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MicroRNA (miRNA) biogenesis proceeds from a primary

transcript (pri-miRNA) through the pre-miRNA into

the mature miRNA. Here, we identify a role of the

Caenorhabditis elegans nuclear export receptor XPO-1

and the cap-binding proteins CBP-20/NCBP-2 and CBP-

80/NCBP-1 in this process. The RNA-mediated interference

of any of these genes causes retarded heterochronic pheno-

types similar to those observed for animals with muta-

tions in the let-7 miRNA or core miRNA machinery genes.

Moreover, pre- and mature miRNAs become depleted,

whereas primary miRNA transcripts accumulate. An

involvement of XPO-1 in miRNA biogenesis is conserved

in Drosophila, in which knockdown of Embargoed/XPO-1

or its chemical inhibition through leptomycin B causes

pri-miRNA accumulation. Our findings demonstrate that

XPO-1/Emb promotes the pri-miRNA-to-pre-miRNA

processing and we propose that this function involves

intranuclear transport and/or nuclear export of primary

miRNAs.
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Introduction

According to the current model of miRNA biogenesis,

miRNAs are transcribed by RNA polymerase II as capped

and polyadenylated primary miRNAs (pri-miRNA) of several

hundred or thousands of nucleotides in length (Bracht et al,

2004; Cai et al, 2004; Lee et al, 2004). The microprocessor

complex, composed of Drosha and DGCR8 (DRSH-1 and

PASH-1, respectively, in Caenorhabditis elegans), cleaves

the pri-miRNAs in the nucleus to generate pre-miRNAs,

characterized by their hairpin structures and size of B70 nt

(Denli et al, 2004; Gregory et al, 2004; Han et al, 2004;

Landthaler et al, 2004). Subsequently, cleavage of the pre-

miRNA by the cytoplasmic RNase Dicer (DCR-1) releases the

mature miRNA (Grishok et al, 2001; Hutvágner et al, 2001;

Ketting et al, 2001), which is loaded into a functional miRNA-

induced silencing complex (miRISC) containing an Argonaute

(AGO; ALG-1 and ALG-2 in C. elegans) protein (Grishok et al,

2001; Hutvágner et al, 2004) and a GW182 protein (AIN-1 and

AIN-2; Ding et al, 2005; Liu et al, 2005; Rehwinkel et al, 2005;

Zhang et al, 2007) at its core.

In vertebrates and flies, Exportin-5 (Exp5) connects the

two nucleolytic processing steps by exporting the nuclear pre-

miRNA into the cytoplasm for further cleavage by Dicer

(Yi et al, 2003; Bohnsack et al, 2004; Lund et al, 2004).

However, although the miRNA biogenesis machinery is

generally conserved in C. elegans, the nematode genome

contains no orthologue of Exp5 (Supplementary Figure S1

and see, Bohnsack et al, 2004; Murphy et al, 2008).

The depletion of several components of the miRNA core

machinery in C. elegans results in developmental phenotypes

that resemble those seen upon the loss of the let-7 miRNA,

such that these phenotypes provided the first indication for a

function of DCR-1, ALG-1/2, and AIN-1/2 in the miRNA

pathway (Grishok et al, 2001; Ketting et al, 2001; Ding et al,

2005; Zhang et al, 2007). These so-called heterochronic

phenotypes are particularly apparent in a subset of skin

cells, the seam cells. In wild-type animals, these cells exit

the cell cycles at the larval-to-adult (L/A) transition, fuse into

a syncytium, and contribute to the formation of a specific

cuticular structure, the adult alae. In let-7 mutant and miRNA

pathway mutant animals, cell cycle exit and/or cell differ-

entiation fail, resulting in extra seam cell divisions, delay, or

lack of formation of the seam cell syncytium and/or the alae.

Moreover, on more complete loss of let-7 or general miRNA

activity, animals die by vulval bursting at the L/A transition.

In this study, we show that depletion of the nuclear export

receptor XPO-1 or either subunit of the nuclear cap-binding

complex (CBC), NCBP-1/CBP-80 and NCBP-2/CBP-20, causes

vulval bursting and heterochronic phenotypes in C. elegans.

This is caused by a defect in the miRNA biogenesis at the

level of primary miRNAs, and a similar function in miRNA

biogenesis is also observed for the Drosophila XPO-1 ortho-

logue Embargoed. We propose that XPO-1, possibly

in conjunction with the CBC, mediates the intranuclear

transport and/or nuclear export of primary miRNAs.

Results

xpo-1 is a heterochronic gene in C. elegans

Exp5 is a member of the importin b-superfamily that

mediates the nuclear export of pre-miRNAs in flies and
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mammals. As C. elegans lacks an Exp5 orthologue

(Supplementary Figure S1 and see, Bohnsack et al, 2004;

Murphy et al, 2008), we were interested in testing whether

other nuclear export receptors support miRNA biogenesis in

C. elegans. The CSE1L/CAS orthologue, XPO-2, has pre-

viously been identified as a suppressor of the let-7(n2853)

mutation (Ding et al, 2008), indicating a negative role—by

genetic criteria—in miRNA function, and thus arguing

against a miRNA biogenesis-promoting activity. We therefore

investigated the other two C. elegans exportins, XPO-1 and

XPO-3. The exportin XPO-1 is the orthologue of yeast and

human CRM1/XPO1, which mediates nuclear export of the

spliceosomal U snRNAs (Hutten and Kehlenbach, 2007),

whereas XPO-3 is the orthologue of human Exportin-t and

yeast Los1p, which mediates tRNA nuclear export (Gro�hans

et al, 2000). xpo-1 has also previously been identified as one

among 4200 genes, depletion of which enhanced vulval

bursting for a weak let-7 allele in an RNAi-sensitized,

eri-1 mutant background, although a function in miRNA

biogenesis remained elusive (Parry et al, 2007).

To obtain evidence for a possible function of either transport

receptor in miRNA biogenesis or function, we exposed wild-

type animals to RNAi by feeding against xpo-1, xpo-3 or a

control plasmid and scored animal survival and alae defects in

young adults. To avoid sterility or embryonic lethality pheno-

types, we initiated RNAi on synchronized first larval (L1) stage

animals. Animals treated with mock RNAi exhibited wild-type

vulvae and alae (Figures 1A, D and 2A, F). By contrast,

depletion of the C. elegans Argonaute, alg-1, caused both

vulval bursting and alae defects (Figures 1B, D and 2B, F).

Animals exposed to xpo-3(RNAi) appeared wild type

(Figures 1D and 2F), although RT–PCR confirmed efficient

mRNA depletion (data not shown). This finding suggests that

under our experimental conditions sufficient XPO-3 protein

might still be available to promote tRNA nuclear export.

Alternatively, as in yeast and Drosophila, in which Exp-t

orthologues are non-essential or not encoded in the genome,

respectively (Supplementary Figure S1 and see, Gro�hans

et al, 2000; Shibata et al, 2006), partially redundant tRNA

nuclear export pathways might compensate for the loss of

XPO-3 in larvae.

By contrast, xpo-1(RNAi) caused the characteristic vulval

bursting and alae break phenotypes (Figures 1C, D and 2C,

F), previously observed for depletion of other core compo-

nents of the C. elegans miRNA pathway (Grishok et al, 2001;

Ketting et al, 2001; Denli et al, 2004), including alg-1 (Figures

1B, D and 2B, F). Surviving animals were sterile for reasons

that we have not investigated.

A more detailed analysis confirmed that xpo-1(RNAi)

caused true heterochronic phenotypes. Thus, xpo-1(RNAi)

animals displayed unfused seam cells at the young

adult stage, when seam cells in wild-type animals would be

fused (Supplementary Figure S2). Moreover, the number

of seam cells in young adult xpo-1(RNAi) animals was

increased relative to mock RNAi animals (Supplementary

Figure S3), and this was due to extra seam cell division in

the young adult stage and not cell-fate transformations or

extra cell divisions during larval stages (Supplementary

Figure S3).

In summary, we have shown that xpo-1(RNAi) pheno-

copies multiple aspects of the let-7 heterochronic phenotype,

including lethality and defects in seam cell differentiation

and proliferation control, establishing xpo-1 as a bona fide

heterochronic gene.
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Figure 1 RNAi against xpo-1, ncbp-1/cbp-80, or ncbp-2/cbp-20 causes animals to die by vulval bursting. Unlike (A) the healthy control animals,
(B) alg-1(RNAi) and (C) xpo-1(RNAi) adults have protruding vulvae and often die by bursting through the vulva. (D) This phenotype is also
penetrant on depletion of cbp-20 or cbp-80, whereas RNAi against xpo-3 or phax-1 has no effect (independent experiments nX2, each nX165
animals). ‘Control’ in this and subsequent figures denotes animals that were fed bacteria carrying the insertless L4440 parental RNAi vector.
Error bars¼ s.e.m. Scale bars are 20mm.
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XPO-1 is required for normal let-7 accumulation

The extensive resemblance of xpo-1(RNAi) and let-7 mutant

phenotypes is consistent with a function of XPO-1 in let-7

biogenesis. In accord with this idea, we also observed that

xpo-1(RNAi)-induced vulval bursting was largely suppressed

by a loss-of-function mutation in the let-7 target lin-41, which

also suppresses vulval bursting of let-7 mutant animals (data

not shown). However, Parry et al (2007) had previously

examined whether depletion of xpo-1 affected mature and/

or pre-let-7 levels and failed to find any evidence to support

this idea. We wished to re-examine this issue in the light of

the stronger vulval bursting phenotypes that we observed in

comparison to Parry et al (2007), who required xpo-1 deple-

tion in the eri-1(mg366); let-7(mg279) background to observe

significant bursting. Indeed, when we examined the abun-

dance of mature let-7 in xpo-1(RNAi) animals, we observed a

B50% decrease relative to control RNAi animals (Figure 3A).

This finding supports a possible function of XPO-1 in let-7

biogenesis.

The cap-binding complex is a potential co-factor

of XPO-1 in let-7 biogenesis

To mediate nuclear export of U snRNAs, vertebrate XPO1/

CRM1 functions with three adaptor proteins—the cap-bind-

ing complex (CBC) comprising CBP20 and CBP80, and the

PHAX protein (Izaurralde et al, 1995; Ohno et al, 2000). More

recently, CBC was shown to be required for efficient miRNA

accumulation in plants and to affect pre- and pri-miRNA

levels in flies and mammals, respectively (Gregory et al,

2008; Kim et al, 2008; Laubinger et al, 2008; Gruber et al,

2009; Sabin et al, 2009). Finally, both ncbp-2/cbp-20

(F26A3.2) and ncbp-1/cpb-80 (F37E3.1) caused vulval burst-

ing when depleted in eri-1(mg366); let-7(mg279) animals

(Parry et al, 2007). Thus, to test whether PHAX and CBC

also function in C. elegans miRNA biogenesis, we depleted

them by RNAi.

Animals exposed to RNAi against phax-1 (Y71H2B.2) dis-

played neither vulval bursting nor alae defects (Figures 1D

and 2F) although phax-1 mRNA was efficiently (B70%)
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Figure 2 xpo-1(RNAi), ncbp-1/cbp-80(RNAi), and ncbp-2/cbp-20(RNAi) cause alae defects. (A) Control animals display strong and complete
alae (arrows), whereas (B–F) alae in animals treated with RNAi as indicated are broken or absent altogether (brackets indicate alae breaks; for
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are 20mm.
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depleted as determined by RT–PCR (data not shown).

Although it remains possible that residual PHAX-1 suffices

for function, these data argue against a major role of PHAX-1

in let-7 biogenesis. In contrast, and similar to xpo-1(RNAi),

depletion of cbp-20 or cbp-80 by RNAi caused penetrant alae

defects and vulval bursting (Figures 1D and 2D–F); the latter

phenotype being suppressed by the lin-41(ma104) mutation

(data not shown). Finally, the levels of the mature let-7

miRNA were significantly reduced on CBC depletion

(Figure 3B), supporting the idea that CBC, like XPO-1 might

be involved in miRNA biogenesis. As a parsimonious expla-

nation, we propose that CBP-20 and CBP-80 function together

with XPO-1 in the nuclear export of let-7.

XPO-1 and the CBC are widely required for miRNA

accumulation

Mutations in the core miRNA machinery cause let-7-like

phenotypes even for factors generally required for miRNA

function (Figures 1B, D and 2B, F; Grishok et al, 2001; Denli

et al, 2004). Therefore, we tested the possibility that XPO-1

and CBC are required for the accumulation of other miRNAs.

As depletion of cbp-20 caused less penetrant developmental

phenotypes than RNAi against cbp-80, we focused our ana-

lysis on xpo-1 and cbp-80. We noted that these differences in

cbp-20 and cbp-80 depleted animals occurred although rela-

tive depletion efficiency was comparable for both mRNAs

(Supplementary Figure S4A), possibly indicating that differ-

ences in protein stability or differences in protein abundance

already before depletion might render CBP-20 more refractory

to efficient depletion by RNAi.

We examined the abundance of lin-4, mir-75, mir-77, and

mir-237, four larvally expressed miRNAs (Lim et al, 2003),

and found that their levels were decreased on xpo-1 and cbp-

80 knockdown (Figure 3C), although the effect on lin-4 was

modest (but see below), presumably due to its early expres-

sion in L1. We conclude that XPO-1/CRM1 and CBC are

required for the biogenesis of many C. elegans miRNAs,

including let-7, providing a molecular explanation for the

developmental phenotypes.

XPO-1 and CBC act upstream of mature miRNA

If XPO-1 and CBC act directly and jointly in miRNA biogen-

esis, the involvement of CBC might suggest a function linked

to a capped miRNA precursor, that is, pri-miRNA, rather than

the uncapped pre- or mature miRNAs. To test this possibility,

we examined the abundance of let-7 biogenesis intermedi-

ates. Although low pre-let-7 levels in wild-type animals

preclude efficient detection, depletion of dcr-1 yields a readily

detectable accumulation of pre-let-7 (Grishok et al, 2001;

Ketting et al, 2001). Our failure to detect pre-let-7 on xpo-1
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or CBC depletion thus ruled out a significant accumulation

(data not shown). Indeed, when we overexpressed let-7

Bfive-fold from an integrated DNA array (Weidhaas et al,

2007 and Supplementary Figure S5A), depletion of xpo-1 or

cbp-80 decreased pre-let-7 levels relative to control RNAi

(Figure 4A), indicating that xpo-1 and cbp-80 function

upstream of Dicer-mediated pre-let-7 processing.

We used RT–qPCR to examine the accumulation of pri-let-7

and C. elegans-specific SL1-pri-let-7, which is derived from

the pri-miRNA by trans-splicing (Figure 4B; Bracht et al,

2004). Unlike for pre-let-7 and mature let-7, we observed

that levels of these potential export substrates did not decline

in xpo-1-, cbp-20-, or cbp-80-depleted animals but instead

increased (data not shown). However, the extent of accumu-

lation varied substantially among different experiments.

As pri-let-7 expression is dynamic during the L4 stage

(A Pasquinelli, personal communication), we addressed the

possibility that slightly divergent staging of the animals might

account for this variability among the different trials. We

performed a time-course analysis using lin-42, an mRNA

expression of which peaks once during each larval stage

(Jeon et al, 1999), as a reference (Supplementary Figure

S5B; Materials and methods section). Both pri-let-7 and

SL1-pri-let-7 were dynamically expressed during the L4

stage, starting from low levels, peaking around the time of

maximum lin-42 levels, and subsequently declining (Figure

4C and D). This dynamic was unchanged on xpo-1, cbp-20, or

cbp-80 depletion, but the levels of both transcripts were

consistently increased at all time points relative to the control

animals (Figure 4C–E). Although xpo-1(RNAi) enhanced the

accumulation of SL1-let-7 particularly strongly, cbp-20/-80

(RNAi) preferentially affected pri-let-7 accumulation.

Next, we extended our study to the primary transcripts of

lin-4, mir-237, mir-48, and mir-77, none of which has been

reported to undergo trans-splicing, and for none of which we

could amplify a trans-spliced product using RT–PCR with an

SL1-specific primer and a pri-miRNA specific primer (data

not shown). We observed that all four pri-miRNAs accumu-

lated on xpo-1(RNAi), cbp-20(RNAi), and cbp-80(RNAi)

relative to the control (Figure 4E and data not shown),
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suggesting that XPO-1 and the CBC act on the primary

transcripts, and confirming that XPO-1 and CBC are widely

required for miRNA biogenesis.

A mirtron miRNA is not affected by depletion of xpo-1

or CBC

To further test the idea that XPO-1 and CBC act on

pri-miRNAs, we examined accumulation of mir-62. mir-62

belongs to the mirtron subclass of miRNAs, which reside in

short introns of host mRNA genes, from which the—un-

capped—pre-miRNA is released through nuclear mRNA spli-

cing, bypassing processing by Drosha (Okamura et al, 2007;

Ruby et al, 2007). We expected that reduced levels of XPO-1

and CBP-80 would not affect the accumulation of this mature

miRNA if these factors acted on primary miRNAs. Indeed,

depletion of xpo-1 or cbp-80 failed to decrease the levels

of the mature mir-62, as predicted by our model

(Figure 3D). In addition, this result indicates that splicing

activity is not appreciably impaired in the xpo-1(RNAi) and

cbp-80(RNAi) animals, as mature mirtron accumulation

requires splicing.

Expression of miRNA pathway components

is not affected by XPO-1 or CBC depletion

The fact that a mirtron miRNA accumulates normally in the

presence of reduced XPO-1 or CBC levels suggests that not

only splicing but also dicing and Argonaute binding are not

adversely affected. However, to directly examine whether

XPO-1 or CBC might affect the levels of miRNA pathway

components, we examined the level of Dicer (DCR-1) using

an antibody against the endogenous protein (Duchaine et al,

2006). We also examined its mRNA levels and those of

Drosha (drsh-1), Pasha (pash-1), the miRNA Argonautes

(alg-1 and alg-2), and the GW182 orthologues (ain-1 and

ain-2) by RT–qPCR. Our experiments revealed that none of

these factors was depleted by RNAi against xpo-1 or CBC

(Supplementary Figure S4B and C). Notably, we saw some

elevation of Dicer protein and Drosha, Argonaute, and

GW182 mRNAs consistent with the suggestion of widespread

autoregulation of miRNA pathway components by miRNAs

(Zisoulis et al, 2010). Regardless of the cause

of this effect, these results argue against an impairment of

miRNA activity through depletion of core miRNA pathway

genes on xpo-1 or CBC knockdown. These data thus further

support the idea that XPO-1 and CBC have a direct role in

supporting miRNA biogenesis at the level of pri-miRNA.

Emb, the Drosophila XPO-1 orthologue, also regulates

pri-miRNA processing

The miRNA biogenesis pathway is well conserved in diverse

organisms and recent data show a requirement of the CBC for

efficient miRNA processing and/or activity in plants,

mammals, and flies (Gregory et al, 2008; Kim et al, 2008;

Laubinger et al, 2008; Gruber et al, 2009; Sabin et al, 2009)

(JSYand ECL, unpublished data). In contrast, similar data are

not available for XPO-1.

To elucidate if Embargoed (Emb), the Drosophila XPO1

orthologue, has a function in the biogenesis of miRNAs,

we depleted it in S2 cells by soaking of Emb dsRNA. As

in C. elegans, we observed an accumulation of several

pri-miRNAs when Emb was depleted (Figure 5A,

Supplementary Figure S6A). We confirmed the specificity of
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this effect by obtaining comparable results when blocking

Emb activity with Leptomycin B (LMB; Figure 5B).

Leptomycin B specifically inhibits XPO1/CRM1 by binding

covalently to a conserved cysteine residue (Kudo et al, 1999),

and this modification prevents substrate binding by occupy-

ing the substrate-binding site (Dong et al, 2009). Within as

little as 2 h, LMB treatment caused an accumulation (at least

two-fold) of several pri-miRNAs relative to the vehicle-treated

control (Figure 5B). Thus, acute and chronic depletion of

Emb activity causes pri-miRNA accumulation, with the ra-

pidity of the effect arguing for a direct involvement of Emb in

miRNA biogenesis.

Although some mature miRNAs seemed to be moderately

changed on Emb depletion, the effect was generally weak

(Figure 5C), as previously observed on CBC depletion in flies

(Sabin et al, 2009). Thus, it seems that compensatory effects

downstream in miRNA biogenesis or turnover can compen-

sate for the decreased pri-miRNA processing. Alternatively,

incomplete Emb depletion might sustain sufficient export

capacity in cells exposed to RNAi against Emb. Finally, Emb

might only have a minor or partially redundant role in

miRNA biogenesis in Drosophila.

To test whether a redundant function was performed by

the pre-miRNA export receptor, Exportin-5, we co-depleted

Emb and Exp5. Surprisingly, we found that the double

depletion did not decrease mature miRNA levels beyond

what was seen with Exp5 single depleted cells. Nonetheless

more surprisingly, RNAi against Emb suppressed the accu-

mulation of the pre-miRNA that occurs in an Exp5 single

knockdown (Figure 5C). Although these experiments involve

partial knockdown and not null mutations, precluding strong

statements about epistasis, these findings suggest that in

Drosophila Emb acts upstream of, rather than in parallel to,

Exportin-5.

Discussion

We have shown in this study that C. elegans xpo-1, cbp-20,

and cbp-80 are heterochronic genes that are required for

proper execution of the L/A switch mediated by let-7. We

have further observed that all three factors are important for

the accumulation of miRNAs, including let-7, providing a

molecular explanation for the developmental phenotypes. We

note that a previous study failed to observe a significant

decrease in let-7 on xpo-1 depletion (Parry et al, 2007).

However, as xpo-1(RNAi)-induced vulval bursting in that

study required the sensitized eri-1(mg366); let-7(mg279)

background, less efficient xpo-1 depletion than under our

experimental conditions seems a likely cause of the discre-

pancy (Gregory et al, 2008).

The fact that depletion of xpo-1 and CBC both decreased

mature and pre-miRNA levels, but increased pri-miRNA

levels, points to their function in miRNA biogenesis at

a step upstream of the pre-miRNA, that is, at the level of

pri-miRNAs. Formally, we cannot rule out that these func-

tions might differ for XPO-1 and CBC. However, as XPO-1,

CBP-20, and CBP-80 complexes are known in vertebrates

(Ohno et al, 2000), the shared molecular and developmental

phenotypes seen in the C. elegans RNAi mutants suggests that

they also function as a complex in the C. elegans miRNA

biogenesis pathway. As C. elegans lacks the canonical

pre-miRNA export receptor, Exp5, a function in miRNA

nuclear export is a strong possibility.

Pri-miRNA nuclear export would require cytoplasmic pro-

cessing of the pri-miRNA (generally considered a nuclear

event), and it is therefore of particular interest that CBC and

Drosha have recently been shown to co-immunoprecipitate in

flies and humans (Gruber et al, 2009; Sabin et al, 2009),

suggesting the possibility of a large shuttling complex that

contains the pri-miRNA processing activity. Processing of pri-

miRNAs in C. elegans might then occur at, or during transit

through, the nuclear pore. Nonetheless, as Drosha localiza-

tion in C. elegans is currently unknown, and localization

using various GFP-tagged Drosha transgenes has yielded

inconsistent results (IB and HG, unpublished data), alterna-

tive explanations remain possible.

Previous studies on fly and human CBC reported a func-

tion in miRNA biogenesis that involved an interaction with

the serrate homologous protein ARS2 (Gruber et al, 2009;

Sabin et al, 2009). However, ARS2 is only present in prolif-

erating cells, and impairs the accumulation of a specific

subset of miRNAs (Gruber et al, 2009). If CBC functioned

in miRNA biogenesis exclusively through its interaction with

ARS2, one would predict a similarly specific function. As the

effect of CBC depletion on mature miRNA levels has not been

reported for humans and only for one miRNA in flies—

bantam, the levels of which remained unchanged (Sabin

et al, 2009)—this possibility remains to be addressed.

However, the fact that depletion of E01A2.2, the C. elegans

ARS2 homologue, does not result either in vulval bursting or

in alae defects (IB and HG, unpublished data), and that all

miRNAs that we had investigated were affected by the

depletion of CBC, suggests that in C. elegans some, or

possibly all, CBC functions in miRNA biogenesis are inde-

pendent of ARS2. Consistent with a difference in CBC func-

tion between C. elegans and humans or flies, Gruber et al,

2009 and Sabin et al (2009) also observed a reduction of pri-

miRNA levels on depletion of CBC, whereas we observed that

C. elegans pri-miRNAs accumulate in this situation.

It thus seems possible that CBC has a conserved

yet diverging function in miRNA biogenesis in different

organisms, and this also seems to be true for XPO-1: our studies

of Drosophila Emb reveal that this XPO-1 orthologue also

regulates the miRNA biogenesis at the step of pri-miRNA

processing, although Drosophila does harbour a miRNA

export receptor, Exp5. However, the fact that Emb depletion

does not enhance Exp5 phenotypes at the level of mature

miRNA accumulation, but does suppress pre-miRNA

accumulation, suggests that Emb functions upstream of,

rather than in parallel to, Exp5. One possible function could

be intranuclear transport of the pri-miRNA, as previously

demonstrated for U3 snoRNA in human cells (Boulon et al,

2004).

While this paper was under preparation, CRM1/XPO-1 was

reported to regulate the nuclear–cytoplasmic localization of

mature miRNAs in cultured mammalian cells, suggesting that

this nuclear export receptor might additionally modulate

miRNA activity after miRNA biogenesis has been completed

(Castanotto et al, 2009). It is unclear whether this function

would be conserved in C. elegans. However, if it were,

it would be insufficient to explain several of our observations,

that is, the accumulation of pri-miRNA, the depletion of pre-

miRNA, and the lack of an effect on the levels of the mir-62
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mirtron. Nonetheless, we cannot rule out that beyond the

functions in pri-miRNA biogenesis that we describe here,

XPO-1 would additionally affect mature miRNA localization.

When considering the possibility of conserved, yet differ-

ing functions in miRNA biogenesis, one striking feature of

the C. elegans miRNA pathway is that many or all of its

canonical miRNAs are expressed from their own promoters

(Supplementary data and Martinez et al, 2008), whereas a

large fraction of vertebrate miRNAs are ‘intronic’ such that

nuclear Drosha processing releases them from their host

genes (Kim and Kim, 2007). It is tempting to speculate that

a varying dependence on CBC for miRNA biogenesis in

C. elegans and in humans might explain these divergent

gene organization patterns, with a more general requirement

in C. elegans necessitating the production of capped tran-

scripts, from ‘intergenic’ miRNA loci.

Materials and methods

C. elegans strains
C. elegans strains used were: wild-type N2; MT7626: let-7(n2853)
(Reinhart et al, 2000); CT19: N2;zaIs3[let-7(þ ) myo-3Hgfp]
(Weidhaas et al, 2007); him-5;[ajm-1Hgfp, rol-6]; JR672: N2;wIs54
[scmHgfp] (Koh and Rothman, 2001); and GR1434: wIs54
[scmHgfp]V;let-7(n2853) (Hayes et al, 2006).

The C. elegans cap-binding complex and PHAX-1
Using reciprocal BLAST search, we identified F26A3.2 (ncbp-2) and
F37E3.1 (ncbp-1) as the closest CBP20 and CBP80 homologues,
respectively, in C. elegans (data not shown). The genes encoding
these proteins are named ncbp-1 (CBP80) and ncbp-2 (CBP20),
following the human nomenclature. For clarity, we used cbp-20/-80
and CBP-20/-80 throughout the text when referring to gene and
protein, respectively. A PHAX homologue has already been
identified previously (Ohno et al, 2000). We verified that this gene,
Y71H2B.2, was indeed the closest PHAX homologue in C. elegans
(data not shown) and named it phax-1.

RNAi and RNAi constructs
The RNA-mediated interference was performed by feeding, starting
with synchronized L1 larvae. ‘Control’ in all RNAi experiments
denotes animals that were fed bacteria carrying the insertless L4440
parental RNAi vector. Appropriate developmental stages of worms
were verified by vulval and gonad development using DIC optics.
The RNAi constructs targeting ncbp-1/cbp-80 and ncbp-2/cbp-20 are
from an RNAi library (Kamath et al, 2003). xpo-1(RNAi), xpo-3
(RNAi), and phax-1(RNAi) were constructed as described in the
Supplementary data.

RNA isolation and northern blot
Worms were mixed with Trizol (Invitrogen) and either ground in
liquid nitrogen or freeze-thawed as described previously (Bethke
et al, 2009). The RNA was extracted according to the manufacturer’s
instructions. Total RNA was separated on 10 or 15% PAGE–urea gels
and transferred on to a membrane (Zeta-Probe GT, BioRad for UV
cross-linking and Hybond-Nx, Amersham for chemical cross-
linking) by wet or semidry blotting. Cross-linking was carried out
either by UV irradiation plus baking or by chemical cross-linking as
described previously (Pall et al, 2007). Single-stranded DNA
oligonucleotides complementary to the sequence of interest were
used except for let-7 and mir-62, in which an LNA-modified
oligonucleotide (Exiqon) was used to facilitate detection. Probes
were 50 end-labelled with ATP-g-[32P] and polynucleotide kinase
according to standard protocols. Hybridization was carried out
overnight in 4� SSPE (0.6 M NaCl, 40 mM NaH2PO4, 4 mM EDTA),
7% SDS, 25% formamide at 371C for the DNA oligonucleotides and
in 4� SSPE, 6% SDS, 50% formamide at 601C (mir-62 LNA) or
651C (let-7 LNA).

let-7 LNA (hsa-let-7a): 50-AACTATACAACCTACTACCTCA-30;
Cel-lin-4: 50-TCACACTTGAGGTCTCAGGGA-30;
Cel-mir-75: 50-AAGCCGGTTGGTAGCTTTAA-30;

Cel-mir-77: 50-TGGACAGCTATGGCCTGATGAA-30;
Cel-mir-237: 50-AAGCTGTTCGAGAATTCTCAGGGA-30;
Cel-mir-62 LNA: 50-CTGTAAGCTAGATTACATATCA-30;
Cel-tRNA (tGly): 50-GCTTGGAAGGCATCCATGCTGACCATT-30.

For Drosophila cell culture experiments, endogenous total RNAs
were isolated from dsRNA- or drug-treated S2Rþ cells by Trizol
(Life Technologies). Northern blot analyses were performed to
analyse the pre- and mature miRNA levels: 15–20mg total RNA per
lane were separated by 12% polyacrylamide gels, transferred onto
GeneScreen plus-charged nylon membranes (PerkinElmer), and
probed with g-32P-labelled LNA oligonucleotides (pre-designed by
Exiqon) antisense to miR-8, miR-276a, miR-279, and miR-317 or
DNA oligonucleotides (IDT) antisense to bantam (50-AATCAGCTTT
CAAAATGATCTCA-30), miR-184 (50-GCCCTTATCAGTTCTCCGTCCA
-30), and 2S rRNA (50-TACAACCCTCAACCATATGTAGTCCAAGCA-30).

RT–qPCR
The RT–qPCR analysis was performed to examine the abundance
of primary miRNAs. Total RNA was diluted to 500 ng/ml and treated
with DNaseI (Ambion; DNA-free) according to the manufacturer’s
protocol. The cDNA synthesis was performed with the ImProm-II
reverse transcription system (Promega) using oligo-dT primers
following the manufacturer’s protocol. The resulting cDNA was
used for real-time PCR with the Absolute qPCR SYBR green ROX
mix (ABgene), gene-specific oligonucleotides, and an ABI Prism
7000 machine. Detailed description of normalization, time adjust-
ments by expression of lin-42 and sequences of gene-specific
oligonucleotides can be found in the Supplementary data.

The primer sets for primary transcripts of bantam, miR-8, miR-
276a, miR-279, miR-305, and miR-317 were designed as previously
described (Martin et al, 2009), and the primer sets for pri-miR-184,
Exp5, Emb, H2B, and pre-rp49 can be found in the Supplementary
data. To analyse gene expression, pri-miRNA levels were normal-
ized to pre-rp49, and means and s.e.m. values of technical
triplicates were plotted. Two additional biological replicates are
shown in Supplementary Figure S6.

Knockdown of endogenous gene expression in Drosophila
To investigate the effect of knockdowns in miRNA biogenesis, we
performed dsRNA soaking in S2Rþ cells. The GFP dsRNA sequence
was obtained from a published template (Förstemann et al, 2005).
Approximately 500-bp fragments of other target genes were
amplified from D. melanogaster w� genomic DNA using the primers
listed below:

Dme-Exp5-dsRNA_F_XhoI: 50-AGAGCTCGAGCTGGAGGATCAG
CTCAATCG-30

Dme-Exp5-dsRNA_R_XbaI: 50-AGAGGTCTAGAGACGGAGCAG
CTCGTAGAAC-30

Dme-emb-dsRNA_F_XhoI: 50-CCGCTCGAGACTGGGAGACATT
CATCAG-30

Dme-emb-dsRNA_R_XbaI: 50-GCTCTAGAGAACCATGCTTAAA
CACATG-30

The PCR-amplified fragments were cloned into the XhoI/XbaI
sites of pLitmus (NEB), which contains opposing T7 promoters
flanking the cloning site. The dsRNAs were synthesized from
pLitmus using MEGAscript T7 Kit (Ambion).

To knock down the expression of endogenous genes, 2.5�106

S2Rþ cells were soaked with 15 mg dsRNA in a 6-well plate for 4
days and transferred into another 6-well plate and soaked with
15 mg dsRNA for another 4 days.

Inhibition of Emb activity by leptomycin B treatment
To analyse the effect of direct inhibition of Emb protein activity on
pri-miRNA level, we treated 8�105 S2Rþ cells with 25 ng/ml LMB
(Sigma) or vehicle control (70% methanol) in 12-well plates for 2 h.
The treatment with a higher dosage of LMB (50 ng/ml) resulted in a
similar accumulation of pri-miRNAs. In a time-course experiment,
8�105 S2Rþ cells in 12-well plate were treated with 75 ng/ml LMB
or vehicle control for 0, 1, 2, and 4 h. As pri-mir-317 level
progressively increased upon treatment (data not shown), we
selected the 2 h as a representative mid-level time point.
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Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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