists of training a richly parameterized logistic
regression model using the data preprocessed in the (a) and (b) com-
ponents of OASIS-AD. The second step consists of refining the voxel-
level probability map generated in the first step to shrink WMH regions,
and smoothing the probability map to reduce the false positive rate. A
flowchart of OASIS-AD is presented in Fig. 1.

2.1. Study participants

We have randomly selected a sample of 20 older individuals from
our ongoing Normal Aging study previously described in
Karim et al. (2019); Nadkarni et al. (2019). The selected sample in-
cluded 20 cognitively normal study participants at the time of scanning.
The average age in our sample is 81.2 (SD = 7.15), with an average

education equal to 14.2 years (SD = 2.44), 70% of the sample are fe-
males, 85% white and 15% african american. In the next sections we
describe the OASIS-AD steps in greater detail.

2.2. Image preprocessing

The image preprocessing used fslr” (Muschelli et al., 2015) in
Neuroconductor” (Muschelli et al., 2018), a comprehensive R” en-
vironment for imaging processing tools. The fslr” package wraps the
FMRIB Software Library (FSL 5.0) (https://fsl.fmrib.ox.ac.uk/fsl) into
the R” language. The preprocessing steps were applied in the following
order:

1. Perform within-subject coregistration of the T1-weighted image to
the T2-FLAIR image.

2. Apply N4-bias-correction (Avants, 2019; Tustison et al., 2010) to the
registered T1-weighted image.

3. Conduct skull stripping using FSL BET (Brain Extraction Tool)
(Smith, 2002) on the registered and N4 corrected T1-weighted
image.

4. Erode the brain mask with a default 5 × 5 × 5 kernel box.

Eroding a binary mask, A, with a kernel, B, centered at C consists of
moving B by sliding its center C over all voxels in A. If all voxels in B are
contained in A then the location of the center C is labeled as 1; other-
wise, it is labeled 0 (erosion) (Haralick et al., 1987). The fslerode
package in fslr (Muschelli et al., 2015) was used for the erosion pro-
cedure.

Fig. 1. OASIS-AD procedure.
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2.3. Intensity normalization

Using a method similar to the one used by Shinohara et al. (2012),
images intensities for both T1-weighted and T2-FLAIR images were
normalized as follows:

=
−

f v
f v μ

σ
( )

( )
,i

N i i M

i M

,

,

where μi,M and σi,M are the mean and standard deviation of the pre-
processed image intensities for subject i from modality M. Note that
Shinohara et al. (2012) used the normally appearing white matter
(NAWM) as the reference set for normalization, which would require at
least partial segmentation of NAWM; here we avoid this problem by
using the entire brain as reference.

2.4. Smoothed volumes

Similarly to the original OASIS approach, we used smoothed vo-
lumes by applying Gaussian kernel smoothers both to the T1-weighted
and T2-FLAIR images. Two 3D Gaussian filters with window sizes of 10
and 20 mm, respectively, were used to capture local inhomogeneity
patterns that were not accounted by the N4 correction. We denote by
GM v k( , )i

N the smoothed volume for subject i, image modality M, and
kernel size k at voxel v. We fit models that include these smoothed
volumes as well as models that do not (labeled reduced models), as the
aggressive smoothing might actually remove subtle differences specific
to the WM/GM boundary, which could further induce classification
bias.

2.5. Logistic regression model

Two logistic regression models were used:M1, a full model based on
OASIS and all the image modalities, and M2, a reduced model. The M1
model for the probability that a voxel v for study participant i is in
WMH area is
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Model M2 with the reduced predictors set is:
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where vFLAIR ( )i
N is the normalized voxel’s v FLAIR value, while

vGFLAIR ( , 10)i
N and vGFLAIR ( , 20)i

N are smoothed normalized voxel's v
FLAIR values with Gaussian kernels of size 10 mm and 20 mm, re-
spectively. Notation for the other modalities follows the same conven-
tion.

2.6. Probability map refinement

The logistic regression models introduced in Section 2.5 are used to
produce an initial probability map for WMH at the voxel level. This
probability map is then refined to reduce the false positive detection
rate using two additional techniques: Nearest Neighbor Refinement and
Gaussian Filter Refinement to remove false positives. We describe these
in the next two sections.

2.6.1. Nearest neighbor refinement
The Nearest Neighbor Refinement (NNR) consists of first applying

the FAST” (Zhang et al., 2001) algorithm, a popular brain tissue

segmentation based on T1-weighted images. The FAST” algorithm
provides an estimated probability that the voxel v is in white matter,
p ,wm

v gray matter, p ,gm
v CSF, p ,csf

v respectively. The sum of p ,wm
v pgm

v and
pcsf

v is equal to 1 for every voxel v. From these estimated tissue prob-
ability maps we estimate the tissue type of voxel v, denoted by Tv, as the
tissue with highest probability at voxel v. Using the logistic models in
Section 2.5 we generate a probability that each voxel v is in WMH and
denote it by Pwmh

v . We denote by Nv the 6 nearest neighbors (6NN) of
voxel v. The idea is to use information from the neighboring voxels to
reduce “speckling”, the phenomenon where a few isolated voxels are
identified as WMH when they should not be. Below we provide the
detailed algorithm.

The algorithm starts with voxels whose estimated probability by
FAST” of being in white matter is 1, =p 1,wm

v and whose 6NN are all
estimated to be in white matter by FAST”, =T wmv

NN6 . Here, the last
equality indicates that all entries of the six-dimensional vector Tv

NN6 are
estimated to be white matter by FAST”. For these voxels the estimated
probability of the voxel being in WMH is exponentially reduced by
simply raising the estimated probability of the voxel being in WMH
using the logistic models to the power 10, =P P( )wmh

rv
wmh
v 10. The net ef-

fect is to substantially reduce the estimated probability of this type of
voxel to be in WMH. The second option is when the voxel is estimated
by FAST” to be in white matter, =T wm,v but not all its 6NN are esti-
mated to be in white matter, ≠T wmv

NN6 . The last inequality indicates
that at least one of the 6NN of the voxel v is not estimated to be in white
matter by FAST”. In this case the estimated probability for the voxel to
be in WMH is increased by raising it to the power paverage( ),wm

NN6 which
is the average of the estimated probabilities for the voxel to be in white
matter by FAST”. The average of these probabilities is a number less
than one, indicating that the probability will be increased. The prob-
ability is increased more when there are more neighbors that are not
estimated to be in white matter and when the estimated probabilities of
these neighbors are further from 1, indicating increased probability that
the voxels are not actually in the white matter. Both of these choices of
powers where found empirically to work well and were validated using
training/test data. If neither of these conditions are satisfied than the
probability map obtained from the logistic models remains unchanged,

=P Pwmh
rv

wmh
v .

2.6.2. Gaussian filter refinement
Once the NNR procedure is applied we apply a 3D Gaussian filter on

the generated probability maps using the following sequence of op-
erations: (1) create an eroded brain mask; (2) fill in the voxels in the
eroded brain mask with the WMH probabilities estimated in
Section 2.6.1; and (3) apply a 3D Gaussian filter of size 5 × 5 × 5 mm
to the probability map on the eroded brain.

2.7. Binary segmentation and evaluation metrics

After creating the probability maps, a threshold value needs to be
identified to classify voxels into classes. We use an approach proposed
by Valcarcel et al. (2018), who proposed to use multiple threshold
candidates and selected the optimal threshold based on the perfor-
mance on the training set. We used the Dice Similarity Coefficient(DSC)
(Dice, 1945) as the evaluation metric for selecting the optimal
threshold.

Results were compared with manual segmentations performed by an
experienced neuroradiologist, which provided the gold standard. The
manual tracings of WMH were performed on 5 contiguous slices on the
T2-FLAIR scans, the same for each subject. Models were compared in
terms of the following metrics: (1) number of true positive voxels (TP);
(2) number of false positive voxels (FP); (3) number of true negative
voxels (FN); and (4) number of false negative voxels (FN). We com-
puted four additional combined metrics commonly used for prediction
performance evaluation (Goutte and Gaussier, 2005): (a) accuracy,
defined as ACC = (TP+TN)/ (TP+FP+FN+TN); (b) positive
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predictive value, defined as PPV = TP/(TP+FP); (c) true positive rate,
defined as TPR = TP/(TP+FN); (d) false positive rate, defined as FPR
= FP/(FP+TN); and (e) dice similarity coefficient, defined as DSC =
2TP/(2TP+FP+FN) as well as 95% confidence interval (CI) computed
using bootstrap. We also included the receiver operating characteristic
curve (ROC curve), the precision-recall curve (PRC), and the area under
these two curves (AUC) (Davis and Goadrich, 2006).

2.8. Comparison with other methods

We compared OASIS-AD with four other methods: OASIS (devel-
oped for MS lesion segmentation), MIMOSA (Valcarcel et al., 2018), the
lesion segmentation tool (LST) (Schmidt, 2017), and the fuzzy con-
nected algorithm of Wu et al. (2006) and labeled as fuzzy-c. Methods
were compared on our study participants sample described in
Section 2.1.

3. Results

Data were randomly split into training (15 study participants) and
testing (5 study participants) and models were compared in terms of
their performance on the testing data set.

3.1. Models performance comparison

3.1.1. OASIS-AD models comparison
We start by first evaluating the various types of the OASIS-AD

model. Table 1 provides results for all model combinations considered,
where the first column provides the label, while the second column
provides the type of analysis conducted. For example, M2-NG is the
OASIS-AD model using the logistic model M2 introduced in Section 2.5
combined with the NNR algorithm introduced in Section 1 followed by
GFR algorithm introduced in Section 2.6.2. The acronym for this model
could be OASIS-AD-M2-NG, but this is way too complex and we will use
the M2-NG shortcut for presentation purposes, while understanding
that all these models have the OASIS concept at the core with various
refinements added to the resulting probability masks. The third column
in Table 1 provides the optimal threshold obtained during training,
while the fourth and fifth columns display the corresponding DSC and
FPR on the test data.

Results indicate that the M1 model series (i.e., full models) out-
performs the corresponding M2 series models (higher DSC and better
FPR), but the differences are not very large. Taking into account that
the M2 series models do not use smooth volumes, which can be time
intensive on large datasets, we consider that the M2 series models
provide an excellent first line approach for WMH segmentation. The
M1-G model achieves the highest DSC (0.78), though it has a slightly
higher FPR than the M1-NG model (0.009 compared to 0.007).

3.1.2. Comparisons with other models
Table 2 compares results for the best OASIS-AD model (M1-G) with

the four other methods: OASIS, MiMOSA, LST and fuzzy-c, and Table 3
compares results for all the OASIS-AD models with other methods. For

the fuzzy-c method proposed by Wu’s (Wu et al., 2006) we only have
the binary brain masks and not the probability map. Therefore, it is not
possible to compute the AUCs for fuzzy-c. The OASIS-AD (M1-G) model
has the highest DSC at 0.78, with a 95% CI equal with (0.77, 0.79), with
both MIMOSA and LST being close in second place (DSC = 0.71, 95%
CI: (0.70, 0.77) and DSC = 0.76, 95% CI: (0.75, 0.80) respectively).
The ROC-AUC (0.97) and ROC-PRC (0.86) for the M1-G model are
substantially better than for MIMOSA (0.87 and 0.77, respectively) and
LST (0.87 and 0.77, respectively.)

Fig. 2 displays the ROC and PRC for the four models OASIS-AD (M1-
G), OASIS, MIMOSA, and LST, and Fig. 3 displays the ROC and PRC for
all the models except fuzzy-c. The ROC curves are indistinguishable in
the area of high specificity (specificity > 0.99), with the M1-G model
performing slightly better. However, as specificity is allowed to be
smaller (moving right on the 1-Specificity x-axis) the ROC of the OASIS-
AD model is substantially better than for the other models. This in-
dicates that small changes in specificity can lead to much larger im-
provements in sensitivity for the OASIS-AD model compared to the
competing models. Both MIMOSA and LST seem to be tuned specifically
for high specificity, whereas OASIS is has higher sensitivity for speci-
ficity areas that are not of practical interest. A similar result can be
noted for the PRC in Fig. 2.

3.1.3. One slice comparison among models: case study
Fig. 4, showing true positives, false positives and false negatives

color coded, compares the WMH segmentation results using two OASIS-
AD methods (M1-G shown in panel C and M1-GN shown in panel D)
with OASIS (panel E), MIMOSA (panel F), and LST (panel G), and fuzzy-
c (panel H). Results are shown on one slice of a random subject from the
training data. The corresponding FLAIR slice is shown in Panel A, while
the manual segmentation of WMH is shown in Panel B. This slice
contains both large and small contiguous WMHs regions and results
indicate the good performance of both OASIS-AD approaches. The
MIMOSA mask also looks very good, with slightly more speckling. The
LST and OASIS estimators seem to contain many more spatially dis-
tributed false positive voxels, which may indicate a substantially dif-
ferent trade-off of false positives. Indeed, while the FPR was compar-
able between OASIS-AD and OASIS and LST, it seems that the false
positives for OASIS-AD tend to cluster close to the true positives,
whereas for the other two methods they are spread in areas that do not
contain WMH. The fuzzy-c mask seems to be slightly conservative,
misses important WMH clusters, and falsely identifies some WMH close
to the cortical surface.

4. Discussion

We introduced OASIS-AD, a class of models designed to refine
OASIS (Sweeney et al., 2013), an MS lesion segmentation approach for
WMH in older adults with AD. OASIS-AD performed well in comparison
with existing methods. OASIS-AD provides an interpretable solution
based on logistic regression combined with two map refinement tech-
niques designed to reduce the false positive rate. OASIS-AD is a sig-
nificant improvement over OASIS both in terms of modeling techni-
ques, which are adapted for the specific problems raised by WMH
segmentation, and in terms of segmentation performance. OASIS-AD
has three major advantages that are worth emphasizing. First, the lo-
gistic-based approach is highly flexible and it allows the use of any
combination of multi-modal inputs, easy expansion of the predictor
space, non-linearity, and potential interaction effects. Moreover, tra-
ditional methods for quantifying the relative importance of existing or
new predictors can provide powerful insights into what and how new
modalities and features are actually contributing to improved seg-
mentation. Second, OASIS-AD can be trained with small, moderate, and
large sample sizes, making it a very useful first line segmentation ap-
proach that can be easily deployed in new environments or sub-disease
types. Third, and probably most importantly, OASIS-AD is easy to

Table 1
OASIS-AD models information.

OASIS-AD Techniques Optimal Threshold DSC FPR

M1 M1 0.17 0.72 0.017
M1-G M1 + GFR 0.20 0.79 0.011
M1-NG M1 + NNR + GFR 0.17 0.74 0.011
M1-GN M1 + GFR + NNR 0.21 0.76 0.008
M2 M2 0.13 0.70 0.024
M2-G M2 + GFR 0.14 0.77 0.017
M2-NG M2 + NNR + GFR 0.13 0.72 0.016
M2-GN M2 + GFR + NNR 0.16 0.74 0.013
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generalize and interpret because it is based on a logistic regression
model that accounts for the intensity of voxels in various disease tissues
across image modalities.

Deep learning approaches can provide an alternative to OASIS-AD
and we continue to investigate the added benefit of these techniques,
including convolutional neural networks. So far, we have seen en-
couraging results, though much remains to be done in terms of in-
creasing the sample size of the training data (not easy to achieve in low
resource environments), performance (we have not yet matched OASIS-
AD), interpretability (we would like to better understand what features
of the data are actually contributing to improved prediction perfor-
mance), and choices of the many tuning parameters (e.g., neighborhood
size and filter types).

OASIS-AD uses NNR and GFR in combination to reduce the false
positive rate, especially due to speckling. In particular, NNR uses
neighborhood information combined with information from the FAST”
segmentation algorithm to increase or decrease the estimated prob-
ability that a voxel should be identified as WMH. A potential dis-
advantage of NNR and GFR is that in certain situations they may lead to
results that are too conservative when probabilities are shrunk too
aggressively towards zero. There are several potential solutions that
could be considered to help address these problems. For example, in the
first step of the NNR(v) algorithm described in Section 1 we used the
transformation =P P( )wmh

rv
wmh
v 10 for voxels that were estimated by FAST”

to have probability 1 of being in white matter and all 6NN to be in
white matter. One could use alternative transformations and one could
better use FAST”, or other segmentation algorithms, to inform the
likelihood that the voxel is in WMH. One solution could be to use FAST”
and OASIS-AD iteratively: first use FAST” to segment white matter, gray
matter, and CSF and then use OASIS-AD to estimate the WMH. Once
this is done the WMH region estimated via OASIS-AD can be filled in
with normally appearing white matter and the process could be iterated
until no differences are observed. In our study we only have two image
modalities, T1 and FLAIR, though OASIS-AD can be easily extended to
incorporate additional image modalities, while standard variable se-
lection techniques as well as interaction terms could easily be em-
bedded in the model structure.

In conclusion, our improved OASIS-AD method works better than
the original OASIS, MIMOSA and LST for the aging population. Since
this method was not tested on samples affected by diseases other than
aging and, subsequently AD, we can only conclude that OASIS-AD
performs better than existing methods in these types of population.
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Table 2
Performance evaluation metrics (reduced).

ACC PPV TPR FPR DSC ROC PRC

M1-G 0.97(0.01) 0.85(0.03) 0.70(0.03) 0.009(0.001) 0.78(0.03) 0.97 0.86
(0.96,0.98) (0.83,0.88) (0.69,0.72) (0.008,0.01) (0.77,0.79)

OASIS 0.95(0.01) 0.75(0.04) 0.58(0.04) 0.014(0.002) 0.65(0.04) 0.92 0.74
(0.94,0.96) (0.75,0.8) (0.58,0.62) (0.012,0.015) (0.64,0.69)

MIMOSA 0.96(0.01) 0.94(0.02) 0.58(0.04) 0.002(0.001) 0.71(0.04) 0.87 0.77
(0.96,0.97) (0.93,0.97) (0.56,0.64) (0.001,0.003) (0.70,0.77)

LST 0.97(0.01) 0.83(0.05) 0.72(0.04) 0.012(0.005) 0.76(0.03) 0.87 0.77
(0.96,0.97) (0.83,0.86) (0.71,0.76) (0.010,0.013) (0.75,0.8)

fuzzy-c 0.95(0.002) 0.88(0.13) 0.51(0.13) 0.018(0.015) 0.62(0.11) NA NA
(0.94,0.96) (0.85,0.89) (0.50,0.52) (0.017,0.019) (0.61,0.63)

Data is presented as mean (standard deviation) and 95% CI

Table 3
Performance evaluation metrics(full).

ACC PPV TPR FPR DSC ROC PRC

M1 0.96(0.01) 0.84(0.04) 0.58(0.02) 0.008(0.002) 0.68(0.02) 0.95 0.80
(0.95,0.97) (0.81,0.88) (0.58,0.61) (0.006,0.008) (0.67,0.72)

M1-G 0.97(0.01) 0.85(0.03) 0.70(0.03) 0.009(0.001) 0.78(0.03) 0.97 0.86
(0.96,0.98) (0.83,0.88) (0.69,0.72) (0.008,0.01) (0.77,0.79)

M1-GN 0.96(0.01) 0.85(0.04) 0.63(0.05) 0.005(0.001) 0.73(0.03) 0.97 0.86
(0.95,0.96) (0.83,0.88) (0.62,0.68) (0.004,0.007) (0.71,0.77)

M1-NG 0.96(0.01) 0.84(0.04) 0.58(0.05) 0.007(0.001) 0.68(0.05) 0.82 0.73
(0.95,0.96) (0.82,0.89) (0.57,0.64) (0.006,0.008) (0.66,0.74)

M2 0.95(0.01) 0.8(0.06) 0.52(0.03) 0.009(0.003) 0.63(0.04) 0.94 0.76
(0.95,0.95) (0.75,0.86) (0.51,0.56) (0.007,0.011) (0.61,0.68)

M2-G 0.96(0.01) 0.84(0.04) 0.65(0.04) 0.009(0.003) 0.72(0.03) 0.96 0.86
(0.96,0.97) (0.80,0.87) (0.64,0.69) (0.008,0.011) (0.70,0.74)

M2-GN 0.96(0.003) 0.86(0.05) 0.58(0.062) 0.006(0.003) 0.68(0.05) 0.94 0.81
(0.96,0.97) (0.80,0.88) (0.57,0.65) (0.007,0.01) (0.65,0.74)

M2-NG 0.95(0.003) 0.84(0.05) 0.54(0.06) 0.007(0.002) 0.65(0.06) 0.82 0.72
(0.95,0.96) (0.8,0.87) (0.54,0.62) (0.007,0.009) (0.63,0.72)

OASIS 0.95(0.01) 0.75(0.04) 0.58(0.04) 0.014(0.002) 0.65(0.04) 0.92 0.74
(0.94,0.96) (0.75,0.8) (0.58,0.62) (0.012,0.015) (0.64,0.69)

MIMOSA 0.96(0.01) 0.94(0.02) 0.58(0.04) 0.002(0.001) 0.71(0.04) 0.87 0.77
(0.96,0.97) (0.93,0.97) (0.56,0.64) (0.001,0.003) (0.70,0.77)

LST 0.97(0.01) 0.83(0.05) 0.72(0.04) 0.012(0.005) 0.76(0.05) 0.87 0.77
(0.96,0.97) (0.83,0.86) (0.71,0.76) (0.010,0.013) (0.75,0.8)

fuzzy-c 0.95(0.002) 0.88(0.13) 0.51(0.13) 0.018(0.015) 0.62(0.11) NA NA
(0.94,0.96) (0.85,0.89) (0.50,0.52) (0.017,0.019) (0.61,0.63)

Data is presented as mean (standard deviation) and the 95% CI
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Fig. 2. ROC and PRC of models(reduced).
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Fig. 3. ROC and PRC of models(full).
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For each input voxel v, we have:
Input: Tv, tissue type for voxel v estimated by ”FAST”

T 6NN
v , tissue type set for the 6NN of voxel v estimated by ”FAST”

pv
wm, probability of voxel v being in white matter estimated by ”FAST”

p6NN
wm , probability set for the 6NN of voxel v estimated by ”FAST”

Pv
wmh, probability of voxel v being WMH estimated by logistic models

Output: Prv
wmh, probability of voxel being WMH estimated using NNR

1: procedure NNR(v)
2: if pv

wm = 1 and T 6NN
v = wm, then

3: Prv
wmh = (Pv

wmh)10

4: else if Tv = wm and T 6NN
v � wm, then

5: Prv
wmh = (Pv

wmh)average(p6NN
wm )

6: else
7: Prv

wmh = Pv
wmh

8: return Prv
wmh

Algorithm 1. Nearest Neighbor Refinement (NNR).
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