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Inferring dynamics of metabolic networks directly from metabolomics data provides a
promising way to elucidate the underlying mechanisms of biological systems, as reported
in our previous studies (Weckwerth, 2011; Sun and Weckwerth, 2012; Nägele et al.,
2014) by a differential Jacobian approach. The Jacobian is solved from an overdetermined
system of equations as JC+CJT=−2D, called Lyapunov Equation in its generic form,1

where J is the Jacobian, C is the covariance matrix of metabolomics data, and D is
the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form
Ax=b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation
in the right side b results in a big change in the solution x, thus making the solution
unstable and error-prone. At the same time, inaccurate estimation of covariance matrix
and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we first
reviewed common approaches to circumvent the ill-conditioned problems, including total
least squares, Tikhonov regularization, and truncated singular value decomposition. Then,
we benchmarked these methods on several in silico kinetic models with small to large
perturbations on the covariance and fluctuation matrices. The results identified that the
accuracy of the reverse Jacobian is mainly dependent on the condition number of A,
the perturbation amplitude of C, and the stiffness of the kinetic models. Our research
contributes a systematical comparison of methods to inversely solve Jacobian from
metabolomics data.

Keywords: metabolomics, inverse engineering, Lyapunov Equation, Jacobian, ill-posed problems

INTRODUCTION

Understanding regulatory mechanisms of metabolic networks at the systems level is a demanding,
yet essential task. Metabolomics is the study of all metabolites identified and quantified in a
biological organism under a specified physiological state and provides a promising approach to
potentially unravel the complex dynamics in metabolic systems by measuring many metabolites
participating in particular biochemical processes and across many biological samples (Nicholson
et al., 1999; Fiehn et al., 2000;Weckwerth, 2003;Weckwerth et al., 2004). One central goal in applying
these technologies is to study how metabolic networks respond to different treatments, such as
environmental stresses, genetic mutations. Because metabolic networks typically consist of many
non-linear interactions (Strogatz, 1994) between metabolites, identifying perturbation sites from

1In control theory, the generic form of equation JC+CJT =−2D is called Lyapunov Equation, where, however, C, J, andD have
different meanings. There is no particular name for this equation applied in the biological research. Thus, we use Lyapunov
Equation for its name.
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metabolomics data is one of the major challenges. Theoretical
frameworks have been introduced to detect perturbation sites and
to understand dynamic features of metabolic networks. Current
approaches to the analysis of experimental data can be divided
into three categories: statistical analysis, dynamic modeling, and
network analysis. Multivariate statistical methods, such as princi-
pal and independent components analysis (Nicholson et al., 1999;
Fiehn et al., 2000; Raamsdonk et al., 2001;Morgenthal et al., 2005),
correlation network analysis (Weckwerth, 2003; Weckwerth et al.,
2004; Camacho et al., 2005), clustering analysis (Roessner et al.,
2001), partial least squares discrimination analysis (Bijlsma et al.,
2006), support vector machines (Zhang et al., 2006), and many
others [for a comprehensive review, see Sugimoto et al. (2012)]
aim at analyzing the complex relationships between the measured
molecules and to reveal the inherent data structure in order to
find associations between the different molecules and, eventually,
causality to infer the directionality of metabolic and regulatory
processes. Though powerful in classifying samples and providing
insights into cellular activities under different treatment condi-
tions, they lack the ability to detect perturbation sites associated
with the dynamics of the underlying metabolic reaction system.

As a more analytical approach, mathematical modeling repre-
sentsmetabolic networks as a set of ordinary differential equations
(ODEs, Eq. 1) where S1, S2, . . . , Sn are the concentration of n
metabolites and f 1, f 2, . . . , fn are the rate of enzymatic reactions,
such as Michaelis–Menten kinetics or mass action.

df
dt =

∂f
∂S

∂S
∂t = J



dS1
dt = f1(S1, S2, · · · , Sn)
dS2
dt = f2(S1, S2, · · · , Sn)

...
dSn
dt = fn(S1, S2, · · · , Sn)

 (1)

The Jacobian matrix J (Eqs 1 and 2) is the first-order deriva-
tive of the reaction rate fi (i= 1, 2, . . . , n) with respect to the
concentration of metabolites Sj (j= 1, 2, . . . , n). It describes the
influence on the change of each metabolite upon the changes of
other metabolites, and thus captures the reaction-level changes
under perturbations, such as environmental stress and genemuta-
tions, to the metabolic network. Therefore, the Jacobian matrix
is very useful to understand regulatory mechanisms of metabolic
networks at the systems level.

Jacobian =
∂f
∂S =


∂f1
∂S1

∂f1
∂S2 · · · ∂f1

∂Sn
∂f2
∂S1

∂f2
∂S2 · · · ∂f2

∂Sn
...

...
. . .

...
∂fn
∂S1

∂fn
∂S2 · · · ∂fn

∂Sn


n×n

(2)

To obtain the Jacobian matrix, it is natural to build mathemat-
ical models (such as Eq. 1) from metabolomics data. However,
there are several practical difficulties. Firstly, kinetic parameters
of reaction rate f are unknown. If these parameters are not easily
obtained by enzymatic assays, parameter estimation should be
used, but it is not a trivial work. It involves literature mining:
parameters are collected from different individual studies where
they can range over several orders of magnitude. Tuning these

parameters to validate the model, i.e., minimize the differences
between model simulation results and experimental data, is usu-
ally a long and iterative process, and cannot achieve a satisfactory
result (Gutenkunst et al., 2007). As the result, most metabolic
models are limited to a small scale, ranging from several to
a few dozens of metabolites. To our knowledge, there are no
metabolomics-scale kinetic models. Secondly, the detailed types
of kinetics of some reactions may not be known (Goel et al.,
2008), for example, whether the kinetics of one reaction is mass
action or Michaelis–Menten type. Estimation of the equation
forms may even be more difficult than parameter estimation.
Thirdly,metabolic processes are full of fluctuations thatmay result
from stochastic transcription factor activities, cross-membrane
translocation noise, and cross-talk between reactions or pathways
(Rao et al., 2002; Paulsson, 2005; Raser and O’Shea, 2005). On
the phenotypic level, it was demonstrated in a metabolomics
study that the variations between biological samples are too large
to be explained by technical errors (Morgenthal et al., 2006).
From this perspective, ODE-based deterministic modeling is not
able to reflect these variations. Stochastic modeling is needed.
However, the numeric methods to solve stochastic differential
equations (SDEs) are not yet well established, in particular, no
efficient methods are existing for big and stiff systems, such as the
metabolomics-scale system.

Steuer et al. established a fundamental link between metabolic
covariance dataC and the Jacobianmatrix J by expanding the Lya-
punov Equation (Eq. 3) where the right side D is the fluctuation
matrix in which the diagonal entries characterize the fluctuation
magnitude of each metabolite. JT is the transposed form of J
(Steuer et al., 2003).

JC+ CJT = −2D (3)

For a system with nmetabolites, there are n*(n+ 1)/2 indepen-
dent values in the symmetric covariance matrix C but n2 variables
in the non-symmetric J to be determined. In other words, the
number of equations is smaller than the number of variables, thus
Eq. 3 is underdetermined. Most underdetermined systems have
no unique solutions. The authors suggested using parameterized
solutions to eliminate such underdetermination. However, as the
parameter space for uncertain parameters is large, the actual
Jacobian may not easily be obtained by such parameterization.

We can circumvent this problem by introducing the stoichio-
metric matrix (STOI) of a metabolic network, which is typically
very sparse (Weckwerth, 2011; Sun andWeckwerth, 2012). If STOI
and the reversibility of reactions can be determined, then it is pos-
sible to determine non-zero entries in the Jacobian J. Fortunately,
the information for the reversible and irreversible reactions can be
obtained by genome-scale network reconstruction (Weckwerth,
2011) and also based on public accessible database, such as KEGG
(Kanehisa et al., 2014) and BioCyc (Caspi et al., 2014). Since
metabolic networks are usually very sparse (Sun and Weckwerth,
2012), many entries in J are 0s, and consequently, Eq. 3 becomes
overdetermined. However, under some circumstances, such as
allosteric inhibition, regulation between metabolites is reflected
in J but not in the STOI. For such cases, we need additional
knowledge from literature and databases to assign these non-zero
entries in J.
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Overdetermined systems have best approximation solutions. To
make it clearer to understand, with simple matrix operations, Eq.
3 can be converted to the linear form as Ax= b, where A is an n2-
by-n2 matrix derived from C, x is an n2-by-1 vectorized Jacobian
matrix J, and b is an n2-by-1 vectorized fluctuation matrix D. If
p entries in J are not 0s, the size of A is eliminated to n2-by-p; x
and b are p-by-1 vectors. For simplicity, we assume that A has full
column rank, i.e., the rank of A is p.

The most popular method is ordinary least squares (OLS). It
minimizes the squared residual error of Ax− b (Eq. 4).

min ||Ax− b||2 (4)

The solution x is then obtained by Eq. 5, where AT is the
transposed form of A.

x = (ATA)−1ATb (5)

However, in some cases, when ATA is close to singular, its
inverse form (ATA)−1 cannot be stably obtained, resulting in inac-
curate solutions x. To illustrate this problem, we use the singular
value decomposition of matrix A (Eq. 6.1), where U and V are
orthogonal matrices; Σ is a diagonal matrix with diagonal ele-
ments σ1 ≥ σ2 ≥ ,. . .,≥ σn , which are singular values of A; their
squared form σ2 are the Eigen values ofmatrixATA. By definition,
for the ith singular value σi, Eqs 6.2 and 6.3 are obtained. If, for
example, σi is very small compared to σ1, the left side of Eq. 6.3
is then very small, thus A is nearly rank deficient, introducing the
so-called “ill-posed” numeric problems in Eq. 5.

A = UΣVT (6.1)
Aνi = σiui (6.2)

||Aνi|| = σi (6.3)

The metric for ill-posed problems, condition number of A, is
defined as the ratio of the largest singular value to the smallest
singular value, i.e., σ1/σn. When the condition number is large,
Eq. 5 tends to be ill-posed.

One method to alleviate ill-posed problems is to truncate t
(t< n) smallest singular values [truncated singular value decom-
position (TSVD)] and the corresponding columns and rows in the
matrix U and V, respectively, as Eq. 7, where first n− t singular
values are kept. The new solution is a close approximation of x
but with increased numerical stability.

min ||Atx− b||2 (7)

A similar method is truncated total least squares (TTLS).
Unlike the original truncated SVD form Eq. 6, it implements SVD
on the combined matrix [A|b], and truncates smaller singular
values as Eq. 7 does. If we rewrite Eq. 4 as Eq. 8.1 and derive Eq.
8.2 from the combinedmatrix [A | b], we can see that TLS solution
is robust to perturbations δA on matrix A.

min ||δb||2 subject to Ax = b+ δb (8.1)
min ||δA δb||2 subject to (A+ δA)x = b+ δb (8.2)

Anothermethod is called “regularization,” which adds a penalty
form in the Eq. 4 as

min (||Ax− b||2 + ||Γ(x− x0)||m) (9)
x0 is the initial estimation of x; when x0 is unknown, it is just 0s. Γ
is a function of x which puts an L-m norm constraint on its value.
In the simplest form, Γ is multiple of the identity matrix I and
Eq. 9 becomes Eq. 10, where λ is the sole tuning parameter of
regularization. Popular methods determining λ values include L-
curve criterion (Hansen, 1992) and cross-validation (Hastie et al.,
2001); both obey the rules of bias-variance tradeoff (Hastie et al.,
2001).

min
(
||Ax− b||2 + λ||(x− x0)||m

)
(10)

Regarding with m, when m is 1, the penalty form |x− x0| is
the absolute least distance between x and x0, and Eq. 9 is also
called LASSO in statistics literature; whenm is 2, the penalty form
denotes the squared Euclidean distance between x and x0, and Eq.
9 is called Tikhonov regularization (TIKH) or Ridge Regression.
When m is between 1 and 2, Eq. 9 has the name “elastic net.”
Both LASSO and elastic net implement variable shrinkage on
x (shrink some x entries to 0s), thus are not desirable in our
approach solving the Jacobian entries because the 0 entries have
been determined by using the stoichiometric matrix. m< 1 or
m> 2 are rarely used.

So far, we have introduced methods to solve the inverse Jaco-
bian from metabolomics covariance data. In our previous work,
we established reverse Jacobian calculation pipeline and imple-
mented OLS, TLS, and TIKH in the software COVAIN (Sun and
Weckwerth, 2012), which provides an easy-to-use graphical user
interface, detailed manual and example data; thus, biologists can
obtain a clear understanding of our approaches. COVAIN can
be freely downloaded from our website: http://www.univie.ac.at/
mosys/software.html.

We applied our approaches on a real metabolomics dataset
(Nägele et al., 2014). The inverse Jacobian identified the significant
change of activities of pyruvate dehydrogenase complex which
interconverts pyruvic acids, and further experiments validated
this change.

However, “no free lunch theorem in optimization” also holds
true for these inverse methods since they involve the optimization
process. It is possible that some methods perform better than
others under specified conditions and for some types of data, and
therefore, understanding the factors that affect the performance
of the inverse methods is important. Additionally, two practical
challenges relate with covariance matrix and fluctuation matrix.
Firstly, estimation of the covariance matrix is often problem-
atic due to missing values and outliers in the measurements.
Post-experimental data processing, for instance, missing value
imputation and outliers adjustment, further exert perturbations
to the original covariance matrix, i.e., the ideal “true” one with
no missing values or outliers. Secondly, the fluctuation matrix
can be retrieved from prior biological knowledge, for example,
fluctuation only associates with few particular metabolite(s), or
with all metabolites, but such information may not be an accu-
rate reflection of the “true” fluctuation in biological organisms.
Therefore, for both cases, it is reasonable to check how such
uncertainties affect the reverse Jacobian.
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FIGURE 1 | The sucrose synthesis pathway under wild type and PGM mutant. The triose phosphate is imported from the chloroplast to synthesize sucrose in
the cytosol. The total amount of triose phosphate in the chloroplast is a constant value. In the wide type, most triose phosphate is used to form the starch; in PGM
mutant, the starch synthesis pathway is cut off, which results in a much higher triose phosphate flux into the cytosol; at the same time, the activity of invertase is
increased. Both increases are shown in wider arrows in gray. The v1, v2, etc., are the reaction rates with simple mass action kinetics. Abbreviation: Pext, “external”
phosphate in the chloroplast; TPext, “external” triose phosphate in the chloroplast; P, phosphate; TP, triose phosphate; F6P, fructose-6-phosphate; G6P,
glucose-6-phosphate; UDP, uridine diphosphoglucose – glucose; SP, sucrose phosphate; SUC, sucrose; GLC, glucose; FRC, fructose.

MATERIALS AND METHODS

Since our aim is to study the effects of a large condition number,
the imperfect covariancematrix and uncertain fluctuationmatrix,
we choose to use experimentally validated in silico models as
they are more amenable to introduce perturbations on covariance
and fluctuation matrices. The principle of model selection is to
select models with different levels of complexity denoted by their
sizes and kinetics. We chose one in-house model, the sucrose
synthesis model under wild type and PGM-mutant condition
in the plant Arabidopsis thaliana (Morgenthal et al., 2005) with
11 metabolites and mass action kinetics (abbreviated as Sucrose
PGM, Figure 1) and three publicly accessible metabolic models
from BioModels database (Le Novère et al., 2006). These three
ODEs-based models are:

(1) BIOMD0000000023 (abbreviated as Sucrose BM23, http:
//www.ebi.ac.uk/biomodels-main/BIOMD0000000023),
sucrose accumulation model in the plant Saccharum
officinarum which contains five metabolites with Michaelis–
Menten kinetics;

(2) BIOMD0000000042 (Glycolysis BM42, http://www.ebi.ac.
uk/biomodels-main/BIOMD0000000042), glycolysis model
in the yeast Saccharomyces cerevisiae with 15 metabolites and
mostly mass action kinetics and a few complex forms;

(3) BIOMD0000000066 (Signaling BM66, http://www.ebi.ac.uk/
biomodels-main/BIOMD0000000066), threonine synthesis
model in the bacteria Escherichia coli (strain K12) with 11
metabolites and Michaelis–Menten kinetics.

The detailed information of these three models including
original publications, kinetic equations, and parameters can be
accessed from the BioModels database (Le Novère et al., 2006)
in the Systems Biology Makeup Language (SBML) format. We
use the default kinetic parameters from the BioModels database.
Note that from SBMLportal website, http://sbml.org/Documents/
FAQ#What_is_this_0.22boundary_condition.22_business.3F, it

is recommended not to include constant metabolites in ODE
models that are labeled as boundaryCondition= “true” in the
SBML file. For example, for BM23, among 13 metabolites, eight
are labeled as constant (these metabolites are Sucvac, glycolysis,
phos, UDP, ADP, ATP, Glcex, and Fruex), and we include the rest
five in our approach (they are Fru, Glc, HexP, Suc6P, and Suc).

The overall workflow is as follows.We first obtained the in silico
metabolomics covariance data and Jacobian as well as stoichio-
metric matrix by simulating the above models in the unperturbed
“control” condition with a predefined fluctuation matrix (see
below). Second, we introduced different levels of perturbations to
the covariance and the fluctuation matrix. Finally, we tested the
performance of the inverse Jacobian methods (as shown before)
on the perturbed data.

To obtain themetabolomics covariance data, first, we converted
theODEs of abovemodels to SDEs by addingGaussianwhite noise
to the right side of Eq. 1. Second, we defined the fluctuationmatrix
D0 in the control condition as a diagonal matrix (diagonal entries
are non-zero and all off-diagonal entries are 0s whichmeans there
are no cross-talks between metabolites). Third, we iteratively sim-
ulated the SDEs with the predefined D0 for N times and obtained
the metabolomics covariance data C0 and Jacobian J0 in the con-
trol condition. For simplicity, we used arbitrary units instead of
the real units, but operation on real physical units is straight for-
ward. Chemical reactions, like Eq. 1, have the units of mol L−1 s−1

or mmolmL−1 s−1, meaning the concentration change per sec-
ond. After partial derivation on the concentration variables S, the
Jacobian J (Eq. 2) has units of s−1, that is, the inverse of time. The
covariance matrix C has the units of the squared form of that in
the concentration variables, i.e., (mol L−1)2 or (mmolmL−1)2.

The perturbation on C0 was obtained by reducing the repeat
times to N/2, N/3, N/10, . . .. These new covariance matrices C1,
C2, C3, etc., thus represent imperfect estimation of C0, based on
the “Law of large numbers” theorem that the covariance estimated
from a subset of data does not give the actual approximation of
the covariance calculated from the original data. The perturbation
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magnitude δC is measured by the relative changes to C0, i.e.,
||Ci−C0||
||C0|| (i= 1, 2, 3, . . .).
The perturbed D0 was achieved by adding different levels of

Gaussian white noise to all entries of D0 as Di = (I+N(0, σ2))D0
where I denotes the identity matrix and σ is the level of noise. We
tested three levels of σ as 0.01, 0.1, and 1. When σ is 0.01, the
perturbation magnitudes δD, the relative changes of D0, ||Di−D0||

||D0||
(i= 1, 2, 3, . . .), are very small; when σ is 0.1, the magnitudes
are observable, and when σ is 1, the new Di is in fact a fully
randomized matrix, where all diagonal and off-diagonal entries
have similar amplitude. For each perturbation level of C0 and D0,
100 repeats were obtained.

In the inverse Jacobian calculation procedure, we use these per-
turbed covarianceCi and fluctuationmatricesDi to inversely infer
the Jacobian Ji (i= 1, 2, 3, . . .) with the methods introduced above
(OLS, TLS, TIKH, and TSVD). The goodness of Ji is represented
by theR2 values of linear regression between J0 and Ji. A limitation
of R2 for linear regression is that they often contain a constant
offset from the origin point, and if that happens with the reverse
Jacobian approach, it means that entries of J0 and Ji have same
“trend,” yet neither comparable nor proportional, and the signs of
J0 and Ji entries may be different. However, we showed that both
J0 and Ji are crossing the origin point for all models, and thus J0
and Ji entries can be compared in pairwise; therefore, R2 is a good
metric of the goodness of the reverse Jacobian (Figures S1–S4 in
Supplementary Material).

RESULTS

Condition Number of the Models with
Different Perturbation Levels on the
Covariance
As explained in Section “Introduction,” the condition number of
A, κA, in the linear equations Ax= b indicates the accuracy of the
solution x in the overdetermined system. A is a function of the
covarianceC, and when perturbations are introduced inC, κA will
be changed. We calculated κA for the four models under different
perturbation levels onC and averaged κA over 100 repeats for each
perturbation level. Results are shown in Figure 2.

Without perturbation, i.e., δC= 0, the Sucrose PGM model
has the lowest condition number (around 103–104), which may
be a result of its simple mass action kinetics. Sucrose BM23, on
the other side, shows a surprisingly high condition number (over
1016), which may result from its complex kinetics. In fact, for this
small model with only five metabolites, there are 11 reactions
including bireactant Michaelis–Menten kinetics and inhibition
regulation, as well as 63 kinetic parameters. Higher complex-
ity of the model may lead to increased fluctuation propagation
and result in larger variance–covariance matrices. The other two
models, Glycolysis BM42 and Signaling BM66, which contain
more metabolites and reactions than the Sucrose PGMmodel and
simpler kinetics than the Sucrose BM23model, havemediumhigh
condition numbers (around 105–106).

When the perturbation level increases from 0, there is a clear
abrupt condition number change around 30–60% perturbation
amplitude. This value varies among the models, in detail, 50% for
Sucrose PGM model, 60% for Sucrose BM23, 30% for Glycolysis

FIGURE 2 | The condition number κA (y-axis) increase with higher
perturbation amplitude (x-axis) on the covariance C. Note that y-axis is
in log10 scale.

BM42, and 55% for Signaling BM66. After this perturbation level,
all themodels turn to ill-posed problems with very high condition
numbers.

Goodness of the Reverse Jacobian upon
Covariance Perturbations
Under no or small covariance perturbations (δC≤ 10%), the
reverse Jacobian calculated by OLS and TSVD shows a high accu-
racy with R2 > 0.9 for Sucrose PGM and Sucrose BM23 model.
OLS and TSVD are exactly the same for models with small
condition number including Sucrose PGM, BM42, and BM66
(Figures 2 and 3A,C,D). For the model with large condition
number, TSVD is significantly better than OLS (Mann–Whitney
U test p-value< 1e−11), as observed on BM23 model (Figures 2
and 3B). Under the medium perturbation (30%> δC> 10%),
TSVD accuracy drops (R2 around 0.3) but is still better or similar
compared to other methods (Figures 3A,C,D), while OLS drops
more than TSVD (Figure 3B). When the perturbation gets larger
(δC≥ 30%), TSVD and OLS accuracies drop drastically and are
exceeded byTLS orTIKH. It is also observed thatwhen the pertur-
bation gets larger, the covarianceC tends to be not positive definite
and close to singular, which makes the condition number of A
very large and thus ill-conditioned (Table S1 in Supplementary
Material).

Total least squares (TLS) appears to perform better under large
covariance perturbations. This is consistent with its principle (see
Introduction and Eq. 8) as it takes into account the error in the
covariance. It is more interesting to see that TLS performs better
under medium (Figures 3B,C) to large (Figure 3D) perturbations
than it does under small perturbations. This is not surprising
though. The accuracy of the reverse Jacobian depends on the
combined effects from these factors: (1) the approximation solu-
tion obtained by each method and (2) the amplitude of perturba-
tions on the covariance. TLS shows lower approximation accuracy
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FIGURE 3 | The goodness of the reverse Jacobian obtained by OLS, TLS, TIKH, and TSVD is represented by the R2 values when regressed to the true
Jacobian (vectorized, see Introduction). (A) is for Sucrose PGM model, (B) for Sucrose BM23 model, (C) for Glycolysis BM42 model, and (D) for Signaling BM66
model. In each sub figure, the error bar with 1 SD is plotted from 100 iterations. Abbreviation: OLS, ordinary least squares; TLS, total least squares; TIKH, Tickhonov
regularization; TSVD, truncated singular value decomposition.

but a higher robustness against covariance perturbations while
TSVD shows higher approximation accuracy and lower robust-
ness against covariance perturbations. Such a combination yields
a non-monotonic change pattern of the reverse Jacobian goodness
when the perturbation amplitude increases. Similar phenomena
are also observed with TIKH curves in Figures 3B,D.

BM42 and BM66 models show a relatively low accuracy of
reverse Jacobian even at small perturbations (Figures 3C,D). One
reason may be partly due to their medium-to-high condition
number (Figure 2). The other reason may be attributed to the
“stiffness” of the system, which is reflected in the Jacobian entries
that some entries are many magnitudes larger than others. This
yields problems in both solving overdetermined systems and R2

calculation. To estimate such stiffness, we calculated the ratio
between maximal and minimal absolute values of non-zero Jaco-
bian entries, and found that these ratios for BM42 and BM66 are
much bigger than in the other two models. The ratio is Sucrose
PGM, 388; Sucrose BM23, 3192; Glycolysis BM42, 1.3e6; and
Signaling BM66, 1.0e6.

Goodness of the Reverse Jacobian upon
Fluctuation Matrix Perturbations
We investigated the effects of perturbations on the fluctuation
matrix D over the reverse Jacobian. Since we found the effects

FIGURE 4 | The goodness of the reverse Jacobian for the Sucrose
PGM model calculated from four methods under three levels of
fluctuation matrix perturbations is represented as R2 when regressed
to the true Jacobian (vectorized, see Introduction). The perturbation is
represented as relative change δD with three levels, 2, 20, and 100%. The
four reverse calculation methods are OLS, ordinary least squares; TLS, total
least squares; TIKH, Tikhonov regularization; and TSVD, truncated singular
value decomposition. Each boxplot shows the distribution of R2 over 100
iterations.
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for all the models are similar, here we present the results for the
Sucrose PGMmodel. The perturbation levels δD are controlled by
adding randomness to the original fluctuationmatrix as described
in Section “Materials and Methods.” The levels are approximately
at three scales: 2, 20, and 100%.Herewe only investigate the fluctu-
ationmatrix perturbation effects, and leave combined effects from
both covariance and fluctuation matrices perturbation in the later
section. All the models used in this study correspond to the same
(and small) covariance perturbation levels, which are the same as
the ones of the first bar in Figure 3A.

We found that for small-to-medium fluctuation matrix pertur-
bations (δD= 2–20%), the reverse Jacobian has a high accuracy
indicated by R2 which are generally over 0.90 for all reverse cal-
culation methods (Figure 4). Compared to the ones without fluc-
tuation matrix perturbations in the previous section (Figure 3A),
the reverse Jacobian accuracies are almost not affected, indicating
the additive small randomness on the fluctuation matrix has little
effect on the solution.

When the perturbation level increases to 100% and the fluc-
tuation matrix turns to be fully randomized, the reverse Jacobian

drops significantly (Figure 4, R2 centering around 0.3 and ranging
from 0 to 0.8). TLS shows the largest drop, indicating it is more
sensitive to fluctuation perturbations. For other methods (OLS,
TIKH, and TSVD), although more than 75% of R2 are below 0.6,
some R2 are as high as 0.8. It indicates that there is a possibility to
achieve a good reverse Jacobian under some unknown conditions
without knowing the fluctuationmatrix at all. However, this needs
to be further investigated.

Goodness of the Reverse Jacobian upon
Perturbations on Both Covariance and
Fluctuation Matrices
Combining the previous results, we give a full map of the com-
bined effect of perturbations on both covariance and fluctuation
matrices with the Sucrose PGM model (Figure 5). A general
pattern of the combined effects is that the accuracy of reverse J
is increasing with decreasing levels of perturbations on C and D,
and the high accuracy border (R2 ≥ 0.7) lies around 30% C and
D perturbation, except the TIKH method where there are a few

FIGURE 5 | The goodness of reverse Jacobian for the Sucrose PGM model under perturbations on both covariance and fluctuation matrices is
represented as R2 when regressed to the true Jacobian (vectorized, see Introduction) and shown by the heat map. The perturbations are measured by
the percentile relative and relative changes of δC and δD over covariance and fluctuation matrix, respectively. The percentile relative change is calculated as
percentiles of all relative changes δC (or δD). The four reverse calculation methods are (A) OLS, ordinary least squares; (B) TLS, total least squares; (C) TIKH,
Tikhonov regularization; and (D) TSVD, truncated singular value decomposition. The mean values of all 100 repeats for each level of perturbations are plotted.
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non-monotonic changing area (Figure 5C). The high accuracy
border looks as a mirrored L-shape.

For this specified Sucrose PGMmodel, being its low condition
number, the OLS and TSVD produce similar patterns with large
high accuracy borders (Figures 5A,B). Comparing between TLS
and TIKH, the former’s border is smaller yet achieves higher
accuracy in small perturbations on C and D (Figures 5C,D).

CONCLUSION

Understanding the regulatory mechanisms of metabolic networks
is a challenging yet essential task in current biochemical studies.
We previously established a reverse Jacobian reconstruction algo-
rithm to infer the regulation of the metabolic network directly
from the covariance data (Sun and Weckwerth, 2012; Nägele
et al., 2014). In this study; we explored and evaluated the per-
formance of several inverse calculation methods, including OLS,
TLS, Tikhonov regularization (TIKH), and TSVD, under the con-
ditions of erroneous covariance and uncertain fluctuation matrix.
We simulated four in silico representative kinetic models of dif-
ferent levels of complexity with SDEs and obtained the in silico
data.

We benchmarked these four inverse calculationmethods under
small-to-large perturbations on the covariance and fluctuation
matrices.We found that the accuracy of reverse Jacobian is depen-
dent on these factors: (1) the condition number of A in the
linear form of Lyapunov Equation as Ax= b, (2) the perturba-
tion amplitude of covariance, and (3) the stiffness of the kinetic

models. The perturbation on the fluctuation matrix, however,
has less effect on the reverse Jacobian. A good reverse Jacobian
can be obtained with small covariance perturbations and small
to medium fluctuation matrix perturbations. Although very few,
there are some cases under large covariance and fluctuationmatrix
perturbations where the reverse Jacobians are similar to their true
form. The overall combined effects from covariance and fluctua-
tion matrix perturbations yields a mirrored L-shaped curve.

Tested on the four models, TSVD has achieved highest reverse
Jacobian accuracy. OLS performs well when both the condition
number of A and the perturbation levels are small, but its perfor-
mance drops down quickly if these conditions are not satisfied.
TLS shows robustness against perturbations on the covariance
matrix but displays sensitivity to perturbations on the fluctua-
tion matrix. TIKH has similar robustness as TLS upon covari-
ance perturbations and shows less sensitive to fluctuation matrix
perturbations.

By systematically comparing inverse calculation methods on
systemswith inherent error or uncertainties, our study contributes
not only to solving Jacobian from metabolomics covariance data,
but also to solving ill-posed inverse problems widely studied in
many other sciences.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fbioe.2015.00188
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