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Genome‑wide association study 
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Abstract 

Background:  Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for 
human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally 
received considerable attention. These processes have led also to negative consequences, as is the case of loss of vari-
ants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content 
profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and 
improvement has not been reached due to limitations of the single detection methods previously employed. Here, 
we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study 
(GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions.

Results:  An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from 
the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two 
independent gene sets were identified that affected fruit metabolites during domestication and improvement in 
consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis 
were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT​) was identified, which 
affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols.

Conclusions:  We identified gene sets that contributed to consumer liking during domestication and improvement 
of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, 
increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a 
polygenic selection model for the application of tomato breeding.
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Background
Plants produce diverse metabolites, which play vital 
roles in plant growth and development and adapta-
tion to the ever-changing environmental conditions [1]. 
Besides, they are indispensable bioenergy, nutrition, and 
medicine resources for human health [2]. Among those 
detected metabolites, polyphenols are essential metabo-
lites that protect plants against pathogens and herbi-
vores and affect the color and taste of edible organs [3, 
4]. Meanwhile, polyamines are differentially regulated in 
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response to various abiotic stresses [5]; they also regu-
late the accumulation of biomass and fruit quality [6, 7]. 
Understanding plant metabolites is important for sus-
tainable agriculture and resource conservation. Studies 
have detected a number of quantitative trait loci (QTLs) 
for the metabolites in crops, such as tomato [8, 9], rice 
[10], and maize [11], and making full use of those benefi-
cial loci is invaluable for both phenotyping and diagnos-
tic studies in plants.

Tomato (Solanum lycopersicum) has abundant nutri-
ents and biological ingredients for human health and is 
known as the world’s leading vegetable crop. The global 
tomato yield was 181 million tons in 2019, with a gross 
production value of $100 billion (http://​www.​fao.​org/​
faost​at). Although the genome history and fruit mass- 
and disease resistance-related QTL have been explored 
in tomato [8, 9, 12], the fruit quality remains largely 
unknown. In the long-term domestication and breed-
ing, human beings give priority to tomato yield, disease 
resistance, and postharvest storage, resulting in the loss 
of superior loci controlling fruit quality, which has caused 
consumers’ complaints [9, 13, 14]. Combining meta-
bolic profiling with the variome of diverse core tomato 
accessions makes it possible to decipher the genetic 
mechanism of the metabolic traits [15]. Understand-
ing variation at the metabolite level facilitates rebuilding 
metabolites biosynthetic pathways, which in turn will 
benefit metabolic engineering of desirable compounds 
and improve tomato quality. The quantitative and quali-
tative variations in metabolites have made tomato an 
attractive model for dissecting the metabolic biosynthesis 
and degradation mechanisms.

Genome-wide association analysis (GWAS) coupled 
with metabolomic analysis has been successfully per-
formed in rice [10], maize [11], and tomato [9] with many 
accessions to explore the genetic mechanism of metabo-
lites. However, most of the metabolic traits, such as 
sucrose, ascorbate, malate, and citrate, are polygenic [16] 
and likely controlled by a large number of preexisting 
genetic variants of small effects [17]. Identifying the poly-
genic selection on metabolites is a complex and challeng-
ing process due to multiple loci simultaneously. However, 
most studies on metabolites have focused on major 
loci, such as trigonelline and apigenin 5-O-glucoside in 
rice [10], carotenoids in maize [18], and fruit acids and 

volatiles in tomato [19] using population genomic anal-
ysis, causing the loss of partial small effect genetic vari-
ants. Recently, the GWAS of the first eigenvector from 
the principal component analysis (PCA) (EigenGWAS) 
is commonly used to identify loci and genomic regions 
under selection along the gradients of ancestry [20]. Few 
gene sets or loci related to complex polygenic traits have 
been identified in avian [21], cattle [22], maize [23], wheat 
and barley [24], and rice [25] through EigenGWAS. In 
addition, EigenGWAS can identify novel domestication/
improvement sweeps, which are not recognized by nucle-
otide diversity (𝜋), and therefore regarded as a comple-
mentary method for 𝜋 to reduce the omission of selected 
sweeps.

The present study conducted EigenGWAS on 331 core 
tomato accessions from a previous report [12] and ana-
lyzed the genomic variations in 258 selected metabolites 
[15]. Meanwhile, the study identified 217 domestication 
and 280 improvement sweeps. Furthermore, a major can-
didate gene chlorogenate: glucarate caffeoyltransferase 
(SlCGT​) was discovered for the polyphenol trait, and the 
genetic variations in polyphenol during domestication 
and genome evolution of tomato were revealed. The dis-
covery of 57 genes associated with the polyphenols and 
the polyamines provides new insights into the polygenic 
metabolic traits in tomatoes. The study proposes EigenG-
WAS as an ideal tool as a supplement of 𝜋 for identifying 
the genes of polygenic traits in crops and crop genomic 
regions under selection.

Results
Metabolite profiling of tomato fruit
The study used 331 tomato accessions (Fig.  1A, Addi-
tional file  1: Table  S1), including 53 S. pimpinellifolium 
(PIM), 112 S. lycopersicum var. cerasiforme (CER), and 
166 S. lycopersicum (BIG), from a previous report [12] 
for metabolite profiling. Among 980 metabolites of these 
accessions mentioned in an earlier study [15], 258 anno-
tated metabolites, including glycoalkaloids, polyphenols, 
polyamines, flavonoids, amino acids, phytohormones, 
vitamins, alkaloids, and terpenoid and their deriva-
tives, were selected through statistical analysis of tomato 
metabolites content from the PIM, CER and BIG groups 
(Additional file  1: Table  S2). Among these metabolites, 
46.34% of glycoalkaloids and 40.63% of polyphenols 

Fig. 1  Geographic distribution and population structure of tomato accessions. A Geographic distribution of tomato accessions represented by dots 
on the world map. B, C Principal component analysis (PCA) of the PIM (Solanum pimpinellifolium) and CER (S. lycopersicum var. cerasiforme) groups 
(B) and the CER and BIG (S. lycopersicum) groups (C) performed using 136,778 and 51,081 whole-genome SNPs, respectively. D, E Model-based 
cluster analysis with two optimal clusters for the PIM and CER groups (D) and the CER and BIG groups (E). The x-axis lists the different accessions, 
and the y-axis quantifies cluster membership. F Summary of nucleotide diversity (𝜋) and gene flow level (Nm) across the PIM, CER, and BIG groups. 
Values in parentheses represent measures of 𝜋 for each group, and values between pairs indicate Nm. G The D (ABBA-BABA) and f4-ratio statistics 
were used to assess evidence of gene flow among the three groups

(See figure on next page.)
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declined from PIM to CER groups (domestication), and 
continued to the BIG group (improvement), whereas 
51.22% of glycoalkaloids and 31.25% of polyphenols 
decreased during improvement, after an increase dur-
ing domestication. In addition, 23.33% of polyamines 
increased, while 60% decreased during tomato domesti-
cation and improvement (Additional file 1: Table S2).

Furthermore, a PCA and model-based cluster analy-
sis based on whole-genome single-nucleotide polymor-
phisms (SNPs) were conducted for the accessions of PIM 
and CER, and the accessions of CER and BIG, respec-
tively, to understand the gene flow among the three 
groups (Fig.  1B–E). The largest principal component 
(PC1) explained 31.05% of variance related to domes-
tication (Fig.  1B) and 24.48% related to improvement 
(Fig.  1C), and admixture analysis further verified the 
existence of genetic structure (Fig.  1D, E). Besides, the 
gene flow (Nm) analysis revealed a medium Nm between 
the PIM and CER groups (0.479), a high Nm between the 
CER and BIG groups (2.726), and a low Nm between the 
PIM and BIG groups (0.166) (Fig. 1F). The ABBA-BABA 
statistic involves fitting a simple explicit phylogenetic 
tree model to verify the existence of gene flow between 
the different tomato groups (Fig.  1G). These observa-
tions indicated a large effective population size and rela-
tively high levels of gene flow between the PIM and CER 
groups, as well as the CER and BIG groups.

Novel sweeps reveal tomato metabolites
To identify sweeps during tomato domestication and 
improvement that were not detected in the previous 
study [12, 15], EigenGWAS was performed using the PC1 
value as a “phenotype.” In total, 217 eigen domestication 
sweeps (EDS) and 280 eigen improvement sweeps (EIS) 
were identified and covered 12.98% and 13.97% of the 
tomato reference genome (version 2.40) (Fig. 2A, B and 
Additional file 1: Table S3 and Table S4). These EDS and 
EIS harbored 3866 and 7264 genes, respectively (Fig. 2C, 
D and Additional file 1: Table S5 and Table S6), in which 
the number of detected genes was more than those 

reported by the π method [12]. Then, a gene expression 
atlas of 399 tomato accessions was constructed using 
the previously reported transcriptome data obtained at 
the orange pericarp stage (about 75% ripe) [15] to dis-
cover the potential sweep loci related to those selective 
metabolites. In total, 2572 differentially expressed genes 
(DEGs) (1219 upregulated and 1353 downregulated) and 
1810 DEGs (410 upregulated and 1400 downregulated) 
were detected during domestication (Additional file  2: 
Fig. S1A) and improvement (Additional file 2: Fig. S1B), 
respectively. The GO (Gene Ontology) enrichment analy-
sis showed that the DEGs detected during domestication 
were involved in response to oxidative stress, transmem-
brane transport, reproductive process, and regulation of 
catalytic activity (Additional file  2: Fig. S1C and Addi-
tional file  1: Table  S7). Meanwhile, the DEGs detected 
during improvement were involved in chromatin assem-
bly or disassembly, negative regulation of catalytic activ-
ity, oxidoreductase activity, and endopeptidase inhibitor 
activity (Additional file 2: Fig. S1D and Additional file 1: 
Table S7). Furthermore, the KEGG (Kyoto Encyclopedia 
of Genes and Genomes) analysis found that the glyco-
lysis/gluconeogenesis, pyruvate metabolism, and phago-
some and fatty acid biosynthesis pathways were enriched 
during domestication (Additional file  2: Fig. S1E and 
Additional file  1: Table  S8), and sesquiterpenoid and 
triterpenoid biosynthesis, inositol phosphate metabo-
lism, and phenylpropanoid biosynthesis pathways during 
improvement (Additional file 2: Fig. S1F and Additional 
file 1: Table S8).

Among the sweep regions, 29 known genes/QTLs 
related to fruit mass and fruit quality were detected 
(Fig. 2A, B and Additional file 1: Table S9) [26–48], which 
was more than that identified by the π method (18 genes/
QTLs) [12]. A total of 1807 (Fig.  2C) and 2333 genes 
(Fig.  2D) detected during domestication and improve-
ment overlapped with the previously identified swept 
genes using the π method, meanwhile, novel 2059 domes-
tication and 4931 improvement genes were identified 
through EigenGWAS (Fig. 2C, D). These results indicated 

(See figure on next page.)
Fig. 2  Differentiation and genomic regions under selection among the PIM, CER and BIG groups detected using the EigenGWAS method. A–D 
Candidate domestication (217; top 5%, −log10 P value ≥ 2.98) (A) and improvement (280; top 5%, −log10 P value ≥ 4.19) sweeps (B) using 
EigenGWAS. The orange and green bars above the chromosomes represent the domestication and improvement sweeps identified using the 
nucleotide diversity (𝜋) method. Candidate genes or quantitative trait loci (QTL) previously reported or identified are marked with different colors. 
Genes or QTLs marked in red are those detected by the EigenGWAS and 𝜋 methods. Genes or QTLs marked in black are within or surrounding 
the EigenGWAS peaks. The intersection and union of domestication genes (C) and improvement genes (D) were identified by EigenGWAS and 
𝜋 method. E–J Local Manhattan plots for single marker GWAS signals (black dots) and 100-kb sliding window GWAS signals (green triangles) of 
methyl salicylate (E), neorickiioside B (F), and esculeoside A (I). Genomic distribution of 𝜋 of the PIM (green), CER (orange), and BIG (blue) groups for 
S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SlSAMT) in chromosome 9 during domestication (G), GLYCOALKALOID METABOLISM 
9 (GAME9) in chromosome 1 (H), and GORKY (Solyc03g120570) in chromosome 3 (J) during improvement. K Schematic representation of the core 
steroidal glycoalkaloid (SGA) metabolic pathway from cholesterol to esculeoside A. Genes in orange and green colors are the domestication and 
improvement genes, respectively
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those domestication or improvement genes identified 
solely by the two methods could complement each other. 
GWAS was performed to validate these sweeps using 
the important agronomic traits such as methyl salicy-
late, neorickiioside B, and esculeoside A content and 
fruit weight (Fig. 2E–J and Additional file 2: Fig. S2). The 
analysis detected S-adenosyl-L-methionine: salicylic acid 
carboxyl methyltransferase (SlSAMT), related to methyl 
salicylate [41], in EDS183 (120 kb) (Fig. 2E), GLYCOAL-
KALOID METABOLISM 9 (GAME9), regulating ste-
roidal glycoalkaloid [15], in EIS031 (900 kb) (Fig.  2F), 
Solyc03g120570 (GORKY), preventing tomato bitterness 
[38], in EIS121 (230 kb) (Fig.  2I), and Cell Size Regula-
tor (CSR/fw11.3), controlling fruit weight [28], in EIS276 
(310 kb) (Additional file 2: Fig. S2A). Furthermore, the 𝜋 
intervals of SlSAMT (𝜋PIM/𝜋CER = 3.55) showed lower 
nucleotide diversity in the CER group than in the PIM 
group (Fig. 2G), and those of GORKY (𝜋CER/𝜋BIG = 9.99), 
GAME9 (𝜋CER/𝜋BIG = 3.90), and fw11.3 (𝜋CER/𝜋BIG = 
8.97) showed lower nucleotide diversity in the BIG group 
than in the CER group (Fig. 2H, J and Additional file 2: 
Fig. S2B). These results showed that these cloned genes 
were indeed selected, which further indicated EigenG-
WAS was reliable. Neorickiioside B and esculeoside A 
belong to the steroidal glycoalkaloid (SGA) pathway [15], 
in which GAME9 activates the SGAs metabolic shift in 
tomato by co-binding with the SlMYC2 (Solyc08g076930) 
transcription factor, and the bitter α-tomatine is con-
verted to the non-bitter esculeoside A [37, 38]. Among 
the 13 genes involved in the SGA pathway, eight were 
located in the domestication sweeps and four within the 
improvement sweeps (Fig. 2K). Furthermore, Cell Num-
ber Regulator (CNR/fw2.2), cytochrome P450 KLUH 
(SlKLUH/fw3.2), WUSCHEL (SlWUS/lc), CLAVATA​ 
(SlCLV3/fas), extracellular invertase (Lin5), NON-
SMOKY GLYCOSYLTRANSFERASE1 (NSGT1), sucrose 

accumulator (sucr), and Al-ACTIVATED MALATE 
TRANSPORTER9 (SlAMT9) with vital roles in regulat-
ing tomato fruit weight [12], locule number [33, 49], and 
metabolites [9, 40, 42, 47] were also located within the 
tomato domestication or improvement sweeps. In addi-
tion, EigenGWAS identified the novel domestication 
gene branched-chain aminotransferases 2 (SlBCAT2) 
[44] in branched-chain amino acid catabolism and the 
novel improvement genes catechol-O-methyltransferase 
(CTOMT1) [43] in guaiacol synthesis, SlBCAT2 [44], and 
pectate lyase (PL) [45] for fruit softening, which were 
unidentified in the 𝜋 method (Additional file 1: Table S9). 
These results collectively indicate that EigenGWAS is a 
powerful tool to detect domestication and improvement 
signals.

Identification of selected genes related to polyphenols
Polyphenols are important constituents contributing to 
fruit quality and an important part of the human diet. 
Among 258 metabolites, 16 out of 32 polyphenols might 
have experienced two rounds of human selection (Addi-
tional file  1: Table  S2). To identify the potential genes 
related to these polyphenols, GWAS was performed on 
the PIM and CER, as well as the CER and BIG groups, 
respectively. In total, 12 significant association signals 
located within the domestication and improvement 
sweeps were identified (Additional file 2: Figs. S3 and S4, 
and Additional file 1: Table S10).

β-D-glucopyranosyl-caffeic acid (DGPC acid) is an 
important bitter polyphenol that could influence fruit 
taste. To identify candidate genes related to DGPC acid, 
GWAS was performed on the PIM and CER groups 
(Fig.  3A and Additional file  2: Fig. S4A), and the CER 
and BIG groups (Additional file  2: Fig. S4B and S5A), 
respectively. The content of this polyphenol increased 
significantly from the PIM to CER, and then decreased 

Fig. 3  A genomic region for β-D-glucopyranosyl-caffeic acid (DGPC acid) selected under domestication across the PIM and CER groups. A 
Manhattan plot of GWAS on DGPC acid across all chromosomes averaged over 100-kb windows. Color-highlighted regions indicate peaks found 
in both the GWAS and EigenGWAS analyses. B DGPC acid levels in the PIM (green), CER (orange), and BIG (blue) groups are shown. C EigenGWAS 
P-values compared with the DGPC acid GWAS P-values averaged over 100-kb windows. Green dots indicate windows in the top 1% from GWAS, 
blue dots indicate windows above the EigenGWAS threshold, and purple dots correspond to the highlighted regions in (A). D Expression levels of 
genes in domestication sweep found in both GWAS and EigenGWAS analyses in the low and high DGPC acid tomato accessions. E Local Manhattan 
plot (top), genes in LD block (middle), and a representation of the pairwise R2 values (bottom) surrounding the peak on chromosome 1. F Gene 
structure of chlorogenate: glucarate caffeoyltransferase (SlCGT​) and strongly associated SNPCGT​ (−log10P = 3.24) in the second exon. G Genomic 
distribution of nucleotide diversity (𝜋) of the PIM, CER, and BIG groups within the domestication sweep harboring SlCGT​ on chromosome 1. H 
Distribution of strongly associated SNPCGT​ among the PIM, CER, and BIG groups. I Log2 transformed DGPC acid content and SNPCGT​ genotype. 
Comparisons of DGPC acid content in different SNPCGT​ haplotypes among the PIM, CER, and BIG groups are shown. In the box plot, the centerline 
indicates median; box limits indicate upper and lower quartiles. J Protein-structure modeling of SlCGT. Gly49, Asp50, Ser51, and Leu52 are the 
GDSL motif. The site of Gln154/Arg154 substitution is marked in cyan. K Phylogenetic tree generated using SlCGT and its homologs in rice, pepper, 
Arabidopsis, tomato, and rapeseed. L Expression profiles of SlCGT​ in fruit pericarp for three low-DGPC acid (PIM) and three high-DGPC acid (CER) 
tomato accessions, respectively. Data are presented as mean ± SD (n = 6, three biological replicates with two technical replicates per accession). M 
Schematic representation of the polyphenol biosynthetic pathway from phenylalanine to DGPC acid in tomato. Genes in orange and green colors 
represent domestication and improvement genes, respectively

(See figure on next page.)
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from the CER to BIG group (Fig.  3B), suggesting two 
rounds of human selection during tomato evolution. In 
the first round, a strong association signal (P = 3.54 × 
10−8; around 80.04–81.39 Mb) was identified on chro-
mosome 1, which overlapped with EDS051 and EDS052 
(0.81 Mb) (Fig.  3A and Additional file  2: Fig. S4A), 
including 325 genes in the EDS (Fig.  3C). Furthermore, 
another strong GWAS signal (P = 3.13 × 10−11; around 
79.63–81.79 Mb) was detected in the second round 
of selection, which overlapped with the improvement 
region (EIS033, EIS034, and EIS035; 3.24 Mb) (Addi-
tional file 2: Figs. S4B and S5A), and 381 genes in the EIS 
(Additional file 2: Fig. S5B). A comparative genome and 
transcriptome analysis was performed on these tomato 
accessions to validate these two signals. During domes-
tication, 25 out of 325 genes were differentially expressed 
(Fig.  3D and Additional file  1: Table  S11), including 
SlCGT​ (Solyc01g099020), encoding a GDSL lipase-like 
caffeoyltransferase, that resided 0.74 Mb downstream of 
the strongest association signal in one linkage disequi-
librium (LD) block (Fig.  3E). We further analyzed the 
SlCGT​ sequence and discovered one nonsynonymous 
site SNPCGT​ in the second exon (Fig.  3F). The π values 
showed that the SlCGT​ interval was markedly reduced 
in the CER group compared to the PIM group (Fig. 3G), 
indicating that SlCGT​ was indeed selected. Haplotype 
AA was mainly detected in the low-polyphenol PIM 
group, whereas haplotype GG was seen in the high-poly-
phenol CER group (Fig. 3H), suggesting that SNPCGT​ may 
be related to the DGPC acid content (Fig.  3I). Protein 
modeling with SWISS-MODEL showed that a polymor-
phism in SlCGT​ resulted in a glutamine-to-arginine sub-
stitution in the conserved α-helix domain of SlCGT close 
to the enzyme active site (Fig.  3J). The eQTL analysis 
was conducted in the PIM and CER groups (Additional 
file  1: Table  S12), as well as the CER and BIG groups 
(Additional file 1: Table S13), and it showed that a trans-
eQTL signal (Chr01: 78,787,972) close to SlCGT​ was sig-
nificantly associated with the expression of SlCGT​ (P = 
5.14 × 10−10) in the PIM and CER groups (Additional 
file  1: Table  S12). The orthologs of this gene include 
GDSL lipase 1 (OsGLIP1) and GDSL lipase 2 (OsGLIP2) 
(Fig.  3K), which negatively regulated diseases in rice 

[50], which is similar to the downregulated expression 
of SlCGT​ in the CER group in the fruit breaker and red 
stages (Fig. 3L).

Chlorogenate plays an important role in polyphenol 
biosynthesis, which occurs via the sequential catalysis 
of an important precursor, phenylalanine, and chloro-
genate could synthesize DGPC acid analogs under the 
action of SlCGT [51]. Three domestication genes, 
SlPAL5 (Solyc09g007910), SlHQT (Solyc07g005760), and 
SlCGT​, and three improvement genes, SlPAL5, SlSGT2 
(Solyc09g061860), and SlHQT, were identified in these 
processes (Fig.  3M). During improvement, 19 candidate 
genes related to DGPC acid were detected, which were 
involved in histone modification, pectin lyase-like super-
family protein, ATP-dependent DNA helicase, respira-
tory burst oxidase, and hexosyltransferase (Additional 
file 2: Fig. S6 and Additional file 1: Table S11). Together, 
these results indicate that nonsynonymous mutation in 
SlCGT​ and a trans-eQTL may affect its protein structure 
and relative expression level, then causing the increase of 
DGPC acid content during domestication. Meanwhile, 
19 improvement genes regulating high DGPC acid con-
tent for pest and disease resistance were identified, which 
probably resulted from poor taste of the berries. How-
ever, the function of variation in SlCGT​ needs to be veri-
fied by more experiments in the future.

Identification of selected genes related to polyamines
Polyamines play vital roles in regulating plant growth 
and development and stress tolerance [52]. In this study, 
17 polyamines were found during domestication and 26 
during improvement (Additional file 1: Table S2). Among 
these, N′,N″,N‴-trisinapoylspermine (TSPM), a deri-
vate of spermine, was found, which might have experi-
enced two rounds of human selection (Additional file 1: 
Table S2).

Due to no single SNP significantly associated with the 
TSPM during domestication and improvement (Addi-
tional file 2: Fig. S7), GWAS of TSPM was performed on 
the PIM and CER groups and the CER and BIG groups 
using 100-kb sliding windows (Fig.  4A), and we found 
the content of TSPM sigificantly decreased from the 
PIM to CER, then to the BIG group (Fig. 4B). A total of 

(See figure on next page.)
Fig. 4  Identification of candidate genes for N’,N”,N”’-trisinapoylspermine (TSPM) in tomato. A Manhattan plot of GWAS on TSPM across all 
chromosomes averaged over 100-kb windows for the PIM and CER (Top) and the CER and BIG groups (Bottom). Color-highlighted regions indicate 
peaks found in both the GWAS and EigenGWAS analyses. B TSPM levels in the PIM (green), CER (orange), and BIG (blue) groups are shown. C 
EigenGWAS P values compared with the TSPM GWAS P values averaged over 100-kb windows for the PIM and CER and the CER and BIG groups. 
Green dots indicate windows in the top 1% from GWAS, blue dots indicate windows above the EigenGWAS threshold, and purple dots correspond 
to the highlighted regions in (A). D, E Expression levels of candidate genes in domestication sweep (D) and improvement sweep (E) found in 
both the GWAS and EigenGWAS analyses in low and high TSPM content tomato accessions. F Genomic distribution of nucleotide diversity (𝜋) for 
these candidate genes related to TSPM among the PIM, CER, and BIG groups. G Schematic representation of spermine biosynthetic pathway from 
L-arginine to spermine, and then likely to TSPM. Genes in orange and green colors represent domestication and improvement genes, respectively
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Fig. 4  (See legend on previous page.)
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eight and nine association regions, harboring 67 and 353 
genes, were further identified during domestication and 
improvement, respectively (Fig.  4A, C). Among these, 
four domestication genes and nine improvement genes 
were differentially expressed (Fig.  4D, E and Additional 
file  1: Table  S14), and the π values showed that these 
genes were markedly reduced in the CER or BIG group 
(Fig. 4F). Functional analysis identified one hexosyltrans-
ferase gene (Solyc01g100210), one glycosyltransferase 
gene (Solyc07g043110), one B-box zinc finger family gene 
(Solyc01g110180), and one AP2-like ethylene-responsive 
transcription factor (Solyc11g008560) (Additional file  1: 
Table  S14), which suggest that these genes might have 
sustainably reduced the TSPM content during selective 
breeding of tomato.

L-Arginine initiates spermine biosynthesis, which 
is catalyzed through more than five processes [53]. 
In the tomato spermine biosynthetic pathway, five 
genes, including SlADC2 (Solyc01g110440), SlCPA 
(Solyc11g068540), SlSPDS1 (Solyc05g005710), SlSPMS 
(Solyc08g061970), and SlSPDS2 (Solyc04g026030), were 
identified situated in the domestication and improve-
ment sweeps using EigenGWAS or π method (Fig.  4G). 
In addition, the nonparametric test of Spearman’s rank 
correlation coefficient showed a higher negative cor-
relation between TSPM and fruit weight (R2 = 0.40, P < 
2.2e−16) (Additional file  2: Fig. S8). These results indi-
cated that along with fruit weight, TSPM had undergone 
a two-step evolution of human selection.

Discussion
Artificial selection during crop domestication and 
improvement, in which wild plants are transformed into 
valuable crops to meet human demands, plays an impor-
tant role in the improvement of crop yield, quality, and 
flavor [9, 12, 15]. So far, humans have domesticated sev-
eral crop varieties and identified a few key genes/QTLs 
influencing crop growth and development in rice [54], 
wheat [55], maize [56], and tomato [12]. Yet the mecha-
nisms of crop metabolite variation during domestica-
tion and improvement are poorly understood, partly 
because metabolites are vulnerable to environmental 
variation [9]. More than 70% of the reported 980 metab-
olites [15] selected during domestication or improve-
ment provided an interesting direction to explore the 
impact of artificial selection on metabolite variation 
among the different tomato groups. An in-depth under-
standing of the genetic variation mechanism of crop 
metabolites during domestication and improvement 
will provide a theoretical basis for improving the poor 
quality crops and developing excellent quality crops to 
face the environmental challenge and sustainably meet 
human needs.

Several statistical methods have been developed to detect 
the selection signatures, including long-range haplotype 
(LRH) [57], the integrated haplotype score (iHS) [58], the 
cross-population extended haplotype homozygosity (XP-
EHH) [59], Tajima’s D [60], and π [61]. LRH, XP-EHH, Taji-
ma’s D, and π are not designed for locating genome-wide 
genetic variants, while iHS is suitable for detecting selection 
within a single population [58]. However, it is challenging 
to identify the effective genes that control the quantitative 
traits dominated by polygenes with minor effects. The pre-
sent study demonstrates the potential of EigenGWAS, first 
proposed in human [20], to detect highly significant outlier 
regions of the genome likely to be under domestication and 
improvement selection in tomatoes. EigenGWAS has iden-
tified numerous candidate gene sets related to the poly-
genic phenotypes impacted by minor genetic variations 
[20, 21, 23, 62]. Several studies have used the π method to 
determine the selected regions along the genome [12, 15, 
63]. However, many selected regions were not detected due 
to the use of a single method. In this study, EigenGWAS 
identified many novel selective genes not detected by the π 
method, demonstrating the effectiveness of EigenGWAS in 
finding loci and genes under selection.

Some metabolites are easily affected by the environ-
ment and extremely difficult to quantify, so they remain 
the major breeding challenges in crops [10, 11, 15]. 
Among more than 200,000 metabolites in plants [64], 
few enhance plants’ adaptability to the biotic and abi-
otic stresses [1], and few affect consumers’ overall liking 
and fruit flavor intensity [9, 15]. The long-standing crop 
breeding mainly focuses on yield, disease resistance, long-
term storage, which leads to the deterioration of tomato 
quality. The purpose of this study is to reduce bitterness, 
modify acidity and sweetness, and cultivate attractive 
color tomato fruit loved by consumers through under-
standing the genetic mechanism of fruit metabolites. 
Polyphenols and polyamines are two major metabolites 
that influence response to various environmental stimuli, 
regulate plant growth and development, and affect fruit 
taste [51, 52, 65]. In this study, SlCGT​ was identified as 
the most promising candidate gene related to DGPC acid 
during domestication, increasing DGPC acid content and 
enhancing disease resistance, then 19 improvement genes 
regulating DGPC acid to improve the fruit taste. Recent 
studies have shown that the homologous genes of SlCGT​ 
in tomato [66], pepper [67, 68], Arabidopsis [69, 70], and 
rapeseed [71] regulated disease resistance and stress tol-
erance. The enzyme SlCGT is a unique acyltransferase 
that catalyzes the transfer of caffeoyl moiety from chlo-
rogenate to glucarate and galactarate, forming caffeoyl-
glucarate and caffeoylgalactarate, respectively [72]. It 
indicated that the glutamine-to-arginine substitution in 
SlCGT (Fig.  3J) during domestication might affect the 
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GDSL caffeoyltransferase activity and make full use of 
the chlorogenate to produce more DGPC acid, resulting 
in influencing fruit taste and enhancing disease resist-
ance. In addition, Tohge et al. [51] provided evidence that 
SlCGT catalyzes chlorogenate to form caffeoyl-5-O-glu-
carate and caffeoyl-2-O-glucarate in the polyphenol bio-
synthesis pathway, consistent with our results that SlCGT 
catalyzed chlorogenate to DGPC acid in tomatoes. These 
results show that DGPC acid was probably selected for 
tuning fruit taste and tomato resistance.

Studies have demonstrated that several genes, such as 
ADC1/2, SPDS1/2, SPMS, and SAMDC1/2, participated 
in the polyamine metabolic process to cope with abiotic 
stress and regulated plant growth in Arabidopsis thali-
ana [53, 65]. In this study, 13 candidate genes impacting 
TSPM content were identified. Two domestication genes, 
Solyc06g024220 and Solyc06g024340 encoding S-aden-
osylmethionine synthase, involved in spermine synthe-
sis were identified, which are homologs of SAMDC1/2 
(~360 amino acids in length) in Arabidopsis [53]. How-
ever, their expression levels were not different between 
the PIM and CER groups due to the incomplete gene 
structures. We speculated that these two genes mutated 
during the domestication, resulting in incomplete protein 
structure (less than 60 amino acids in length). Further-
more, TSPM was found negatively correlated with fruit 
weight (Additional file 2: Fig. S8), which is not consistent 
with the result of El-Tarabily et  al. [6], who proved that 
the polyamine-producing actinobacteria enhance bio-
mass production and seed yield in Salicornia bigelovii. 
Thus, the combination of EigenGWAS and GWAS identi-
fied a total of 57 candidate genes related to DGPC acid 
and TSPM in this study, which provides an alternative 
strategy to uncover important agronomic traits con-
trolled by polygenes, and enhances our understanding of 
polygenic traits, improves the design and development of 
molecular breeding in tomato and various other crops; 
however, further experimental validation is required.

Conclusions
In summary, we performed EigenGWAS in tomato and 
identified some novel selective regions and genes that 
were not identified before, and discovered 57 candi-
date genes related to polyphenol and polyamine bio-
synthesis. The present study proposes EigenGWAS as 
a method complementary to the π method to enhance 
our understanding of domestication and improvement 
mechanistic basic and consequence. Furthermore, an 
alternative idea is that using EigenGWAS and combin-
ing the genomic, transcriptomic, and metabolomic data 
will provide genetic insights into the genetic control of 
tomato metabolic traits and give a roadmap for polygenic 
trait improvement.

Methods
Collection of phenotypes
The EigenGWAS was based on 331 tomato accessions 
collected globally in a previous study [12], including 53 
S. pimpinellifolium (PIM, the closest wild species), 112 S. 
lycopersicum var. cerasiforme (CER, cherry tomato), and 
166 S. lycopersicum (BIG, large-fruited tomato) (Addi-
tional file 1: Table S1). Among the three groups, the PIM 
group has higher genetic diversity and more private SNPs 
than the CER and BIG groups [10]. The worldwide dis-
tribution of tomatoes was plotted using the R package 
“leaflet” (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​leafl​
et). Transcriptome analysis based on the RNA-seq data of 
399 tomato accessions, including 26 PIM, 114 CER, and 
259 BIG, reported in Zhu et al. [15]. For the metabolites, 
we first screened out 362 annotated metabolites among 
980 metabolites of 442 tomato lines in the previous report 
[15], including 31 PIM, 123 CER, and 288 BIG acces-
sions. Then the significance of these metabolites among 
the PIM, CER, and BIG were estimated by one-way anal-
ysis of variance (ANOVA) and Wilcoxon test. In the final, 
258 metabolites were considered for further analysis for a 
significant P value less than 0.05 between PIM and CER 
or CER and BIG groups (Additional file  1: Table  S2). 
The flavor compound methyl salicylate data from Tie-
man et  al. [9] and fruit weight data from Lin et  al. [12] 
were also analyzed in the current study. The correlation 
between fruit weight and N′,N″,N‴-trisinapoylspermine 
(TSPM) content from 725 metabolites was tested using 
Spearman’s rank correlation coefficient [73].

Population structure and gene flow pattern analysis
Single-nucleotide polymorphisms (SNP) of 331 tomato 
accessions, genotyped by whole-genome resequenc-
ing technology using the Illumina HiSeq 2000 platform, 
were downloaded from the previous report [12], which 
was used for population structure and gene flow analy-
sis. The PIM and CER (165 accessions) and the CER and 
BIG (278 accessions) genotypes were extracted from the 
PIM, CER, and BIG populations (331 accessions) using 
python script. Those SNPs with minor allele frequency 
(MAF) less than 0.05, missing call frequencies greater 
than 0.1, and linked SNP (r2 > 0.2) were excluded. A 
total of 136,778 SNPs and 51,081 SNPs were screened in 
the PIM and CER, as well as the CER and BIG groups, 
respectively. A principal component analysis (PCA) was 
performed on the pruned SNP set using PLINK (v1.9; 
https://​www.​cog-​genom​ics.​org/​plink/1.9) with the com-
mand line: plink1.9 –pca, and an R script was used to 
display the relationship between individuals in different 
groups in a two-dimensional space. Population structure 
analysis was performed on the pruned SNP set using the 
software package ADMIXTURE (v1.3.0; https://​dalex​

https://cran.r-project.org/web/packages/leaflet
https://cran.r-project.org/web/packages/leaflet
https://www.cog-genomics.org/plink/1.9
https://dalexander.github.io/admixture
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ander.​github.​io/​admix​ture) to determine the group mem-
bership of each accession with the number of population 
expected (K) = 2. The GCTA (Genome-wide Complex 
Trait Analysis, v1.26.0; https://​cnsge​nomics.​com/​softw​
are/​gcta) software was used to analyze the population 
differentiation index (Fst) of each SNP locus in all indi-
viduals, and the genome-wide average Fst was calculated 
between the PIM and CER, as well as the CER and BIG 
groups. Gene flow levels (Nm) were analyzed among the 
three groups, and the Nm value was determined using 
the formula Nm = (1−Fst)/4Fst, and divided into low 
(0–0.249), medium (0.250–0.99) and high (≥ 1.0) grades 
[74]. Furthermore, the direction of gene flow between the 
different groups was estimated using ABBA-BABA sta-
tistic in Dsuite [75] (v0.4; https://​github.​com/​milla​nek/​
Dsuite).

Identification of sweeps
The PIM and CER groups (domestication), and the 
CER and BIG groups (improvement) were screened for 
between-group selection signatures. To identify domes-
tication and improvement sweeps, we screened a sub-
set of 2,875,396 SNPs in the PIM and CER groups, and 
1,704,029 in the CER and BIG groups respectively (MAF 
> 5% and missing data < 10%). General linear model 
(GLM) of TASSEL [76] (Trait Analysis by aSSociation, 
Evolution and Linkage, v5.0; https://​www.​maize​genet​
ics.​net/​tassel) was used to conduct EigenGWAS to the 
first eigenvector during domestication and improve-
ment, with parameters ./run_pipeline.pl -Xmx60g 
-fork1 -importGuess input_file1 -fork2 -importGuess 
input_file2 -combine3 -input1 -input2 -intersect -Fixed-
EffectLMPlugin -endPlugin -export output_file. For the 
EigenGWAS results, the mean P values were calculated 
with a sliding window approach, averaging the signal 
from all markers within 100 kb windows with a sliding 
step size of 10 kb along the genome using python script. 
All windows in the whole genome were sorted from low 
to high based on the average P value, and the top 5% win-
dows were further merged into a single selected region if 
the distance of the two adjacent windows was less than 
200 kb using python script. These selected regions were 
considered as domestication and improvement sweeps, 
and the genes within the selected regions were consid-
ered domestication/improvement genes (Additional 
file 1: Tables S3-S6). Moreover, we compared the sweeps/
genes identified by EigenGWAS with those identified 
through nucleotide diversity (π) [12].

RNA‑seq analysis
Differentially expressed genes (DEGs) were identified 
based on the RNA-seq data of 399 tomato accessions, 
and the RNA of fruit pericarp was obtained on the 

orange stage (~75% ripe) [15]. First, the RNA-seq reads 
from each tomato accession were aligned to the Heinz 
1706 genome (v3.0) using HISAT2 [77] (v2.1.0; https://​
daehw​ankim​lab.​github.​io/​hisat2). Based on the read 
alignment data, transcripts were assembled with String-
Tie [77] (v2.0.3; http://​ccb.​jhu.​edu/​softw​are/​strin​gtie). 
After quantifying the expression level of each gene based 
on ITAG3.2_gene_models.gff, a large gene abundance 
matrix was constructed containing 35,768 genes from 
all tomato accessions. The gene expression levels were 
quantified as fragments per kilobase of exon per million 
fragments mapped (FPKM). Genes with FPKM equal to 
zero in all tomato accessions were excluded from sub-
sequent analysis. Furthermore, the FPKM values of the 
genes were used to identify the DEGs between the PIM 
and CER groups, and the CER and BIG groups (unpaired 
samples) using the samWrapper function from R pack-
age “DEGseq” in R software [78]. Then, the FPKM values 
of the DEGs between the different groups were used to 
plot a heatmap using the R package “pheatmap” (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​pheat​map).

Enrichment analysis
Furthermore, the DEGs between the PIM and CER 
groups and the CER and BIG groups were used for GO 
analysis using the R package “TopGO” (http://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​topGO.​
html) and KEGG enrichment analysis using the R pack-
age “clusterProfiler” [79] (http://​www.​bioco​nduct​or.​org/​
packa​ges/​relea​se/​bioc/​html/​clust​erPro​filer.​html).

Genome‑wide association analysis
Furthermore, GWAS was carried out using only those 
SNPs with MAF > 5% and a missing rate < 10%. A total of 
2,875,396 SNPs in the PIM and CER groups and 1,704,029 
in the CER and BIG groups were filtered for further anal-
ysis. The EMMAX software [80] (Efficient Mixed-Model 
Association eXpedited vbeta; https://​genome.​sph.​umich.​
edu/​wiki/​EMMAX) was used to conduct GWAS. The BN 
(Balding-Nichols) kinship matrix was constructed based 
on the filtered SNPs to define the proportion of the ran-
domly selected SNPs for each pair of individuals with 
default parameters (emmax-kin -v -h -d 10), and the first 
five principal components were included as fixed effects. 
The significance level of 0.05 was employed for single 
testing, and the effective number of independent SNPs 
(n is the effective number of SNPs) was calculated using 
the GEC software (Genetic type I Error Calculator v0.2; 
http://​grass.​cgs.​hku.​hk/​gec/​regis​ter.​php). The calculated 
genome-wide significance threshold values (P) were 6.10 
× 10−8 in the PIM and CER groups (n = 820,084) and 
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1.28 × 10−7 in the CER and BIG groups (n = 391,060), 
respectively. Manhattan plot displaying the GWAS 
results using the R package “qqman” (https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​qqman/).

Linkage disequilibrium analysis
The SNP genotypes for the PIM and CER groups and 
SNP physical map were required to display the pairwise 
linkage disequilibria between SNPs. The SNPs surround-
ing peaks in the GWAS of β-D-glucopyranosyl-caffeic 
acid (DGPC acid) were filtered in PLINK1.9, with --maf 
0.05 --geno 0.1, the LD heatmap was constructed using 
the R package ‘LDheatmap’ (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​LDhea​tmap).

Genetic architecture of the polyphenol and polyamine
To understand the genetic architecture of polyphenol and 
polyamine. We first performed GWAS on the polyphe-
nol or polyamine using the dataset of the PIM and CER 
groups, as well as the CER and BIG groups. Then, 100 kb 
windows sliding with one step of 10 kb along the genome 
was used to test for an overlap between the most signifi-
cant EigenGWAS windows (top5 %) and peak windows 
in the GWAS on the polyphenol and polyamine (top 1%), 
we screened those genes within these overlap windows 
for subsequent analysis. Combined with the RNA-seq, 
gene function information and the variation of the SNPs 
on or near the screened gene, the candidate genes related 
to the polyphenol and polyamine were finally screened.

Protein structure prediction and comparison
To compare the change of variation of SNPCGT​ on SlCGT 
protein structure, SWISS-MODEL [81] (https://​swiss​
model.​expasy.​org) was used to perform homology mod-
eling of SlCGT with default workflow. First, the mutated 
and non-mutated SlCGT amino acid sequences in 
FASTA format were inputed. Then, the SlCGT sequence 
served as a query to search for evolutionary-related pro-
tein structures, after selecting a top-ranked template and 
building model, protein data bank (PDB) format results 
were downloaded. Finally, PyMOL (v2.4.1; https://​www.​
pymol.​org) was used to display and compare the mutated 
and non-mutated SlCGT protein structure.

Expression quantitative trait loci (eQTL) analysis
Expression quantitative trait loci (eQTL) analysis links 
variations in gene expression level to genotypes. The 
linear regression model of the Matrix eQTL pack-
age was used to detect associations for SNP-gene pairs 
[82] in the PIM and CER, as well as the CER and BIG 
groups. The expression of each gene was normalized by 
log2(FPKM+1) transformation. Finally, 17,702 genes 

(missing rate < 80%) in the PIM and CER groups, and 
17,899 genes in the CER and BIG groups were obtained 
to conduct eQTL analysis. We corrected the results with 
the first ten genotyping principal components and the 
individual class as the covariates, and the threshold of 
eQTL analysis is the same as those of GWAS performed 
in the PIM and CER, as well as the CER and BIG groups, 
respectively. If SNPs were located within the correspond-
ing gene or less than 30 kb from the transcriptional start 
point or the end of the gene, it was classified as cis-eQTL, 
otherwise as trans-eQTL [15].

Quantitive RT‑PCR (qRT‑PCR) analysis
Total RNA was extracted from fruit pericarp in the green, 
breaker, and red stages using the Quick RNA Isolation Kit 
(Huayueyang Biotechnology Company), then reversely 
transcribed applying the PrimeScriptTMRT reagent kit 
with gDNA Eraser (TaKaRa). ABI QuantStudioTM 6 Flex 
(Applied Biosystems, California, USA) was used to quan-
tify the relative expression of target genes. qRT-PCR was 
performed using a TB Green® Premix EX TaqTM kit 5 μL 
of TB Green premix (2X), 1 μL of cDNA template, 0.25 
μL of each gene-specific primer, 0.25 μL of ROX reference 
dy, and 3.25 μL ddH2O. The reaction conditions were 40 
cycles at 95°C for 5 s, 60°C for 34 s after an initial incuba-
tion at 95 °C for 15 s, and a dissociation stage was added 
to ensure specific amplification. SlEXP (Solyc07g025390) 
was used as the internal control for qRT-PCR and cal-
culated by the 2−ΔΔCT method. All primers used in this 
study are presented in Additional file 1: Table S15. Data 
were given as means ± standard deviation (SD) of three 
biological replicates with two technical replicates per 
accession (n = 6). A P value less than 0.05 (P < 0.05) was 
considered to be statistically significant.
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Additional file 2: Fig. S1. Differentially expressed genes (DEGs) and 
enrichment analysis. Heat map for DEGs between the PIM and CER 
groups (A), as well as the CER and BIG groups (B). The Gene ontology 
(GO) enrichment analysis for DEGs between the PIM and CER groups (C), 
as well as the CER and BIG groups (D). The KEGG pathway enrichment 
analysis for DEGs between the PIM and CER groups (E), as well as the CER 
and BIG groups (F). Fig. S2. Local Manhattan plot (A) and distribution of 
nucleotide diversity (𝜋) of the PIM, CER, BIG groups for fw11.3 in chromo-
some 11 (B). Two-Mb zoom of single marker (-log10) P value for GWAS 
and 100-kb sliding windows GWAS on fruit weight, and the green bars 
above the chromosomes denote the identified improvement sweeps by 
EigenGWAS. Fig. S3. GWAS on SIFM0533 and SIFM1279 during domestica-
tion, and SIFM0104, SIFM0123, SIFM0154, SIFM0155, SIFM0166, SIFM0656 
and SIFM1279 during improvement. Red arrows indicate those significant 
association signals located in domestication/improvement sweeps 
using EigenGWAS or 𝜋. Besides these polyphenols, in Supplementary 
Fig. 4, SIFM0600 were analyzed during domestication and improvement, 
respectively. Fig. S4. GWAS on DGPC acid. Single marker (-log10) P value 
for GWAS on DGPC acid during domestication (A) and improvement (B), 
respectively. The horizontal axis shows chromosome of tomato, while 
the vertical axis indicates -log10 transformed observed P value. Fig. S5. 
A genetic region under improvement across the CER and BIG groups for 
DGPC acid. A Manhattan plot of GWAS on DGPC acid across all chromo-
some, averaged over 100-kb windows during improvement. Color-high-
lighted regions indicate peaks found in both the GWAS and EigenGWAS 
analyses. B EigenGWAS P values in relation to DGPC acid GWAS P values 
averaged over 100-kb windows. Green dots indicate those windows in the 
top 1% from GWAS, blue dots indicate those windows above the thresh-
old of EigenGWAS, and purple dots correspond with the highlighted 
regions in (A). Fig. S6. Heatmap for those DEGs in the selected sweeps 
satisfy the EigenGWAS and GWAS in low and high content of DGPC acid 
during improvement. Fig. S7. GWAS on TSPM. Single marker (-log10) P 
value for GWAS on TSPM during domestication (A) and improvement (B), 
respectively. The horizontal axis shows chromosome of tomato, while 
the vertical axis indicates -log10 transformed observed P values. Fig. S8. 
Spearman’s rank correlation coefficient between fruit weight and TSPM. 
The y axis (TSPM content) and x axis (fruit weight) were log2 transformed, 
respectively. Lines and shaded areas are fitted values and 95% confidence 
limits from general linear models.
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