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ABSTRACT: Calculations of highly excited and delocalized
molecular vibrational states are computationally challenging tasks,
which strongly depend on the choice of coordinates for describing
vibrational motions. We introduce a new method that leverages
normalizing flows, i.e, parametrized invertible functions, to learn
optimal vibrational coordinates that satisfy the variational principle.
This approach produces coordinates tailored to the vibrational problem at hand, significantly increasing the accuracy and enhancing
the basis set convergence of the calculated energy spectrum. The efficiency of the method is demonstrated in calculations of the 100
lowest excited vibrational states of H2S, H2CO, and HCN/HNC. The method effectively captures the essential vibrational behavior
of molecules by enhancing the separability of the Hamiltonian and hence allows for an effective assignment of approximate quantum
numbers. We demonstrate that the optimized coordinates are transferable across different levels of basis set truncation, enabling a
cost-efficient protocol for computing vibrational spectra of high-dimensional systems.

I. INTRODUCTION
Accurate calculations of highly excited vibrational states of
polyatomic molecules are essential for unraveling increasingly
rich experimental spectroscopic information and understand-
ing the dynamics of intermolecular motions. The highly excited
molecular vibrations are especially important in fields such as
chemical reactivity1−3 and collisions,4,5 relaxation processes,6

and stimulated emission,7 as well as spectroscopic probing of
high-temperature environments found on exoplanets8,9 and in
industrial applications.10,11

A range of variational and perturbative methods were
developed for predicting vibrational spectra of molecules.12−18

These methods solve the eigenvalue problem for a vibrational
Hamiltonian, which is constructed using appropriately chosen
vibrational coordinates. The choice of coordinates is a crucial
task that directly affects the accuracy of the energy calculations.
When using a direct product basis of univariate functions, a key
challenge is selecting coordinates that provide a large degree of
separability of vibrational motions, thereby reducing the
computational effort required to solve the vibrational
eigenvalue problem.19 This is particularly important for
calculations of delocalized vibrational states of floppy
molecules,20,21 such as van der Waals complexes,22 molecules
near dissociation,23 or high-energy excitations in general,24

where couplings between different vibrational modes are
prominent.
Rectilinear normal coordinates provide a natural starting

point for seeking separability in vibrational problems.
However, they become less effective for highly excited states
and are generally not suited for floppy molecules, e.g., weakly
bound complexes, which naturally sample configurations far
from their reference equilibrium geometry. Alternative curvi-

linear coordinate systems, such as Radau,25 Jacobi,26,27

valence,28 and polyspherical29−31 coordinates, were success-
fully applied in the vibrational calculations of various floppy
polyatomic molecules.13,32 Choosing the optimal coordinates
requires a combination of intuition, consideration of the
symmetries of the system, and prior knowledge of the potential
energy landscape. This task is particularly challenging for
floppy molecules and, generally, large systems. Several general
strategies were recently developed to guide the selection and
design of vibrational coordinates, drawing from the available
pool of known curvilinear and rectilinear coordinates.33−35

Due to the diversity of nuclear motions and their
dependence on molecular size and bonding topology, no
single coordinate system is universally optimal for describing
the vibrations of different molecules. One promising approach
to improve the effectiveness of a coordinate system involves
developing general coordinates parametrized by variables that
can be optimized to minimize vibrational couplings or energy
levels. Such general coordinates, expressed as linear combina-
tions of normal coordinates,36,37 curvilinear coordinates,38−44

or as a quadratic function of normal coordinates,45 were shown
to significantly enhance the accuracy of variational calculations.
Despite these developments, the broader application of
coordinate optimization in variational calculations remains
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largely unexplored, with previous efforts generally limited to
linear parametrizations specific to particular systems.
In this work, we introduce a new general nonlinear

parametrization for vibrational coordinates that is based on
normalizing flows,46 implemented using a neural network. The
parameters of the neural network are optimized by using the
variational principle. Applied to the calculation of the 100
lowest vibrational states in H2S, H2CO, and HCN/HNC
molecules, the present approach achieves several orders of
magnitude greater accuracy in energy predictions compared
with commonly used curvilinear coordinates for the same
number of basis functions. The optimized vibrational
coordinates effectively capture the underlying physics of the
problem, reduce couplings between different vibrational
modes, and remain consistent across various levels of basis
set truncation. Building on this property, we propose a cost-
efficient approach in which the coordinates are first optimized
by using a small number of basis functions and then applied to
calculations with a larger number of basis functions, keeping
the parameters of the neural network fixed.

II. METHODS
II.I. Enhancing a Basis Set by Change of Coordinates.

We begin by choosing a truncated set of orthonormal basis
functions {ϕn}n = 0

N of L2 along with an invertible map gθ
parametrized by a set of parameters θ. gθ maps an initial set of
vibrational coordinates r to a new set of coordinates q of the
same dimension, i.e., q = gθ(r). To improve the approximation
properties of the basis functions ϕn, we evaluate them in q to
obtain a new set of augmented basis functions {γn(q; θ)}n = 0

N

defined as

| |g gq r r( ; ) ( ( )) det ( )n n r (1)

where multiplying by the square root of the determinant of the
Jacobian ensures that the basis functions remain orthonormal
with respect to the L2-inner product in the vibrational
coordinates, independent of the values of θ. Inducing
augmented basis functions by a nonlinear change of variables
is analogous to inducing an augmented probability distribution
p from a base distribution p0 using a change of variables gθ,
commonly referred to as a normalizing flow in the machine
learning literature.46,47 Therefore, we refer to gθ as a
normalizing flow and to q as a normalizing-flow coordinate.
The map gθ can, in principle, be any differentiable invertible

function. However, to maintain the completeness of the
augmented basis set {γn(q; θ)}n = 0

∞ , the normalizing flow must
have a non-zero derivative.48 We construct gθ using an
invertible residual neural network (iResNet).49 We refer the

readers to the Supporting Information for a more detailed
explanation of the equivalence between optimizing basis sets
and vibrational coordinates.

II.II. Architecture. By construction, iResNet, which is
commonly used for image processing, places no restrictions on
the output domain. However, in many computational physics
and chemistry applications, the domain of internal coordinates
is inherently bounded. For example, in vibrational calculations,
internal coordinates often represent distances, which are
strictly positive, or angles, which are typically periodic or
confined to a finite interval such as [0, π] or [0, 2π]. Mapping
into nonphysical or redundant ranges of internal coordinates
can lead to inaccurate numerical outcomes and violations of
the variational limit. For example, the iResNet output may
extend into coordinate regions where the potential is
undefined, leading to unreliable results.
To address these issues, we developed an invertible flow that

enabled control over the output ranges. First, we mapped the
outer-most quadrature points of the basis sets in each
dimension to −1 and 1 using a fixed linear scaling. This way,
we allow any domain of the primitive basis set to be handled
identically. Next, iResNet was applied, producing an
unbounded output. To map the output back to a finite
interval, we applied a wrapper function, L. This wrapper
function can be any mapping that transforms an infinite
domain into a finite domain. We selected the tanh function to
map values to the interval [−1, 1]. Finally, we applied a linear
scaling a·x + b to adjust the output to the desired target
interval. The scaling parameters a and b were optimized as part
of the workflow. To ensure the output remains within the
correct interval, we used a subparametrization of the linear
parameters ai(α) and bi(β), where α and β are optimizable
variables. We applied different functions for different
coordinates depending on their specific range requirements.
Three different subparametrizations were used to accommo-
date infinite, semi-infinite, and finite intervals. A schematic of
this workflow is provided in Figure 1.

II.III. Construction of the Hamiltonian. The matrix
elements of the vibrational kinetic and potential energy
operators in the augmented basis (eq 1) can be expressed by
introducing a change of variables q = gθ(r) into the integrals.
For the potential, this results in the following expression.

= | | = *V V gV q q q q( ) ( ( )) ( )dn n n n n n
1

(2)

This illustrates that the normalizing flow gθ effectively modifies
the coordinates in which the operators are expressed for a fixed
set of basis functions {ϕn}n.

Figure 1. Schematic diagram of the computational workflow of the normalizing-flow function. As wrapping functions, we used L = tanh(q). A fixed
scaling procedure was applied to map the initial coordinate ranges to an identical domain. The linear scaling parameters a and b were optimized
together with the multilayer perceptron θ-parameters.
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The matrix elements of the kinetic energy operator in the
augmented basis set are given by
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D = |1/det ∇qgθ
−1(q)|, Gλμ is the kinetic energy matrix, λ and μ

indices are used to denote the elements of the coordinate
vector r, and k and l indices denote the elements of the
coordinate vector q, i.e., qk = gθ,k(r) and rλ = gθ,λ

−1(q). The
differential operators,

qk

, only operate inside the square

brackets. To obtain this formula, we employed integration by
parts, enabling the second-order derivative operator to act
symmetrically on both the bra and the ket functions as first-
order derivatives. The boundary term is omitted, as its
contribution is zero for most integration domains. Addition-
ally, the kinetic energy operator includes the so-called
pseudopotential term, which originates from the trans-
formation from Cartesian to the initial internal coordinates.
It is calculated as
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where g̃ = det(G−1). The pseudopotential is a scalar operator,
and its matrix elements in the transformed basis can be
expressed analogously to the potential energy matrix elements
in (eq 2).

II.IV. Optimization. We approximate the vibrational wave
functions Ψm (m = 1,..., M) as a linear combination of
augmented basis functions (eq 1), i.e.,

cq q( ) ( ; )m
n N

nm n
(5)

The linear-expansion coefficients cnm and the normalizing-flow
parameters θ are determined using the variational principle by
minimizing the energies of the ground and excited vibrational
states. For the coefficients, this is equivalent to solving the
eigenvalue problem E = C−1HC, where C = {cnm}n,mN,M, E =
{Em}mM are the vibrational energies, and H = T + V + U is the
sum of matrix representations of the kinetic, potential, and
pseudo potential energy operators, given by eqs 2−4.
Because vibrational energies are nonlinear functions of the

parameters θ, these parameters are optimized by using gradient
descent methods. The optimization is guided by a loss function
derived from the variational principle and may involve
minimizing quantities such as the sum of vibrational energies,
the trace of the Hamiltonian matrix, or the matrix exponential.
A loss function expressed as the sum of all energies spanned by
the chosen basis set is equivalent to the trace of the
Hamiltonian matrix,

= =E HTr( ) min
n N

n
(6)

This loss function has a relatively low computational cost, as it
decouples the nonlinear parameters θ from the eigenvector
coefficients cnm, requiring only the evaluation of diagonal
elements of the Hamiltonian matrix when the initial basis is
orthonormal. In contrast, when the loss function is based on
the sum of a subset of the lowest energies, the parameters
depend on the eigenvector coefficients cnm, and repeated
solutions of the eigenvalue problem during optimization are
required. Despite the added complexity, the high accuracy
achieved, even with a small number of basis functions, can
potentially outweigh the computational costs of the repeated
matrix diagonalization. In our calculations, we used the sum of
a subset of all vibrational energies as the loss function, vide
inf ra. A cost-efficient optimization and application strategy that
mitigates the cost of repeated matrix diagonalization is
discussed in Section III.IV.
The evaluation of the matrix elements in eqs 2−4 is one of

the most computationally demanding parts. In this work, we
employed Gaussian quadratures to compute the necessary
integrals, altering the quadrature degree in different opti-
mization steps to prevent overfitting. We found that alternating
between smaller quadratures during optimization was
computationally more efficient while still converging to the
same values of the parameters θ as those obtained using a
larger quadrature. After convergence, the final energies and
wave functions were computed by solving the eigenvalue
problem with a large quadrature for accurate integral
evaluations. For higher-dimensional systems, more efficient
techniques such as sparse-grid methods50 or collocation51 can
be used. Alternatively, Monte Carlo methods52,53 may be
employed when high accuracy is not required.

II.V. Computational Details. The accuracy and perform-
ance of our approach were validated in calculations of
vibrational states for hydrogen sulfide H2S, formaldehyde
H2CO, and hydrogen cyanide/hydrogen isocyanide HCN/
HNC isomers. For H2S and H2CO, we used valence
coordinates as the reference coordinates and employed a
direct product of the Hermite functions as the basis set. For
H2S, the direct product basis was constructed by considering
only combinations of one-dimensional (1D) vibrational
quantum numbers (n1, n2, n3) that satisfy the polyad condition
2n1 + 2n2 + n3 ≤ Pmax, where n1, n2, and n3 correspond to the
vibrational quanta for rSHd1

, rSHd2
, and α∠Hd1SHd2

valence
coordinates, respectively. For H2CO, we applied the basis
truncation condition 2n1 + 2n2 + 2n3 + n4 + n5 + n6 ≤ Pmax,
where n1,..., n6 correspond to the vibrational quanta for valence
coordinates rCO, rCHd1

, rCHd2
, α∠OCHd1

, α∠OCHd2
, and τ, the dihedral

angle between the OCH1 and OCH2 planes. For HCN/HNC,
we used the basis truncation condition 2n1 + 2n2 + n3 ≤ Pmax
and Jacobi reference coordinates rCN, R, α∠R‑CN, where R is the
distance between the hydrogen atom and the center of mass of
the C−N bond and α∠R‑CN is the angle between these
coordinate vectors. Hermite functions were used for the two
radial coordinates, and Legendre functions were used for the
angular coordinate. The Legendre functions were multiplied by
sin1/2(α∠R‑CN) to ensure the correct behavior of the wave
function at the linear geometry of the molecule, where the
Hamiltonian becomes singular.54,55 For all molecules, we
employed spectroscopically refined potential energy surfaces
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(PES)56−58 and numerically constructed exact kinetic energy
operator using the method described in refs 13 and 24.
To model the normalizing flow gθ, we used an iResNet

consisting of 10 blocks. Each block was represented by a dense
neural network comprising two hidden layers with unit sizes of
[8, 8] and an output layer of n units, where n corresponds to
the number of coordinates. A more detailed description of the
iResNet architecture is available in the Supporting Informa-
tion. The normalizing-flow parameters were optimized varia-
tionally by minimizing the sum of the 100 or 200 lowest
vibrational energies. Generally, 1000 iterations were enough to
achieve good convergence. Benchmark energies were com-
puted with basis sets truncated at Pmax = 60 (optimized for Pmax
= 12) for H2S, Pmax = 16 (optimized for Pmax = 9) for H2CO,
and Pmax = 44 for HCN/HNC.

III. RESULTS
III.I. Computed Vibrational Energies. On average, over

the 100 lowest energies, the calculations converged with an
accuracy of 0.04 cm−1 for H2S, 0.53 cm−1 for H2CO, and 0.03
cm−1 for HCN/HNC compared to the reference values
reported in the literature.56−58 We thus considered our results
to be converged and used them as benchmark data throughout
the rest of the manuscript. A table summarizing the deviations
of vibrational energies from the reference values is provided in
the Supporting Information.
The absolute error for the 100 lowest vibrational states of

H2S, H2CO, and HCN/HNC, as a function of the basis set
truncation parameter Pmax, is shown in Figure 2. For each
molecule, the results of two variational calculations are
presented, one using reference valence or Jacobi coordinates
and another using the optimized normalizing-flow coordinates.
With the same number of basis functions, coordinate
optimization resulted in up to 5 orders of magnitude
improvement in the accuracy of vibrational energy calculations
compared to using the standard reference coordinates.
Extrapolating to a larger number of basis functions, we
estimate that matching the same accuracy using the reference

coordinates would require approximately an order of
magnitude increase in the number of basis functions.
We note that the convergence of results can also be

improved by increasing the complexity of the normalizing-flow
function. A detailed analysis of this effect, along with an
investigation of how varying the number of target states affects
the normalizing-flow coordinates, is provided in the Support-
ing Information.
Direct product basis sets can be improved using basis set

contraction, which involves partitioning the total Hamiltonian
into subsystems, solving reduced-dimensional variational
problems for each, and then using these solutions for the
full-dimensional problem.59,60 For molecules such as H2S and
H2CO, basis set contraction works well due to the near-
separability of valence coordinates in the PES. However, this
approach becomes more challenging for floppy molecules such
as HCN/HNC, where two of the Jacobi coordinates are
strongly coupled.
This challenge is illustrated in Figure 3 for the first 200

vibrational energies of HCN/HNC. The figure presents results
of basis set contraction using Jacobi coordinates alongside
those obtained with a direct product basis set of primitive
functions, i.e., Hermite and Legendre, using optimized
normalizing-flow coordinates. The contracted basis was
constructed by partitioning the Hamiltonian into 1D
subsystems for each of the Jacobi coordinates, with the
HCN isomer equilibrium geometry as the reference config-
uration. As shown in Figure 3, the contracted basis significantly
improves convergence compared to the product basis set
results in Figure 2b but not for all vibrational states. High
accuracy is achieved only for states localized around the HCN
minimum of the PES, while delocalized states and states
localized around the HNC minimum show little improvement.
In contrast, the optimized normalizing-flow coordinates
provide a balanced description of all localized and delocalized
states, with a much smaller spread in errors across different
states.

III.II. Interpretability. To gain insight into the interpreta-
tion of the optimized normalizing-flow coordinates, we plotted

Figure 2. Convergence of H2S, HCN, and H2CO vibrational energy levels. Plotted are the discrepancies of the 100 lowest energy levels using
standard (blue squares) and normalizing-flow (red circles) coordinates. Light and dark colors represent truncations corresponding to a smaller and
larger number of basis functions, respectively. (a) Energy discrepancies for H2S at Pmax = 12 (140 basis functions) and 20 (506). (b) Energy
discrepancies for HCN at Pmax = 12 (140) and 32 (1785). (c) Energy discrepancies for H2CO at Pmax = 9 (1176) and 12 (3906).
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in Figure 4 the two-dimensional cut of the PES of HCN/HNC
along the strongly coupled Jacobi coordinates, R and α∠R‑CN,

i.e., V(r0, R, α∠R‑CN), alongside the corresponding cut in the
optimized normalizing-flow coordinates, V(gθ

−1(q1, q2, q3)). In
these plots, the rCN coordinate is fixed at its equilibrium value
r0 and q1 = 0. The potential is clearly highly anisotropic when
expressed in Jacobi coordinates (panel a), which leads to a
strong coupling between the two vibrations. In contrast, when
expressed in the optimized coordinates (panel b), the HCN ↔
HNC minimum energy isomerization pathway is practically a
straight line along the coordinate q3 at q2 ≈ 0. This reduction
in anisotropy explains why coordinate optimization improves
convergence on the product basis. The optimization achieves

an effective coordinate decoupling of the PES, which allows for
a better approximation of the eigenfunctions of the
Hamiltonian by the chosen direct product basis. In addition,
it is evident from the spacing between the contour lines along
the flow coordinate q2 that the potential becomes more
harmonic in this dimension in comparison to R in the Jacobi
coordinates. The same behavior was observed when comparing
q1 and rCN. This is expected, as Hermite functions, the
solutions of the quantum harmonic oscillator, were used as the
basis for stretching coordinates.

III.III. Assignment of Approximate Quantum Num-
bers. Assigning approximate quantum numbers to computed
eigenstates connects numerical results to their spectroscopic
interpretation. Typically, as the complexity of the method for
solving the Schrödinger equation increases, so does the
difficulty of assignment. In many cases, less accurate but
more interpretable effective models are more practical than
highly accurate methods as they facilitate approximate
quantum number assignment and enhance the interpretability
of experimental spectra.
The enhanced coordinate decoupling in the HCN/HNC

Hamiltonian suggests that assigning approximate quantum
numbers to computed eigenstates is more straightforward in
normalizing-flow coordinates compared to reference Jacobi
coordinates. In Table 1, we compare the accuracy of the

projection-based assignment of approximate quantum numbers
for the first 100 eigenstates of HCN/HNC. Projections were
performed onto one-dimensional eigenfunctions (a contracted
basis) expressed in either Jacobi or normalizing-flow
coordinates. In the limit of convergence of both the three-
and one-dimensional eigenfunctions, the projection-based
assignment depends only on the choice of coordinates and
not on the basis used to compute the eigenfunctions. A unique
assignment is ensured when the norm-square of the largest
absolute projection coefficient is larger than 0.5. The
normalizing-flow coordinates were optimized for 100 eigen-
states with Pmax = 28.
The contracted basis was constructed by partitioning the

Hamiltonian into one-dimensional subsystems corresponding
to each coordinate. For Jacobi coordinates, either the HCN or
the HNC equilibrium geometry was used as reference
configurations. In contrast, for normalizing-flow coordinates,
only the HCN equilibrium geometry was needed due to
reduced vibrational coupling. The assignment of approximate
quantum numbers is significantly more accurate using the
normalizing-flow coordinates with 97 uniquely assigned states
compared with only 39 using Jacobi coordinates and choosing

Figure 3. Convergence of HCN/HNC vibrational energy levels.
Shown are the lowest 200 energies for using Jacobi coordinates
(squares) and normalizing-flow coordinates (circles). The energy
discrepancies (ΔEi) relative to our converged benchmark reference
are shown for several basis sets, truncated at Pmax = 12 (140 basis
functions), 16 (285), 20 (506), 24 (811), and 28 (1200). Vibrational
states assigned to the HCN isomer, the HNC isomer, and states with
an energy above the isomerization barrier (delocalized) are differ-
entiated by color. All states are slightly offset along the Pmax axis for
visual clarity.

Figure 4. Two-dimensional cuts of the HCN/HNC potential energy
surface. (a) Cut along the Jacobi coordinates R and α∠R‑CN. (b) Cut
along the optimized normalizing-flow coordinates. The optimization
was performed for a basis set truncated at Pmax = 16 (285 basis
functions), with the loss function defined as the sum of the 100 lowest
vibrational state energies. An effective decoupling of the surface in the
normalizing-flow coordinates is patent.

Table 1. Projection-Based Assignment Metrics for
Vibrational States of HCN/HNCa

measure median mean min Nassign

Jacobi (HCN) 0.27 0.35 0.05 24
Jacobi (HNC) 0.17 0.25 0.04 15
Jacobi (HCN/HNC) 0.39 0.46 0.12 39
flows (HCN) 0.80 0.79 0.40 97

aThe tabulated values are the median, mean, and minimum values of
the largest norm-square projection coefficients obtained by projecting
the vibrational wave functions for 100 states onto products of one-
dimensional eigenfunctions. In the last column, Nassign, the number of
vibrational states (out of 100) that could be unambiguously assigned a
unique set of approximate quantum numbers are shown.
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the largest projection coefficient of the HCN and HNC
calculations. This highlights the benefits of optimized
coordinate transformations for more reliable spectroscopic
interpretations of the results.

III.IV. Transferability. We found that the converged
iResNet parameters remained nearly identical when optimized
using different basis set truncations, suggesting that unique
optimal vibrational coordinates exist for a given type of basis.
Leveraging this finding, we developed a cost-efficient approach
where the flow coordinates are first optimized using a small
number of basis functions and then applied with fixed
parameters in calculations with a larger number of basis
functions. The size and computational cost of the quantities
that depend on the normalizing flow, such as q

rl
, D

rl
,

D
1 , etc.,

are independent of the number of employed basis functions.
This means that calculations using fixed (pretrained) normal-
izing-flow parameters scale with the truncation parameter, Pmax,
in the same way as those using a regular linear mapping. The
transferability property significantly reduces the computational
costs and makes it feasible to apply our approach to high-
dimensional systems while maintaining accuracy comparable to
full optimization.
In Figure 5, we show the convergence for the 100 lowest

energy levels of H2S with respect to the basis set truncation

parameter, Pmax. The results are obtained using valence and
optimized normalizing-flow coordinates. Two types of normal-
izing-flow coordinates are compared: those optimized for each
specific Pmax (Opt. flows) and those optimized for selected
values of Pmax (12, 16, 20) and subsequently transferred to
calculations with larger Pmax. The metric for the convergence is
the error of the individual energy levels (Ei − Ei(ref)), where
Ei(ref) represents the benchmark energies detailed in the
Supporting Information. The results clearly demonstrate that
energy calculations using transferred coordinates yield greater
accuracy than those using valence coordinates. Moreover, their

performance is on par with the more computationally intensive
Opt. flows coordinates. The findings also indicate that
transferring from a larger Pmax can enhance the accuracy of
highly excited states.
The convergence of the approximation using the Hermite

basis with respect to the number of basis functions, N, is
algebraic.61 Specifically, the error satisfies

< ANm m
k

where ∥·∥ denotes the L2-norm, Ψm is the exact wave function,
and Ψ̂m is its approximation. The constant A depends on the
relationship between the target wave function and the
operators associated with the Hermite basis, and k denotes
the rate of convergence. The convergence for the Hermite
basis defined in normalizing-flow coordinates is also
algebraic,62 with different constants A and k for each map.
Therefore, it is reasonable to assume that the loss function
defined in eq 6 converges algebraically, i.e.,

=N
N

AN( )
( )

100
k

100
Ref
100

where θ are the optimized parameters for the chosen N. To
quantify the improved convergence rate observed for the
normalizing-flow coordinates (see Figure 5), we fitted log( )
w i t h a l i n e a r e x p r e s s i o n i n N , i . e . ,

= +k N Alog( ) log( ) log( ). The regression parameters
derived from this fit are listed in Table 2. The convergence

rate of the two normalizing-flow coordinates is significantly
higher than that of the valence coordinates. Remarkably, the
convergence rate of the transferred normalizing-flow coor-
dinates reaches 75% of the convergence rate of the flow
coordinates optimized at each truncation level. The constant A
is also decreased by the use of nonlinear coordinates, which
means that the accuracy is improved for any fixed truncation.
The results for Pmax = 12 for H2CO in Figure 2c were

calculated with the normalizing-flow coordinate optimized for
Pmax = 9. Additional results provided in the Supporting
Information further demonstrate the utility of the trans-
ferability property. In future work, we will elaborate on the
transferability property across basis set truncations and
investigate the extension of the principle of transferability of
normalizing-flow coordinates to different isotopologues and to
molecular systems sharing similar structural motifs. This could
potentially contribute to our understanding of intrinsic
vibrational coordinates.

IV. CONCLUSIONS
In summary, we introduced a general nonlinear parametriza-
tion for vibrational coordinates of molecules by using
normalizing flows. By optimizing the normalizing-flow
parameters through the variational principle, we significantly
accelerated basis set convergence, leading to more accurate
vibrational energies. The improvement is especially pro-
nounced for highly excited and delocalized vibrational states.

Figure 5. Convergence of the first 100 vibrational energies of H2S.
Shown are the results obtained for H2S using valence (blue squares)
and optimized normalizing-flow (red circles) coordinates as a function
of Pmax. Results obtained with normalizing-flow coordinates optimized
for Pmax = 12 (green up-triangles), Pmax = 16 (cyan down-triangles),
and Pmax = 20 (orange plus signs) and applied to calculations with
larger Pmax are also shown. Thick horizontal lines indicate the average
energy-level error for each Pmax, which is minimized through training.
Data points are slightly offset along the Pmax axis for visual clarity.

Table 2. Convergence Parameters for Different Coordinates

coordinate k × 103 log (A)

valence 0.61 ± 0.08 11.7 ± 0.3
opt. flows 2.90 ± 0.47 6.43 ± 2
transf. 12 2.17 ± 0.30 7.11 ± 1
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The learned coordinates enhanced the separability of the
Hamiltonian, which we leveraged to improve the assignment of
approximate quantum numbers by projection onto direct
products of one-dimensional eigenfunctions. The enhanced
separability also potentially allows for a more intuitive
interpretation of the key motifs in strongly coupled vibrational
dynamics. The transferability of the optimized coordinates
across different truncation levels provides a computationally
efficient protocol for more complex molecular system
calculations. As other variational approaches, our method
suffers from exponential growth in the size of the product basis
as the number of coordinates increases. This challenge has
been effectively addressed in the literature using prescreening
techniques that selectively retain only the most relevant basis-
product configurations for the states of interest.63,64 It should
be possible to combine the present normalizing-flow approach
with state-specific eigenvalue solvers, where the basis-product
configurations are tailored to specific vibrational states. One
promising method specifically designed for vibrational
solutions is the iterative residuum-based RACE algorithm.65

After the release of the first arXiv version of this work,66

another group integrated the concept of normalizing flows for
basis set augmentation with Monte Carlo methods and
successfully applied it to high-dimensional systems.67

We also explored the applicability of the normalizing-flow
method for excited electronic states, testing it on single-
electron systems, such as the hydrogen atom, hydrogen
molecular ion, and carbon atom in the single-active electron
approximation. Results presented in the Supporting Informa-
tion show a significant improvement in basis set convergence.
This suggests the promising potential of the normalizing-flow
method for electronic structure problems, especially since
neural network-based methods for excited state computations
remain challenging.53,68
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(60) Felker, P. M.; Bacǐc,́ Z. Weakly bound molecular dimers:
Intramolecular vibrational fundamentals, overtones, and tunneling
splittings from full-dimensional quantum calculations using compact
contracted bases of intramolecular and low-energy rigid-monomer
intermolecular eigenstates. J. Chem. Phys. 2019, 151, 024305.
(61) Lubich, C. From Quantum to Classical Molecular Dynamics:
Reduced Models and Numerical Analysis; European Mathematical
Society, 2008.
(62) Saleh, Y. Spectral and Active Learning for Enhanced and
Computationally Scalable Quantum Molecular Dynamics, Dissertation;
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