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Clone-structured graph representations enable
flexible learning and vicarious evaluation of
cognitive maps
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Cognitive maps are mental representations of spatial and conceptual relationships in an

environment, and are critical for flexible behavior. To form these abstract maps, the hippo-

campus has to learn to separate or merge aliased observations appropriately in different

contexts in a manner that enables generalization and efficient planning. Here we propose a

specific higher-order graph structure, clone-structured cognitive graph (CSCG), which forms

clones of an observation for different contexts as a representation that addresses these

problems. CSCGs can be learned efficiently using a probabilistic sequence model that is

inherently robust to uncertainty. We show that CSCGs can explain a variety of cognitive map

phenomena such as discovering spatial relations from aliased sensations, transitive inference

between disjoint episodes, and formation of transferable schemas. Learning different clones

for different contexts explains the emergence of splitter cells observed in maze navigation

and event-specific responses in lap-running experiments. Moreover, learning and inference

dynamics of CSCGs offer a coherent explanation for disparate place cell remapping phe-

nomena. By lifting aliased observations into a hidden space, CSCGs reveal latent modularity

useful for hierarchical abstraction and planning. Altogether, CSCG provides a simple unifying

framework for understanding hippocampal function, and could be a pathway for forming

relational abstractions in artificial intelligence.
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V icarious trial and error1, the ability to evaluate futures by
mental time travel, is a hallmark of intelligence. To do
this, agents need to learn mental models, or “cognitive

maps”2,3, from a stream of sensory information as they experi-
ence the environment around them4. Learning these mental
abstractions is complicated by the fact that sensory observation
is often aliased. Depending on context, identical events could
have different interpretations and dissimilar events could mean
the same thing5. As such, a computational theory for cognitive
maps should: (1) propose mechanisms for how context and
location-specific representations emerge from aliased sensory or
cognitive events, and (2) describe how the representational
structure enables consolidation, knowledge transfer, and flexible
and hierarchical planning. Most attempts at developing such a
theory, which include modeling hippocampus as a memory
index, a relational memory space, a rapid event memorizer, and
systems-level models of pattern-separation and pattern com-
pletion, have not reconciled the diverse functional attributes6–8

of the hippocampus under a common framework. Recent
models have attempted to reconcile the representational prop-
erties of place cells and grid cells using successor representation
(SR) theory9–11 and by assuming that these cells are an efficient
representation of a graph12. However, both these models fall
short in describing how flexible planning can take place after
learning the environment and are unable to explain several key
experimental observations such as place cell remapping in spa-
tial and nonspatial environments13,14 and the fact that some
place cells encode routes toward goals15,16, while others encode
goal values17,18.

A behaving agent often encounters external situations that look
instantaneously similar, but require different action policies based
on the context. In these situations, sensory observations should be
contextualized into different states. In other times, dissimilar
looking sensory observations might need to be merged on to the
same state because those contexts all lead to the same outcome. In
general, to form a flexible model of the world from sequential
observations the agent needs to have a representational structure
and a learning algorithm that allows for elastic splitting and
merging of contexts as appropriate5,19. Moreover, the repre-
sentational structure should be such that it allows for dynamic
planning and handling of uncertainty.

Here we propose a specific higher-order graph—clone-struc-
tured cognitive graph (CSCG)—that maps observations onto
different “clones” of that observation as a representational
structure that addresses these requirements. Using just principles
of higher-order sequence learning and probabilistic inference,
CSCGs can explain a variety of cognitive map phenomena such as
discovering spatial relations from an aliased sensory stream,
transitive inference between disjoint episodes of experiences,
transferable structural knowledge, and shortcut-finding in novel
environments. CSCG’s ability to create different clones for dif-
ferent contexts explains the emergence of splitter cells16, and
route-specific encoding20, which we demonstrate using a variety
of experimental settings common in neurophysiology. In a
repeated lap-running task21, CSCGs learn lap-specific neurons,
and exhibit event-specific responses robust to maze perturbations,
similar to neurophysiological observations. CSCGs can also learn
to separate multiple environments that share observations, and
then retrieve them based on contextual similarity. Notably, the
dynamics of clone-structure learning and inference gives a
coherent explanation for the different activity remapping phe-
nomena observed when rats move from one environment to
another. By lifting the aliased observations into a hidden space,
CSCGs reveal latent modularity that is then used for hierarchical
abstraction and planning.

Clone-structured cognitive graphs as a model of cognitive
maps. The central idea behind CSCGs is dynamic Markov
coding22, which is a method for representing higher-order
sequences by splitting, or cloning, observed states. For example,
a first-order Markov chain representing the sequence of events
A→ C→ E and B→ C→D will assign high probability to the
sequence A→ C→D (Fig. 1a). In contrast, dynamic Markov
coding makes a higher-order model by splitting the state repre-
senting event C into multiple copies, one for each incoming
connection, and further specializes their outgoing connections
through learning. This state cloning mechanism permits a sparse
representation of higher-order dependencies, and has been dis-
covered in various domains22–25. With cloning, the same bottom-
up sensory input is represented by a multitude of states that are
copies of each other in their selectivity for the sensory input, but
specialized for specific temporal contexts, enabling the efficient
storage of a large number of higher-order and stochastic
sequences without destructive interference. However, learning
dynamic Markov coding is challenging because cloning relies on a
greedy heuristic that results in severe suboptimality—sequences
that are interspersed with zeroth-order or first-order segments
will result in an uncontrolled growth of the cloned states.
Although25 incorporated the cloning idea in a biological learning
rule, the lack of a probabilistic model and a coherent global loss
function hampered its ability to discover higher-order sequences,
and flexibly represent contexts. An effective learning approach
should split clones to discover higher-order states, and flexibly
merge them when that helps generalization.

Our previous work26 showed that many of the training
shortcomings of dynamic Markov coding can be overcome
through cloned hidden Markov models (HMM)—a sparse
restriction of an overcomplete HMM27. In cloned HMMs, the
maximum number of clones per state is allocated up front, which
enforces a capacity bottleneck. Learning using the expectation
maximization (EM) algorithm figures out how to use this capacity
appropriately to split or merge different contexts for efficient use
of the clones to represent different contexts. In addition, cloned
HMMs represent the cloning mechanism of dynamic Markov
coding in a rigorous probabilistic framework that handles noise
and uncertainty during learning and inference.

Both HMMs and cloned HMMs assume that the observed data
are generated from a hidden process that obeys the Markovian
property. That is, the conditional probability distribution of
future states, given the present state and all past states, depends
only upon the present state and not on any past states. For
HMMs, the joint distribution over the observed and hidden states
given by the following equation:

Pðx1; ¼ ; xN ; z1; ¼ ; zNÞ ¼ Pðz1Þ
YN�1

n¼1

Pðznþ1jznÞ
YN
n¼1

PðxnjznÞ

ð1Þ

where P(z1) is the initial hidden state distribution, P(zn+ 1∣zn) is
the probability of transitioning from hidden state zn to zn+ 1, and
P(xn∣zn) is the probability that observation xn is generated from
the hidden state zn. We assume there are E distinct observations
and H distinct hidden states i.e., xn can take a value from 1, 2,…,
E and zn can take a value from 1, 2,…,H.

In contrast to HMMs, in the cloned HMMs, many hidden
states map deterministically to the same observation (Fig. 1b).
The set of hidden states that map to a given observation are
referred to as the clones of that observation. We use C(j) to refer
to the set of clones of observation j. The probability of a sequence
in a cloned HMM is obtained by marginalizing over the hidden
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Fig. 1 Clone-structured cognitive graph. a Sketch explaining dynamic Markov coding. A first-order Markov chain shown as a graph between nodes
representing its states, modeling observation sequences A→ C→ E (purple arrows) and B→ C→ D (green arrows) will also assign high probability to the
sequence A→ C→ D because higher-order information is lost at state C. (Middle) Higher-order information can be recovered by cloning the state C for
different contexts, and then relearning their outgoing connections (blue) to result in the graph on the right. b Cloning structure of dynamic Markov coding
can be represented in an HMMwith a structured emission matrix, the cloned HMM. c Probabilistic graphical model for CSCG which extends cloned HMMs
in b by including actions. d Neural implementation of cloned HMM. Arrows are axons, and the lateral connections implement the cloned HMM transition
matrix. Different sequences are in different colors, e.g., A→ C→ E in purple. Neurons in a column are clones of each other that receive the bottom-up input
(blue arrows) from the same observation. e Inference dynamics in the cloned HMM neural circuit. Neural activations strengths are represented in shades
of red. Activations that propagate forward are the ones that have contextual (lateral) and observational (bottom-up) support. f Replay within the circuit for
the sequence A→ B→ (C, D)→ E→ E.
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states as follows:

Pðx1; ¼ ; xNÞ ¼ ∑
z1;¼ ;zN

Pðz1Þ
YN�1

n¼1

Pðznþ1jznÞ
YN
n¼1

PðxnjznÞ

¼ ∑
z12Cðx1Þ

¼ ∑
zN2CðxN Þ

Pðz1Þ
YN�1

n¼1

Pðznþ1jznÞ;
ð2Þ

where the simplification is a result of P(xn= j∣zn= i)= 0 for all i
∉ C(j) (and 1 otherwise). Moreover, since each hidden state is
associated with a single observation, EM-based learning is
significantly more efficient in cloned HMMs, allowing it to
handle very large state spaces compared to standard HMMs26.
See “Methods” for more details.

A hallmark of our model is the ability to handle noise and
uncertainty via message-passing inference28, and smoothing.
Notably, just a forward and backward sweep of messages through
the transition matrix P(zn+ 1∣zn) is adequate for exact inference,
and uncertainty about observations is handled through “soft-
evidence” messages. Smoothing29 is a mechanism for incorporat-
ing robustness to noise and limited data in probabilistic models.
In cloned HMMs, smoothing is accomplished by adding very
small probability to some transitions that were unobserved in
training. See “Methods” for more details.

Neurobiological circuit. Like HMMs30, cloned HMM can be
readily instantiated as a neuronal circuit whose mechanistic
interpretation provides additional insights on the advantages of
the cloned representation. Each clone corresponds to a neuron,
and the “lateral” connections between these neurons form the
cloned HMM transition matrix P(zn+ 1∣zn). For example, the
circuit in Fig. 1d shows how neurons can be connected in the
cloned HMM to represent the following stored sequences A→
B→ (C, D)→ E→ A (green), B→ A→ B (light brown), B→
C→D (dark brown), and A→ C→ E (purple).

The transition matrix can also be treated as a directed graph,
with the neurons forming the nodes of the graph and the axonal
branches forming the directed edges. The set of neurons that are
clones of each other receive the same “bottom-up” input (blue
arrows) from the observation. The output of a clone-neuron is a
weighted sum of its lateral inputs, multiplied by the bottom-up
input, corresponding to the forward pass message in HMM
inference30.

The evidence at any particular time instant can be uncertain
(“soft evidence”), manifesting as graded activation over the
population of observation neurons. For a particular observation,
the direct bottom-up connections from the observation to all its
clones activate the different sequences that observation is part of,
and these activations are then modulated based on the specific
contextual support each clone receives on its lateral connections.
The population of clone neurons represent the probability of
different contexts that are active at any time in proportion to their
probability. Figure 1e shows how these activities propagate for a
noisy input sequence A→ (B, E)→ (A, D)→ E from t= 0 to t= 3
corresponding to a true sequence A→ B→D→ E. The activa-
tions are represented in different shades of red, with lighter shades
indicating weaker activations. At every time instant, the activated
lateral inputs are highlighted, and these correspond to the clones
active in the previous time step. By correctly integrating the
context and noisy input, the clone activations of the cloned HMM
filter out the noise to represent the true input sequence. Replay in
the hippocampus is the sequential activation of cells that represent
prior learning31. Replay of previously experienced trajectories is
conjectured to be involved in vicarious evaluations of goals1.
Figure 1f shows how sequences can be replayed (sampled) from
the circuit.

Queries like marginal or MAP inference can be implemented in
neural circuits as forward and backward sweeps similar to the
visualizations in Fig. 1, analogous to the neural implementation of
message-passing inference explored in earlier works28,30,32. The
EM algorithm used for learning is well approximated by the
neurobiological mechanism of spike-timing-dependent
plasticity33.

CSCG: action-augmented cloned HMM. CSCG extends cloned
HMMs to include actions of an agent. An agent’s experience is a
stream of sensation-action pairs (x1, a1), (x2, a2)…(xN− 1,
aN− 1), (xN, −) where xn 2 Z� are the agent’s sensory observa-
tions and an 2 Z� are the actions reported by the agent’s
proprioception.

The observed actions are simply nonnegative integers with
unknown semantics (i.e., the agent observes a1= 0 happened, but
does not know that the action means “move north in the room”).
In CSCG, the action is a function of the current hidden state and
the future hidden state is a function of both the current hidden
state and the action taken. The graphical model for this CSCG is
depicted in Fig. 1c. Mathematically, the joint observation action
density is:

Pðx1; ¼ ; xN ; a1; ¼ ; aN�1Þ ¼ ∑
z12Cðx1Þ

¼ ∑
zn2CðxnÞ

Pðz1Þ
YN�1

n¼1

Pðznþ1; anjznÞ: ð3Þ

Our action-augmented model allows for the agent to learn
which actions are feasible in a given state, compared to action-
conditioned formulations34 that only predict future observations
from actions.

Planning within a CSCG. Planning is treated as inference35 and
achieved using biologically plausible message-passing
algorithms28. The goal can be specified as either a desired
observation or as a specific clone of that observation. Planning is
then accomplished by clamping the current clone and the target,
and inferring the intermediate sequence of observations and
actions required to reach these observations. It is easy to deter-
mine how far into the future we have to set our goal by running a
forward pass through the graphical model and determining the
feasibility of the goal at each step. The backward pass will then
return the required sequence of actions. Importantly, because the
graphical model is inherently probabilistic, it can handle noisy
observations and actions with uncertain outcomes.

Results
We performed several experiments to test the ability of CSCGs to
model cognitive maps. We specifically tested for known func-
tional characteristics such as learning spatial maps from random
walks under aliased and disjoint sensory experiences, transferable
structural knowledge, finding shortcuts, and supporting hier-
archical planning and physiological findings such as remapping of
place cells, and route-specific encoding.

Emergence of spatial maps from aliased sequential observa-
tions. From purely sequential random walk observations that do
not uniquely identify locations in space, CSCGs can learn the
underlying spatial map, a capability that is similar to people and
animals. Figure 2a shows a 2D room with the sensory observa-
tions associated with each location. The room has 48 unique
locations, but only four unique sensory inputs (represented as
colors), and an agent taking a random walk observes a sequence
of these sensory inputs. A first-order sequence model would
severely under-fit, and pure memorization of sequences will not
learn the structure of the room because the same sequence hardly
ever repeats. In contrast, a CSCG discovered the underlying 2D
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graph of the room perfectly (Fig. 2b), from a sequence of
observation action pairs from a random walk with 50,000 steps.
As the number of unique randomly placed observations increases,
learning becomes easier (see Supplementary Results).

Remarkably, CSCGs learn the spatial topology even when most
of the observations are aliased like those from a large empty room
where distinct observations are produced only near the walls as
shown in Fig. 2c. The combination of high correlation between

Fig. 2 Spatial representations emerge from aliased sequential random walk observations without Euclidean assumptions. a A random walk in a room
with only four unique observations (colors) will produce a severely aliased sequence as reflected in the first-order Markov chain. b In contrast, transition
graph learned by CSCG on random walks in a recovers the spatial layout. Nodes in this graph are the clones, and the observation they connect to are
indicated by the color of the node. c Room with a uniform interior produces aliased sequences highly correlated in time. d Transition graph learned by
CSCG on random walks in c, represented similar to b. The redundant yellow nodes (and some brown nodes in b) are due to slight imperfections in learning,
but do not affect the representation or behavior. e An agent experiences two different, but overlapping rooms in disjoint sequential episodes. The overlap
region also repeats in the first room, acting as a confounder. f As reflected in the transition graph, CSCG performs transitive inference to stitch together the
disjoint experience into a coherent global map, and correctly positions the confounder. g, h Activation of clones over time as the agent takes the
trajectories X (gray), Y (black), and X again in the maze in g. Each red square is a clone activation in one time step. During the first traversal of X, the clones
corresponding to the overlap and the confounding patch are active because the agent started within the overlap and stayed within. Stepping outside the
overlap immediately resolves ambiguity, which is reflected in the clone activity during the traversal Y which includes confounder region and areas outside
overlap and confounder, and also during the second traversal of X. See also Supplementary Video 1.
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observations, and severe aliasing makes this a challenging
learning problem. Despite this, the CSCG is able to perfectly
learn the topology of the 6 × 8 room (Fig. 2d). This capability
degrades as the room gets larger, but the degradation is graceful.
For example, the periphery of a 9 × 11 room is well modeled, but
the CSCG is unable to distinguish a few locations in the middle
(see Supplementary Results). Moreover, even when the training
sequence is purely observations without the paired actions,
CSCGs are able to partially learn the layout of the room (see
Supplementary Results).

Transitive inference: disjoint experiences can be stitched
together into a coherent whole. Transitive inference, the ability
to infer the relationships between items or events that were not
experienced at the same time, is attributed to cognitive maps7.
Examples include realizing A > C from knowing A > B and B > C,
or inferring a new way to navigate a city from landmarks and
their relative positions experienced on different trips36.

We tested CSCGs on a challenging problem designed to probe
multiple aspects of transitive inference and found that it can
stitch together disjoint episodes of sequential experience into a
coherent whole. The experimental setting consisted of over-
lapping rooms (Fig. 2e), each with aliased observations like in the
previous experiment. Moreover, the first room had an additional
portion which was identical to the overlapping section between
the two rooms. This design allows testing whether an agent that
experiences only first room or second room exclusively and
sequentially can correctly figure out the relationship between the
rooms and their overlaps. The combination of a large state-space,
aliased observations, nested relationships, and two-dimensional
transitivity makes the problem setting significantly harder than
previous attempts37. We collected two independent 10,000-step
sequences of action-observation pairs on each room by perform-
ing two separate random walks, and trained a single CSCG on
both sequences. The result of training is visualized in Fig. 2f and
in Supplementary Movie 2. The learned transition matrix (shown
as a graph) has stitched together the compatible region of both
rooms, creating a single, larger spatial map that is consistent with
both sequences while reusing clones when possible. The
confounding additional patch in the first room remains correctly
unmerged, and in the right relative position in the first room,
despite looking identical to the overlapping region.

Discovering the correct latent global map enables CSCG to
make transitive generalizations. Although the agent has never
experienced a path taking it from regions that are exclusive to
Room 1 to regions exclusive to Room 2, it can use the learned
map to vicariously navigate between any two positions in the
combined space. Just like in the earlier experiment, the learning is
purely relational: no assumptions about Euclidean geometry or
2D or 3D maps are made in the model.

Interestingly, plotting the activation of clones over time reveals
that when the agent first traverses the overlapping region
(trajectory X in Fig. 2g), clones corresponding to both the
overlap region and the identical confounding region are active
(Fig. 2h), indicating that the agent is uncertain of its position in
the maze. This also suggests that the agent’s belief in the cognitive
map is split between the two possible realities (see Supplementary
Movie 1) because the overlap region and the confounding region
are exactly the same without additional context. Stepping out of
the overlap region gives the agent adequate context to resolve
ambiguity. Subsequently, as the agent explores the confounding
region (trajectory Y in Fig. 2g), clones corresponding to this
region become more active, and the clones corresponding to the
overlap region are no longer active. When the agent returns to the
overlap region to follow the same sequence (trajectory X) it

originally followed, the clone activities reflect that the agent is no
longer confused between the overlap region and the confounding
region.

Learned graphs form a reusable structure to explore similar
environments. The generic spatial structure learned in one room
can be utilized as a schema38,39 for exploring, planning, and
finding shortcuts in a novel room, much like the capabilities of
hippocampus-based navigation40. To test this, we first trained the
CSCG on Room 1 based on aliased observations from a random
walk with 10,000 steps. As before, CSCG learned the graph of the
room perfectly. Next, we placed the agent in Room 2 which is
unfamiliar (Fig. 3a). We kept the transition matrix of the CSCG
fixed, and re-initialized the emission matrix to random values. As
the agent walks in the new room, the emission matrix is updated
with the EM algorithm. Even without visiting all the locations in
the new room, the CSCG is able to make shortcut travels between
visited locations through locations that have never been visited
(Fig. 3b). After a short traversal along the periphery as shown in
Fig. 3a, we queried to find the shortest path from the end state to
the start state. The CSCG returned the correct sequence of
actions, even though it obviously cannot predict the observations
along the path. Interestingly, Viterbi decoding41 reveals the same
hidden states that you would get if you Viterbi decoded the same
path in Room 1. Querying the CSCG on the shortest path from
the bottom left corner of the room to the start position reveals the
path indicated by the blue arrows in Fig. 3b. This solution is the
Djikstra’s shortest path through the graph obtained from Room 1.
Furthermore, if we “block” the path we get another solution that
is also optimal in terms of Djikstra’s algorithm (Fig. 3c). Even
with partial knowledge of a novel room, an agent can vicariously
evaluate the number and types of actions to be taken to reach a
destination by reusing CSCG’s transition graph from a familiar
room.

When the transition matrix from the old room is reused, the
new room is learned very quickly even when the agent explores
using a random walk: the new room is learned fully when all the
locations in the room are visited at least once (Fig. 3d–f). The
plots show the proportion of the room explored and the average
accuracy of predicting the next symbol as a function of the
number of random walk steps.

Representation of paths and temporal order. CSCGs learn paths
and represent temporal order when the observed statistics
demand it, for example when the observations correspond to an
animal repeatedly traveling prototypical routes. For example,
consider the T-maze shown in Fig. 4a, which is traversed in a
figure-of-eight pattern either from the right (blue path) or the left
(red path). As a result, the two paths share the same segment.
Interestingly, CSCG learns separate clones for this shared seg-
ment (Fig. 4b) and similar to the observations in16, the activity of
clones in this overlapping segment will indicate whether the agent
is going to turn left or right (Fig. 4c). It is important to note that
the ability of CSCGs to learn flexible higher-order sequences is
independent of the modality4. In particular, the inputs can cor-
respond to spatial observations, odors, sequences of characters, or
observations from any other phenomenon26. CSCG will learn an
approximation of the graph underlying the generative process, in
close correspondence with the role for cognitive maps envisaged
by2. We illustrate in Fig. 4e the CSCG learned for a maze with a
shared path shown in Fig. 4d.

Neurophysiological experiments have shown the emergence of
“splitter cells” in the hippocampus16. These cells represent paths
to a goal rather than physical locations and emerge as rats
repeatedly traverse the same sequential routes as opposed to
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taking random walks20. Figure 4f shows a maze in which the
agent can traverse two different routes (indicated by the magenta
and green lines) to reach the same destination. Both these routes
have regions in which the exact path that the agent follows is
stochastic, as denoted by the arrows that indicate the possible
movements from each cell. Observations in the maze are marked
by numbers and, as before, the same observation can be sensed in
many parts of the maze. Additionally, the two routes intersect and
share a common segment. CSCGs trained on these paths are able
to represent both routes by using different clones for each of the
routes, analogous to the route dependency exhibited by place cells
in similar experiments. We observe that disjoint subsets of clones
will activate when traversing each of the routes. Figure 4g shows
that when conditioning on the starting state, sampling in the
learned CSCG will always produce paths that are consistent with
the two routes. By visualizing the graph defined by the CSCG
transition matrix, we see that the two routes are represented with
two different chains (Fig. 4g). With a first-order model, when the
shared segment is reached, all context about the previous
segments will be lost and the model will make incorrect
predictions about the future path. CSCGs, on the other hand,

are able to capture the history of the path and therefore properly
model the routes and their distinct start states.

Learning higher-order sequences in a CSCG can also explain
recently discovered phenomena like chunking cells and event-
specific representations (ESR)21, place cell activations that signal a
combination of the location and lap-number for different laps
around the same maze. Figure 5a shows a setting similar to the
experiment in21 where a rat runs four laps in a looping
rectangular track before receiving a reward. A CSCG exposed
to the same sequence learned to distinguish the laps and to
predict the reward at the end of the fourth lap, without the help of
any lap-boundary markers in the training sequence. Planning for
achieving the reward recovered the correct sequence of actions,
which we then executed to record the activations of the clones in
different laps. Visualizing the propagation of beliefs of each clone,
either conditioned on the observation or the action, produces a
sequence-like activation pattern where one clone is active for each
sensory observation, and as such the different laps around the
maze are encoded by different clones (Fig. 5b). Similar to the
neurons in the hippocampus, whose firing rates are shown in
Fig. 5c21, clones show graded activity across laps. A clone is

Fig. 3 Learned transition graphs form a reusable schema. A CSCG trained on one room (a) and partial observations in a second, previously unseen room
with identical hidden layout, utilizes the learned structure of the room to rapidly find both the shortest path to the origin (b) and navigate around obstacles
(c). d Visualization of message propagation during planning and replanning. Messages propagate outward from the starting clone, and clones that receive
the message are indicated in green color. Lighter shades indicate messages that are later in time. The first plan is unaware of the obstacle, and the agent
discovers the obstacle only when the action sequence is executed and a planned action fails (red arrow). This initiates a replanning from the new location,
and the new plan routes around the obstacle. e–g The transition matrix (graph) learned in one room can be used as a reusable structure to quickly learn a
new room with the same layout but different observations. Learning is faster when CSCG transition graph is used as a schema to learn the new room (g)
compared to learning from scratch (f).
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maximally active for an observation when it occurs in its specific
lap, but shows weak activations when that observation is
encountered in other laps, a signature of ESR. This occurs
naturally in the CSCG due to smoothing and the dynamics of
inference, visualized in Fig. 5e. The cognitive map for this maze is
a chain of observations (see Fig. 5e) which split each lap into
distinct contextual events. In doing so, the agent is able to identify
which lap it is in based on identical local observations. Sun et al.
reported that despite extending the maze, neurons in the
hippocampus still respond uniquely to each lap. We mimicked
this experiment by elongating our maze in one dimension, by
introducing repeated, or aliased, sensory observations (Fig. 5d).
Again, as with the smaller maze, we observed that clones were
uniquely active on each lap and parsed each lap as a separate
contextual event (Fig. 5d). Even when the maze is extended by
introducing novel observations, the ESR-like clone activity traces
persist (see Supplementary Results). Robustness of ESR to maze
elongations can also be explained by inference in a smoothed
CSCG—a repeated observation is explained as noise in the
previous time step, and re-planning from the current observation
recovers the correct sequence of actions.

Learning multiple maps and explaining remapping. Remapping
is the phenomenon where hippocampal place cell activity
reorganizes in response to a change in the physical environment.
Remapping, which can either be global or partial19,42–45,
depends on how the hippocampus can segregate, store, and
retrieve maps for multiple environments that might be similar or
dissimilar13,42.

Similar to the hippocampus19, a single CSCG can learn to
separate maps for different environments that have similar
instantaneous observations, represent those maps simultaneously
in memory, and then use contextual similarity to retrieve the
appropriate map to drive behavior. In Fig. 6a, we show five
different 5 × 5 rooms that all share the same 25 observations, but
arranged differently in space. We learn a single CSCG from
sequences of random walks in each of these rooms where the
walks are switched between different rooms at irregular intervals,
without providing any supervision about the room identity or
time of switching. Although all observations are shared between
the rooms, with sufficient training, the CSCG learns to form
different clones for the different rooms. Figure 6ai plots the
agent’s belief about which map it is in as it goes through a 50-step

Fig. 4 Learning temporal order and paths. In all experiments, CSCG learned the optimal model for prediction, and the learned circuits matched
neurobiological observations. a Modified T maze from16 with an overlapping segment between the blue and red paths. A, B,⋯ , N are the observations at
different locations in the maze. b CSCG learns route-differentiated clones for the overlapping segment. (The redundant clones on the non-overlapping
segments are identical, and due to the learning algorithm not always using the minimal number of clones). c Activity of the clones for the right trial, and the
left trial. Similar to the observations in16, the activity of clones in this overlapping segment will indicate whether the agent is going to turn left or right.
Distinct neurons are active in the overlapping segment for left-turn trials vs right-turn trials although the observations in the overlapping segment are
identical for both trials. Note that clones are not limited to one time step. CSCG learning is able to propagate clones backward into multiple time steps to
unravel long overlapping paths. d Overlapping odor sequences from74 e Full circuit learned by the CSCG shows that it has learned distinct paths in the
overlap, as in74. f A complex maze in which the agent takes two stochastic paths indicated in magenta and green. Observations in the maze are marked by
numbers and, as before, the same observation can be sensed in many parts of the maze. The green and magenta paths overlap in up to seven locations in
the middle segment (observations 4-5-11-12-13-5-17). The stochasticity of the paths and the long overlaps make this a challenging learning problem. In
contrast to mazes in a and d, the two paths in this maze lead to the same destination as in20 g. Transition graph learned by the CSCG shows that two
different chains are learned for the two routes in f, similar to the observation that place cells encode routes, not destinations20. h Paths replayed from the
CSCG after it was trained on sequences from f. As they pass through the overlapping segment, the green and magenta routes maintain the higher-order
history of where they originated, showing that the learned graph compactly represents the stochasticity and directionality of each route while separating
the two routes by appropriately merging and splitting the clones.
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random walk sequence in each room from the first to the last,
showing that the maze identity is represented in the population
response, despite the ambiguous instantaneous observations.

We conducted a series of experiments to evaluate how the
similarity between environments, predictability within each
environment, the amount of learning, and the amount of noise
and uncertainty affect the degree of reorganization of clone

activations. These experiments used two sets of environments—
mazes and rooms. Rooms are the 5 × 5 rooms described earlier
(Fig. 6a), mazes consist of five different shapes (Fig. 6b)
composed of six distinct observations (four different corners,
and vertical or horizontal arms). The mazes have better within-
environment predictability compared to the rooms because of the
lower-branching factor of the random walk, and mazes are more
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similar to each other compared to the similarity between different
rooms. We trained two CSCGs, one for the set of rooms and the
other for the set of mazes, and evaluated how remapping changed
with the amount of training, and uncertainty (see Fig. 6ai–iv,
bi–iv).

Our observations suggest that global remapping, partial
remapping, and rate remapping can be explained using CSCGs:
they are manifestations of learning and inference dynamics using
a cloned structure when multiple maps are represented in the
same model. We were able to reproduce different remapping
effects by varying the amount of training and uncertainty. The
rows (ii) to (iv) in Fig. 6a, b show the clone activations of the two
CSCGs that learned to represent the corresponding rooms and
mazes. All the clone activation plots in a column correspond to
the same random walk where the agent takes 50 steps in each
room/maze, from the first to the last. When the CSCG is fully
trained until the EM algorithm converges, the clone activations
from the different environments overlap the least, producing an
effect similar to global remapping (Fig. 6aiii, biii)42. If the CSCGs
are partially trained, the clones only partially separate—while
many remain exclusive to particular mazes or rooms, a large
number are also active in multiple mazes/rooms (Fig. 6aii, bii),
corresponding to the effect of partial remapping13,43. In a fully
trained model, more smoothing, or soft evidence that reflects
uncertainty, creates clone activations similar to rate
remapping13,45 (Fig. 6aiv, biv): all the clones that fire in the fully
trained setting still fire in this case, but with a lowered rate of
firing. This occurs because uncertainty and smoothing causes
more sharing of the evidence among clones that represent the
same observation.

The similarity between the rooms (mazes), and the amount of
predictability within each room (maze), also affects the dynamics
of remapping. This can be observed by comparing the clone
activity traces for the rooms with that of the mazes in Fig. 6a, b.
In Fig. 6bi, the beliefs within each maze are more stable compared
to those in the rooms due to the stricter temporal contexts in the
mazes19. Fluid temporal contexts in the rooms produce more
progressive deformation of beliefs46. On the other hand,
the structural similarity between the different mazes produces
more ambiguity at the time of switching, resulting in a longer
transient period right after entering a new maze46. This is also
reflected in Fig. 6bii–iv, where clones in multiple mazes are active
right after the point of switching between the mazes.

Taken together, our experiments demonstrate the conditions
and mechanisms that determine how the hippocampal network
may abruptly switch between preestablished representations or
progressively drift from one representation to the other,
producing a variety of remapping effects.

Community detection and hierarchical planning. Humans
represent plans hierarchically47. Vicarious evaluations involve

simulating paths to a goal, and hierarchical computations make
these simulations tractable by reducing the search space48. To
enable hierarchical planning, the learning mechanism should be
able to recover the underlying hierarchy from sequentially
observed data.

By learning a cloned transition graph, CSCG lifts observations
into hidden space, enabling the discovery of graph modularity
that might not be apparent in the observation. Community
detection algorithms49 can then partition the graph to form
hierarchical abstractions8 useful for planning and inference. Like
planning, and inference in CSCGs, community detection can also
be implemented using message-passing algorithms50. Message-
passing algorithms in similar settings are known to have
biologically plausible neuronal implementations51.

We tested CSCGs for their ability to learn hierarchical graphs
by simulating the movement of an agent in two mazes. The first
maze is a modular graph with three communities where the
observations are not unique to a node (Fig. 7a). In earlier studies
using this graph8,10 observations directly identified the nodes, and
partitioning the learned CSCG or the SR matrix can reveal the
underlying community structure in that fully observed setting
(see Supplementary Results). In the current setting of partial
observability, due to the degeneracy of observations, community
detection or MDS on the SR matrix fails to reveal the hidden
communities (Fig. 7b). In contrast, community detection on a
CSCG trained from random walks readily reveals the correct
community structure. The second maze, shown in Fig. 7d, has a
total of 16 rooms arranged as a 4 × 4 grid. Each room has aliased
observations, and are connected by corridors (black squares). The
aliasing is global: instantaneous observations do not identify the
room, corridor, or location within a room. Additionally, the maze
is structured in such a way that there are four hyper-rooms
making this maze a three-level hierarchy. As in the earlier
examples, training a CSCG on random walk sequences learned a
perfect model of the maze. We then used community detection to
cluster the transition matrix of the CSCG (Fig. 7e). This clustering
revealed a hierarchical grouping of the clones (Fig. 7f), and a
connectivity graph between the discovered communities. The
communities respected room boundaries: although some rooms
were split into two or three communities, no community
straddled rooms. Applying community detection once again on
this graph revealed the four hyper-rooms (Fig. 7f) which were the
highest level of the hierarchy. To navigate to a particular final
destination F from a starting location S using this map, the agent
first has to identify in which of these four rooms the goal is
located, then plan a route in the community graph between the
source community and the destination community (Fig. 7h). In
doing so, the search space in the lower level graph is significantly
reduced, making planning in the hierarchical CSCG learned
graph more efficient than planning directly in the original graph.
We implemented this form of hierarchical planning and found

Fig. 5 Lap-neurons and event-specific representations. a A CSCG was trained on observations from four laps around a square maze similar to21. The
training sequence consisted of one start state, followed by four repetitions of the sequence 1→ 2→ 3, .., 12, and then a goal/reward state at the end. It
learned to predict the laps perfectly, including the reward at the end of the fourth lap, and planning to get the reward returned the correct sequence of
actions. b Clone activations (see color map) for the four different laps. Rows correspond to clones. The activations show that there are different clones that
are maximally active for different laps, but the other clones are partially active at their corresponding locations, similar to the neurophysiological
observations in21 regarding event-specific-representations. c Place cell traces from21, included with permission. d The event-specific representations persist
even when the maze is elongated by repeating the observations along the corridor. The CSCG is not trained on the elongated maze. e Visualization of the
circuit learned by the CSCG including the transition graph, connections from the observations, and activation sequences for laps 1 and 2. The CSCG learned
one clone per lap for each position. Smoothing in the CSCG explains why other clones of other laps are partially active. Each row shows how the clone
activations transition from observation 1 (left) to observation 12 (right) for the corresponding lap. The active observations are colored in correspondence
with a, and clone activations are graded in intensity with darker shades being stronger. Overall the visualizations show the circuit dynamics that give rise to
the activity traces in b.
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that we were always able to recover an efficient path between
randomly selected start and end position (see Supplementary
Methods for more implementation details and for computational
efficiency estimates).

Learning higher-order graphs that encode temporal contexts
appropriately is crucial for the extraction of the hierarchy using
community detection algorithms. Approaches that learn first-
order connectivity on the observations, for example, SR on
observations9, will not be able to form the right representations
because the observations are typically severely aliased (see
Supplementary Fig. 3).

Discussion
In this paper we pursued the strong hypothesis that the hippo-
campus performs a singular sequence learning algorithm that
learns a relational, content-agnostic structure, and demonstrated
evidence for its validity4,52. Realizing this core idea required
several interrelated advancements: (1) a learning mechanism to
extract higher-order graphs from sequential observations, (2) a
storage and representational structure that supports transitivity,
(3) efficient context-sensitive and probabilistic retrieval, and (4)
and learning of hierarchies that support efficient planning—
techniques we developed in this paper. In contrast to approaches

Fig. 6 Remapping. Sets consisting of five different rooms (a) and mazes (b) are used to study activity remapping. In set a, the five rooms share 25 different
observations, arranged randomly, and in set b, the five mazes share six observations arranged in geometrical shapes. Different shades of red represent
different observations. Row (i): inferred probability (Y-axis) of being in a room/maze as a function of time (X-axis). Rows (ii)–(iv) Clone activity traces for a
random walk of 50 steps each in rooms (mazes) 1–5 under different conditions (partially trained, fully trained, and more uncertainty). All traces are based
on the same random walk and use the same clone ordering. Activity traces corresponds to global remapping in a partially trained CSCG, and partial
remapping in a partially trained CSCG. Adding more uncertainty to a fully trained CSCG produces activity traces that correspond to rate remapping.
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that model context by concatenating or chunking visible obser-
vations, clones in CSCG are latent states that model flexible
contexts that can have arbitrarily long temporal dependencies.

As a model CSCG spans multiple levels of the Marr hierarchy
—its computational specification is based on probabilistic models
and optimal inference, its algorithmic realization utilized neu-
roscience insights23 and readily translates to a neurobiological
implementation that offers mechanistic explanations for all the
experimental phenomena we considered. In a true biological
implementation of CSCG, a clone state might be represented by a
small assembly of neurons, and that would not change the
underlying representation. The core representation learning

mechanisms of CSCG might be implemented in areas CA3 or
CA1 of the hippocampus5, with CSCG-based decision making
implemented in the orbitofrontal cortex53.

CSCGs share similar motivations with other hippocampal
theories like Tolman Eichenbaum machine (TEM)34,54, and SR,
but differ substantially in capabilities and tradeoffs. For instance,
unlike TEM, CSCGs can plan to achieve arbitrary goals selected at
test time (see Fig. 3b, c) and natively handle uncertainty, and
erroneous or ambiguous observations (see Retrieval and
Remapping in the Supplementary material). CSCGs also allow for
efficient exact inference, which enables sophisticated queries to be
answered quickly and exactly. In contrast, the representational

Fig. 7 CSCGs enable hierarchical abstraction and planning. The cloned graph of the CSCG lifts the observations into a hidden space, allowing for
discovery of modularity that is not apparent in the visible observations. a The modular graph from8, modified to have aliased observations. Observations at
each node are indicated by the numbers, and many different nodes produce the same observation. b MDS or community detection on the SR matrix of
random walks in a does not reveal the modularity of the graph. c Community detection on the CSCG transition matrix successfully recovers the modularity
of graph in a, recovering three communities. d A maze that has an embedded three-level hierarchy. Sensory observations are aliased both within rooms and
across rooms. The black pixels denote “bridges” between the rooms. CSCG is trained on random walks from this maze. Community detection on the
learned CSCG transition matrix revealed a first level of organization into rooms (e), and another level of community detection revealed hyper-rooms (f),
resulting in a three-level hierarchical graph reflecting the nested structure of the maze. Planning a path (black arrows) between two rooms (denoted as (S)
tart (filled black dot) and (F)inish (open black dot) in d) was achieved by finding the shortest path between hyper-rooms to navigate, next finding the
shortest path between rooms, and lastly finding the shortest path within the rooms in this reduced search space. g Visualization of planning message
propagation in the one-level graph. Messages propagate in the whole maze, indicating a wide search area. h Visualization of hierarchical planning. Routes
are first identified on the highest level, which then becomes sub-goals at the lower level. The red colored nodes indicate the sequence of sub-goals, and
their intensities reflect the ordering of the sub-goals. Compared to g, hierarchical planning requires fewer messages to be propagated so it is faster.
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complexity of TEM only allows for approximate inference.
SR9,10,55 represents the current state of an agent by aggregating
distributions over its future locations for a given policy. While the
policy dependence of SR has a computational advantage for a
fixed reward distribution, dynamic planning requires recomput-
ing the SR10,56. In contrast, CSCG can maintain higher-order
temporal dependency and allows for dynamic planning with
message-passing. Although SR can be used to find communities,
it requires the world to be fully observable. By lifting degenerate
observations into a latent graph, CSCGs can reveal latent hier-
archies, a capability that is yet to be demonstrated in TEM or SR.
The observation of grid cell-like properties in the eigenvectors of
the SR could be a property of all methods that employ a transition
matrix (see Supplementary Results), and we suspect that this
property in itself might not have any behavioral relevance.

In concordance with52, CSCGs represent sequences of content-
free pointers: each pointer can be referring to a conjunction of
sensory events from different modalities. These pointers them-
selves can be clustered according to a similarity metric57, and the
cluster centers will then be the atoms that are sequenced by
CSCG. Partial matches of a multi-dimensional conjunction could
partially activate multiple clusters and be treated as soft evidence
by the CSCG, providing a potential explanation for multi-
modality of place cells in various situations14. The output from
grid cells is treated as just another sensory modality. By providing
a periodic tiling of uniform space, grid cell outputs could help
to learn maps when other sensory cues are degenerate.

Although beyond the scope of the current work, hippocampal
replay31 could potentially be explained using CSCGs. Replay has
two distinct roles in CSCG. First, post-learning replay is used for
consolidating trajectories using Viterbi training (see “Methods”).
Our related work58 has shown that an algorithm that rapidly
memorizes and gradually generalizes is possible for learning a
CSCG representation, and the gradual generalization step uses
replay for consolidation. Second, behavior-time replay is used in
CSCG for searching of trajectories to multiple goals and their
vicarious evaluations.

CSCGs have intriguing connections to schema networks59, and
to schema-like representations in the hippocampus38. Creating
different clones for different temporal contexts is similar to the
idea of synthetic items used to address state aliasing60,61 in
relational representations. In addition, since sequence learning
takes place in many other brain areas, for example the parietal
cortex62 and the orbitofrontal cortex63, a natural extension of this
work would involve learning higher-order conceptual relation-
ships and applying them to cognitive flexibility. Similarly,
encoding snapshots from a graphical model for vision64,65 as the
input to this sequencer might enable the learning of visuo-spatial
concepts and visual routines66, and model the bi-directional
influence hippocampus has on the visual cortex67. We believe
these ideas are promising paths for future exploration.

The present work can be further extended by combining it with
the active inference framework68 which provides a guiding
principle for combining exploration and exploitation. Intuitively,
each E-step of the EM algorithm updates posterior beliefs about
hidden states and corresponds to state estimation or inference.
Conversely, the M-step updates point estimators of model para-
meters and can be construed as learning. As with the TEM, these
expectation maximization-based schemes (e.g., the Baum–Welch
algorithm) effectively ignore uncertainty about the parameters
and replace posteriors over parameters with point estimates or
Delta functions. This has the computational benefit of not having
to worry about conditional dependencies between posterior
densities over states and parameters. Conversely, in active infer-
ence approximate posteriors are updated over both states and
parameters. This means that uncertainty about parameters

nuances estimates of hidden states and vice versa. Technically,
active inference schemes, in this setting, generally use some form
of variational Bayes under a mean-field approximation (of which
the EM algorithm can be seen as a special case). The mean-field
approximation for the parameters of the transmission and
emission matrices are generally parameterized in terms of
Dirichlet distributions, which leads to simple update schemes that
include both the uncertainty about model parameters and their
expected values. Although not considered here, including
uncertainty about parameters can be important in terms of
optimizing exploration or searches—to minimize uncertainty
about emission (i.e., likelihood) and transmission (i.e., prior)
probabilities. Active inference and CSCGs adopt a probabilistic
formulation that accommodates uncertainty using hierarchical
priors over model parameters. This offers an avenue for further
research into structure learning and planning as inference, in this
setting. For example, see69 for an application of active inference
to spatial planning, navigation, and path cells.

Elucidating how cognitive maps are represented in the hip-
pocampus, how they are acquired from a stream of experiences,
and how to utilize them for prediction and planning is not only
crucial to understand the inner workings of the brain, but also
offers key insights into developing agents with artificial general
intelligence. The CSCG model, which we introduce in this paper,
provides a plausible answer to each of these questions. We expect
this model to be beneficial in both neuroscience and artificial
intelligence as a way to produce explicit representations that are
easy to interpret and manipulate from multimodal
sequential data.

Methods
Expectation maximization learning of cloned HMMs. The standard algorithm to
train HMMs is the EM algorithm70 which in this is context is known as the
Baum–Welch algorithm. Cloned HMM equations require a few simple modifica-
tions with respect the HMM equations: the sparsity of the emission matrix can be
exploited to only use small blocks of the transition matrix both in the E and M
steps and the actions, if present, should be grouped with the next hidden state (see
Fig. 1c), to remove the loops and create a chain that is amenable to exact inference.

Learning a cloned HMM requires optimizing the vector of prior probabilities π:
πu= P(z1= u) and the transition matrix T: Tuv= P(zn+ 1= v∣zn= u). To this end,
we assume the hidden states are indexed such that all the clones of the first
emission appear first, all the clones of the second emission appear next, etc. Let E
be the total number of emitted symbols. The transition matrix T can then be
broken down into smaller submatrices T(i, j), i, j∈ 1…E. The submatrix T(i, j)
contains the transition probabilities P(zn+ 1∣zn) for zn∈ C(i) and zn+ 1∈ C(j)
(where C(i) and C(j), respectively, correspond to the hidden states (clones) of
emissions i and j).

The standard Baum–Welch equations can then be expressed in a simpler form
in the case of cloned HMM. The E-step recursively computes the forward and
backward probabilities and then updates the posterior probabilities. The M-step
updates the transition matrix via row normalization.

E-step

αð1Þ ¼ πðx1Þ αðnþ 1Þ> ¼ αðnÞ>Tðxn; xnþ1Þ
βðNÞ ¼ 1ðxN Þ βðnÞ ¼ Tðxn; xnþ1Þβðnþ 1Þ

ξijðnÞ ¼
αðnÞ � Tði; jÞ � βðnþ 1Þ>
αðnÞ>Tði; jÞβðnþ 1Þ

γðnÞ ¼ αðnÞ � βðnÞ
αðnÞ>βðnÞ :

M-step

πðx1Þ ¼ γð1Þ

Tði; jÞ ¼ ∑
N

n¼1
ξijðnÞ

� �
� ∑

E

j¼1
∑
N

n¼1
ξijðnÞ

� �
:

where ∘ and ⊘ denote the element-wise product and division, respectively (with
broadcasting where needed). All vectors are M × 1 column vectors, where M is the
number of clones per emission. We use a constant number of clones per emission
for simplicity here, but the number of clones can be selected independently per
emission.
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Computational savings. For a standard HMM with H hidden states, the compu-
tational cost for running one EM step on a sequence of length N is OðH2NÞ and
the required memory is OðH2 þ HNÞ (for the transition matrix and forward-
backward messages). In contrast, a cloned HMM exploits the sparse emission
matrix: with M clones per emission, the computational cost is OðM2NÞ and the
memory requirement is OðH2 þMNÞ, in the worst case. Also, there will be
additional savings for every pair of symbols that never appear consecutively in the
training sequence (since the corresponding submatrix of the transition matrix does
not need to be stored). Memory requirements can be improved further by using the
online version of EM described in the Supplementary materials.

Since H=ME, where E is the total number of symbols, an increase in alphabet
size will increase the computation cost of HMMs, but will not affect the cost of
cloned HMMs.

Intuitively, the computation advantage of cloned HMMs over HMMs comes
from the sparse emission matrix structure. The sparsity pattern allows cloned
HMMs to only consider a smaller submatrix of the transition matrix when
performing training updates and inference, while HMMs must consider the entire
transition matrix.

CSCG: action-augmented cloned HMM. CSCGs are an extension of cloned HMMs
in which an action happens at every time step (conditional on the current hidden
state) and the hidden state of the next time step depends not only on the current
hidden state, but also on the current action. The probability density function is
given by Eq. (3), and reproduced here for convenience

Pðx1; ¼ ; xN ; a1; ¼ ; aN�1Þ ¼ ∑
z12Cðx1Þ

¼ ∑
zn2CðxnÞ

Pðz1Þ
YN�1

n¼1

Pðznþ1; anjznÞ;

and the standard cloned HMM can be recovered by integrating out the actions. All
the previous considerations about cloned HMMs apply to CSCGs and the EM
equations for learning them are also very similar:

E-step:

αð1Þ ¼ πðx1Þαðnþ 1Þ> ¼ αðnÞ>Tðxn; an; xnþ1Þ
βðNÞ ¼ 1ðxNÞβðnÞ ¼ Tðxn; an; xnþ1Þβðnþ 1Þ

ξikjðnÞ ¼
αðnÞ � Tði; an; jÞ � βðnþ 1Þ>
αðnÞ>Tði; an; jÞβðnþ 1Þ

γðnÞ ¼ αðnÞ � βðnÞ
αðnÞ>βðnÞ :

M-step:

πðx1Þ ¼ γð1Þ

Tði; k; jÞ ¼ ∑
N

n¼1
ξikjðnÞ � ∑

Na

k¼1
∑
E

j¼1
∑
N

n¼1
ξikjðnÞ:

where Na is the number of actions and T(i, k, j)= P(zn+ 1, an= k∣zn) for zn∈ C(i)
and zn+ 1∈ C(j), i.e., a portion of the action-augmented transition matrix.

Smoothing. We have observed that convergence can be improved by using a small
pseudocount κ. A pseudocount is simply a small constant that is added to the
accumulated counts statistic matrix ∑N

n¼1 ξikjðnÞ and ensures that any transition
under any action has non-zero probability. This ensures that at test time the model
does not have zero probability for any observations stream. When the pseudocount
is only used to improve convergence, one can run EM a second time with no
pseudocount, warmstarting from the result of the EM with pseudocount. To use
the pseudocount, we only need to change our transition matrix update to be
Tði; k; jÞ ¼ ðκþ∑N

n¼1 ξikjðnÞÞ �∑Na
k¼1 ∑

E
j¼1ðκþ∑N

n¼1 ξikjðnÞÞ. The pseudocount
can be interpreted as the hyperparameter of a Laplacian prior that is set on the
transition matrix, and EM as solving MAP inference for such hyperparameter. As
any prior, the pseudocount has a regularization effect that helps generalization
when the amount of training data is small in comparison with the capacity of
the model.

It might seem at first as if adding a pseudocount would destroy the block-sparse
property of the transition and therefore some of the aforementioned computational
advantages of the CSCG. However, it is easy to see that the resulting transition
matrix can still be expressed as the sum of a block-sparse matrix (with the same
sparsity pattern as before) and a rank-1 matrix (which is not stored explicitly, but
as the two vectors whose outer product produce it). By doing this, the pseudocount
can be used without increasing the computational complexity or the storage
requirements of any of our algorithms (EM learning, inference, etc.).

Inference. Since the resulting model (with the action an and hidden state zn+ 1

collapsed in a single variable) forms a chain, inference on it using belief propa-
gation (BP) is exact. When no evidence is available for a given variable, BP will
simply integrate it out, so we can for instance train a model with actions and then,
at test time, use it even if no actions are available. We can still ask the model which
observation is the most likely in the next time step, or even several time steps
ahead, and BP will produce the exact answer by analytically integrating over all

possible past and future actions, and even over the unseen future observations
when necessary.

The same model can be used to generate sequences (e.g., to generate plausible
observations and actions that would correspond to wandering in a previously
learned room) simply by applying ancestral sampling71 to the conditionals that
describe the model after learning (i.e., the transition and emission matrices).

A consequence of the above for spatial data is that an agent roaming the world
can infer where in an environment it is located (zn) and then predict which actions
are feasible at that location, which is useful for navigation. One can even condition
on a future location to discover which set of actions can take you there, and which
observations you are expected to see on the way there, see e.g., Fig. 3b, c. This is
essentially planning as inference35.

All of this flexible querying is performed by running a single algorithm (BP) on
the same model (without retraining) and only changing the selection of which
evidence is available and which probabilistic predictions are requested.

Experimental details
Emergence of spatial maps from aliased sequential observations. For this experiment
we collected a stream of 50,000 action-observations pairs. We learned a CSCG with
20 clones (a total of 360 states) with pseudocount 2 ⋅ 10−3 and ran EM for 1000
iterations. This gets a result that is very close to the global minimum: when Viterbi
decoded, only 48 distinct states are in use, which is the theoretical optimum on a
6 × 8 grid. Viterbi training41 is used to refine the previous solution.

Transitive inference: disjoint experiences can be stitched together into a coherent
whole. Figure 2e showcases the CSCG’s ability to stitch together two disjoint room
experiences when the rooms overlap. For this experiment, we randomly generate
two square rooms of size 8 × 6 with 15 different observations each. We make both
rooms share a 3 × 3 patch in their corners as shown in Fig. 2e.

We sample a random walk of length 10,000 of action-observation pairs on each
room, always avoiding to take actions that would make the random walk move
outside of the room. We use 20 clones, which is enough to fully recover both rooms
separately, and use a pseudocount of 10−2. We run EM (on both sequences
simultaneously, as two independent observations of the same CSCG) for a
maximum of 100 iterations. After EM convergence, we additionally use Viterbi
decoding (with no pseudocount) to remove unused clones. The learned CSCG is
visualized in Fig. 2f, showing that the two rooms that were experienced separately
have been stitched together. Predictive performance on the stitching of the two
rooms is perfect (indicating that learning succeeded) after a few observations
required for the agent to locate itself. Notice that there is another patch in the first
room that is identical to the merged patches, but was not merged. The model is
using the sequential information to effectively identify patches that can be merged
while respecting the observational data and context, and not simply looking for
locally identical patches to merge.

Learned spatial maps form a reusable structure to explore similar environments. For
this experiment, we train on a 6 × 8 room using 10,000 action-observation pairs.
We call this Room 1, see Fig. 3a. There are only 20 unique symbols in the room,
some of which are repeated. The pseudocount is set to 10−2 and we use 20 clones
(in this case, only seven clones are strictly required to memorize the room). The
regularizing pressure of the pseudocount effectively removes redundant clones.
Training is done using EM for a maximum of a 100 iterations. This results in an
almost perfect discovery of the underlying graph. Then we set the pseudocount
to 0 and continue the training using Viterbi training41. This results in perfect
discovery of the underlying graph with no duplicate clones. Predictions become
perfect after a few initial observations required to know where in the room
we are.

When we try to partially learn Room 2 with a few samples from its periphery
(see Fig. 3a), we create a new CSCG with the transition matrix that we learned from
Room 1 and keep it fixed. The emission matrix is initialized uniformly and learned
using EM. The whole data for learning the emission matrix are only the 20 action-
observation pairs seen in Fig. 3a. At that point, we fix the model and query it for a
return path plan, both with and without blockers in the path. The results are
displayed in Fig. 3b, c.

In Fig. 3e–g, we showcase the increase in data efficiency when we transfer the
learned topology to a new room with different observations. First, we ignore the
results from training on Room 1 and train on a new room, Room 2, from scratch
following the same procedure outlined above. We train on the first N action-
observation pairs and predict for the rest. We average (geometrically) the
probability of getting the next observation right for the last 8000 samples of the
10,000 available. This results in the graph in Fig. 3e, where N is shown in the
horizontal axis. Then, we repeat the same procedure, but instead of training from
scratch from a random transition matrix with fixed emissions, we fix the transition
matrix that we got from training in Room 1 and we learn the emission matrix,
which is initialized to uniform. EM for the emission matrix converges in a few
iterations. Once all nodes have been observed (when the red curve achieves 1.0),
this procedure converges to perfect predictions in one or two EM iterations. This
results in the graph in Fig. 3f, where again the horizontal axis shows N, the number
of training action-observation pairs.
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Representation of paths and temporal order. To learn the CSCG on the maze in
Fig. 4f, we sample 5000 paths along each of the stochastic routes that are shown.
The number in each square indicates the observation received at that location, and
the arrows indicate possible transitions. We consider both sequences as indepen-
dently generated by the model, and run EM to optimize the probability of both
simultaneously. We allocate 20 clones for each other observation. By inspecting the
sum-product forward messages of BP at each step as the agent navigates the two
routes, we can see the distributions over clones. We observe they are over disjoint
subsets of the clones. To generate the paths from the CSCG shown in Fig. 4g
(producing only paths that are consistent with the route), we sample an observation
from the normalized messages from hidden state to observation during forward
message passing. Finally, to extract the communities and generate the visualization
in Fig. 4g, we run the InfoMap algorithm72 on the graph defined by CSCG tran-
sition matrix.

In Fig. 5, we replicate the experiments of Sun et al.21 as follows. First, we learned
a CSCG with 20 clones per observation on a sequence of observations sampled
from four laps around the maze shown in Fig. 5d. The start and end positions were
unique observations. Training was terminated when perfect learning of the
underlying graph was achieved. Community detection (explained below) revealed
that each sensory observation was encoded by a unique clone, akin to the chunking
cells found by Sun et al.

Retrieval and remapping. We generate random walks (random actions out of up,
right, down, left) of length 10,000 in each of five mazes. For Fig. 6a, the mazes are
5 × 5 rooms where the observations are assigned to cells by a random permutation
of the values 1–25, inclusive. For Fig. 6b, the structure of the mazes is shown and
the observations are indicated by the color of the cells. We constructed these mazes
such that have many shared observations, but each has some distinct structure that
differentiates it from the others.

For each of the experiments, we learn a CSCG on these random walk sequences.
After learning, we sum the forward messages of sum-product BP in each maze to
get a distribution over hidden states for each maze. Now on a test sequence, we can
use the forward messages and these clone distributions per maze to infer the
probability of being in each maze at each time step. In each of subfigure of Fig. 6,
we shows these predictions as well as the distribution over clones over time.

Learning a CSCG in these maze environments can also enable error correction
of noisy/corrupted observations. To correct errors in a corrupted observation
sequence we modify the emission matrix to generate a random symbol with a small
probability, thus modeling errors. Then we perform sum-product message passing
on sequences with errors and find the most likely a posteriori value for each
symbol. In our case, we only perform a forward pass, which provides an online
estimation (based only on past data) of the MAP solution. We will use a corruption
probability of 20% in our experiments, uniform over the incorrect symbols. For the
5 × 5 rooms, this procedure was able to correct 50 of the 55 corrupted symbols
while not corrupting any of the uncorrupted symbols. For the mazes, this
procedure was able to correct 46 of the 54 corrupted symbols while, again, not
corrupting any of the uncorrupted symbols.

Community detection and hierarchical planning. In all figures, custom Python
scripts were used to convert the transition matrix of the CSCG into a directed
graph. This graph was then visualized using built-in functions in python-
igraph (https://igraph.org/python/). Similarly, community detection was per-
formed using igraph’s built-in infomap function.

In the hierarchical planning experiments shown in Fig. 7, we first generated
each room by drawing a random integer between 1 and 12 with repetitions to serve
as observations. The rooms were then connected via bridges (observation 13,
colored black) and were tiled to form a maze as shown in Fig. 7d. Next, we trained
a CSCG with 40 clones per observation using 1000 random restarts as described
above. The learned CSCG achieved perfect prediction accuracy, suggesting perfect
learning of the underlying graph. Community detection on the learned CSCG was
performed using igraph. To form the top-level graph shown in Fig. 7e, we
collapsed each distinct community into a single node. These communities roughly
corresponded to each of the rooms in the maze. In some cases, certain rooms were
partitioned into multiple communities. Next, we ran community detection on this
graph to retrieve the hyper-rooms.

To compute the shortest trajectory between two locations on the maze, we first
computed the shortest path in the highest-level graph using Dijkstra’s algorithm,
implemented in networkx (https://networkx.github.io/). This returned the
sequence of hyper-rooms and rooms to be visited in order to reach the goal from a
start point. Next, we pruned the community graph to include only clones
corresponding to these rooms and then found the shortest path in this reduced
graph, which gave the exact sequence of observations from the start position to the
goal (denoted by the black arrow in Fig. 7d). This hierarchical approach was
consistently better than searching for the shortest path on the full maze itself with
an average 25% fewer steps (n= 10 mazes). To determine to what extent the
partitioning of the CSCG transition matrix into communities helped planning, we
formed surrogate communities which no longer respected room boundaries. This
resulted in a planned trajectory with an average 35% more steps than the
hierarchical plan.

It is important to note that hierarchical planning is significantly more efficient.
A representative example of the reduction in complexity can be given as follows.
Assume that we have V communities, E inter-community edges, and M nodes
inside each community. Further, assume that the nodes inside each community are
fully connected, and between any two communities, there is at most one edge.
Then with hierarchical planning the complexity of running Djikstra’s algorithm is
OðE þ V logV þ NtðMðM � 1Þ=2þMlogMÞÞ, where Nt is the number of top-
level nodes to traverse in the second planning stage. In contrast, on the full graph,
the complexity is OðE þMV logMV þ VðMðM � 1Þ=2ÞÞ. From these equations, it
is easy to see that hierarchical planning is more efficient because Nt ≤ V in all
graphs.

Adaptive and online EM variant of CSCGs. Although the sequences in the
experiments of this work are not too large, we might want to be able deal with cases
in which there is a very long incoming stream of observations, so long that we
cannot even store it in its entirety. In order to handle this case, we can simply
extend the previous EM algorithms to make them online.

The adaptive, online version of the EM algorithm in the “Methods” section is
obtained by splitting the sequence in B batches b= 1…B and performing EM steps
on each batch successively. This allows the model to adapt to changes in the
statistics if those happen over time. The statistics ξij(n) of batch b are now computed
from the E-step over that batch, using the transition matrix T(b−1) from the
previous batch. After processing batch b, we store our running statistic in A(b) as:

AðbÞ
ij ¼ ð1� λÞ ∑

b

k¼1
λb�k ∑

n2 batch ðkÞ
ξijðnÞ

and then compute the transition matrix T(b) as:

TðbÞði; jÞ ¼ AðbÞ
ij � ∑

E

j¼1
AðbÞ
ij

where 0 < λ < 1 is a memory parameter and n∈ batch(k) refers to the time steps
contained in batch k. For λ→ 1, T(b)(i, j) coincides with the transition matrix from
the “Methods” section. For smaller values of λ, the expected counts are weighed
using an exponential window (Normalization of the exponential window is
unnecessary, since it will cancel when computing T(b)(i, j).), thus giving more weight
to the more recent counts.

To learn from arbitrarily long sequences, we consider an online formulation

and express AðbÞ
ij recursively:

AðbÞ
ij ¼ λAðb�1Þ

ij þ ð1� λÞ ∑
n2 batch ðbÞ

ξijðnÞ;

so that the expected counts of the last observed batch are incorporated into the
running statistics.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All generated data are available at https://github.com/vicariousinc/naturecomm_cscg.

Code availability
All simulation code and plotting scripts73 are available at https://github.com/
vicariousinc/naturecomm_cscg.
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