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Abstract
Purpose Sustained delivery of regenerative retinal therapies by robotic systems requires intra-operative tracking of the retinal
fundus. We propose a supervised deep convolutional neural network to densely predict semantic segmentation and optical
flow of the retina as mutually supportive tasks, implicitly inpainting retinal flow information missing due to occlusion by
surgical tools.
Methods Asmanual annotation of optical flow is infeasible, we propose a flexible algorithm for generation of large synthetic
training datasets on the basis of given intra-operative retinal images.We evaluate optical flow estimation by tracking a grid and
sparsely annotated ground truth points on a benchmark of challenging real intra-operative clips obtained from an extensive
internally acquired dataset encompassing representative vitreoretinal surgical cases.
Results The U-Net-based network trained on the synthetic dataset is shown to generalise well to the benchmark of real
surgical videos. When used to track retinal points of interest, our flow estimation outperforms variational baseline methods
on clips containing tool motions which occlude the points of interest, as is routinely observed in intra-operatively recorded
surgery videos.
Conclusions The results indicate that complex synthetic training datasets can be used to specifically guide optical flow
estimation. Our proposed algorithm therefore lays the foundation for a robust system which can assist with intra-operative
tracking of moving surgical targets even when occluded.

Keywords Synthetic data · Optical flow · Retinal tracking · Deep learning

Introduction

Vitreoretinal surgery takes place within the gel-like vitreous
humour of the eye, on topof the retinal surface, using a variety
of tools of less than 0.7mm diameter. The tools are inserted
through trocar ports placed on the sclera, the white part of
the eye (see Fig. 1). The surgeon operates without force per-
ception, relying primarily on visual cues and feedback from
stereo biomicroscopy providing a high-resolution view of
the retinal surface. Recently, this en-face 2D view has been
coupled with intra-operative optical coherence tomography
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(iOCT) as a complimentary imaging modality providing
cross-sectional information of retinal layers.

Common vitreoretinal surgical interventions like vitrec-
tomy, epiretinal membrane peeling, laser delivery, etc. are
routinely performed with very high success rates. However,
upcoming vitreoretinal surgical procedures that promise to
restore sight by delivering genes, stem cells [5], and small
drug molecules to specific retinal layers require signifi-
cantly more surgical precision. Preliminary clinical trials are
encouraging, but for these therapies to be transformative,
their sustained micro-precise delivery over several minutes
to the retinal layers is required. The precision requirement
will be met with novel robotic tools that are under devel-
opment, while the promise of sustained delivery requires
intra-operative image analysis to track the retinal fundus and
support semi-automated therapy delivery. As due to patient
breathing, cardiac pulsation, and surgical manipulation the
retina deforms in a non-rigid fashion, robust frame-to-frame
retinal fundus tracking in a highly challenging interventional
environment, illustrated in Fig. 2, is required.
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Fig. 1 Left: illustration of a
vitreoretinal surgical setup.
Right: vitreoretinal surgical
tools, from left to right: forceps,
cutter, light pipe

Fig. 2 Challenges in intra-operative retinal surgery videos. Top row:
reflections not located on the tool; double exposure from fast fundus
motion; blue dye used to stain an epiretinal membrane (ERM); partially
transparent peeledERMfragments floating in front of the retinal fundus.

Bottom row: tool hue and saturation blending with the background due
to the retina being reflected on the metallic tool shaft; reflections/glare
on the metallic tool; shadow cast by the tool on the retina; increasing
width of the tool along its length due to its 3D pose

Our goal is to acquire dense optical flow predictions for
the retinal fundus in real time, accounting for occlusions from
surgical instruments, to enable tracking of any point on the
retina throughout surgery.

Prior work Estimating optical flow to obtain motion cues
from images is one of the oldest challenges in computer
vision. Knowledge of optical flow in a temporal sequence of
images can critically support high-level tasks such as image
registration or deformation modelling in a variety of appli-
cation domains [8].

Classical methods calculate optical flow as the solution
to an optimisation problem. In its simplest form, the prob-
lem uses the optical flow constraint equation (OFCE) [17],
linearised to work for small displacements. To overcome
this limitation, multi-scale approaches were developed [25].
“Coarse-to-fine” adaptive algorithms refining the flow also
proved successful [2]. Additional constraints to overcome
the aperture problem [14] formulated as a prior term in the

cost function [1] were introduced, either as a local parametric
model or a global regularisation.

Occlusions, i.e. pixels visible in one frame that become
hidden by objects in the next [8], have always posed
challenges on optical flow estimation requiring occlusion
detection and filling. The latter can be achieved with a
diffusion-based method in the case of thin occlusions,
or exemplar-based methods for larger areas [9], selecting
motion candidates from surrounding pixels determined to
belong to the same object. Earlier work in [17] noted that
joint flow estimation and segmentation helped with extrapo-
lating over larger occlusion areas. Flow estimation methods
have also included learned components [3]. Recent advances
in deep learning have spawned a wave of new algorithms,
started off by the first end-to-end implementation, FlowNet,
by Dosovitskiy et al. [6]. A wealth of different architectures
have been proposed, e.g. using cascading networks [12], spa-
tial image pyramids [19], and feature pyramids [24], as well
as a number of multi-task networks such as joint depth and
flow estimation, and unsupervised approaches.
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Synthetic data has been used from the onset of optical
flow estimation to overcome the intractability of manually
annotating large datasets with dense motion vectors. Gener-
ated data complexity ranges from low-resolution simulations
of a rotating patterned sphere [11] to animated scenes gen-
erated using modern 3D software. FlowNet, as trained by
Dosovitskiy et al. [6], used the Flying Chairs dataset intro-
duced in the same paper. Despite the domain gap between
the synthetic dataset and real-world sequences, it was shown
that FlowNet generalised well to real-world data such as the
KITTI benchmark containing annotated road scenes. Mayer
et al. [15] surveyed a number of synthetic datasets and con-
cluded that data diversity helps, as does the simulation of
distortions due to the camera.

Most previous work on tracking retinal fundus images
based on classical computer vision approaches relies on
detecting retinal vessels and registering vessel maps between
successive frames [26]. Recently, Braun et al. [4] and follow-
up work in Mukherjee et al. [16] succeeded in registering
video frames to dynamically expanding and updating reti-
nal vessel maps, allowing for camera motion estimation with
respect to the retina where vessel features are visible. Richa
et al. [21] on the other hand built a mosaic without explicitly
extracting a vessel map using sum of conditional variance
(SCV) tracking from image patches, a method nonetheless
dependent on the presence of textured regions. Guerre et
al. [10] created Sliding Retinas, comprising translations and
rotations of retinal image patches. They found that while
training FlowNet exclusively with Sliding Retinas did not
yield useful results on this synthetic dataset, fine-tuning
FlowNet after training withFlying Chairs first increased per-
formance slightly compared to only using Flying Chairs.
This was not quantitatively evaluated on real-world frame
sequences. These reportedmethods cannot consistently track
single points under occlusions.

Materials andmethods

We adopt a deep learning approach to both estimate opti-
cal flow and provide a segmentation containing information
about whether a pixel belongs to the retinal fundus. The flow
must ignore objects or effects not belonging to the retinal fun-
dus so that points of interest on the retina, e.g. indicated for
therapy delivery during a surgical procedure can be tracked
continuously even when occluded.

Learning to estimate optical flow in a supervised manner
requires a large amount of ground truth optical flow train-
ing data. However, manually annotating image sequences is
infeasible, especially in a challenging domain such as surgi-
cal data. We overcome this by generating synthetic datasets
simulating intra-operative video frames. These datasets con-
tain image pairs created by applying known transformations

to composite images created from real-world data, which
allows for the knowledge of the optical flow ground truth.
Further, the datasets contain corresponding pairs of seg-
mentation masks marking whether a pixel is inside the
microscope field of view, and therefore tracked as part of
the retina, or not. By replicating the phenomena observed in
the surgical videos (see examples in Fig. 2) on the images but
suppressing them in the ground truth flow, the network learns
to ignore them when estimating the flow between frames of
intra-operative videos, implicitly inferring the optical flow of
occluded from non-occluded retinal regions.

While a random validation set is used to evaluate the net-
work’s performance on the synthetic data, we only report the
results of testing on real-world data.

Intra-operative dataset RIDE

The real-world data used in this report originate from an
internal dataset called “RIDE” (Retinal Image Database Ele-
ments), which consists of retinal image and video data from
66patients acquired during a variety of vitreoretinal surgeries
at Moorfields Eye Hospital, London, UK. All intra-operative
biomicroscopy sequences were captured through a ZEISS
OPMI Lumera 700 microscope using its integrated camera
at a resolution of 1920 × 1080 px and at 25 frames per sec-
ond. The videos acquired for each patient are split into two
categories:

1. “Walk-through” videos, recorded in the usual intra-
operative set-up, with a light pipe inserted into the
vitreous but before the surgical procedure has started.
The surgeon pivots the eyeball to visualise different parts
of the retina, and the lighting is varied by moving the
light pipe. These data aim to capture the distinct visual
appearance of the retina across patients and are used to
construct the synthetic datasets and to train the neural
network.

2. Surgical procedure videos showing unadulterated real-
world situations as recorded during a variety of interven-
tions such as pars plana vitrectomy (PPV), inverted inter-
nal limiting membrane (ILM) flap technique, epiretinal
membrane (ERM) peeling, and gene therapy injections.
These data represent what the surgeon sees through the
microscope and are used to test the neural network.

Despite using simple walk-through video frames as the basis
of training the optical flow estimation network, the process
we establish for data generation allows the generalisation of
the network to unseen and complex interventional videos.
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Fig. 3 Overview of the algorithms presented in this paper; red frames
refer to synthetic data, blue to real-world data. Left: the synthetic data
algorithm, with the layers transformed [T] and combined (+) to result
in a pair of images and corresponding segmentations. The ground
truth optical flow results from the known transformations applied to
the layers. The underlying retinal fundus layers are drawn from the
RIDE walk-through videos (“Synthetic dataset generation” section).

Top middle: the intra-operative dataset RIDE contains data recorded
in the operating theatre—walk-through videos, videos of surgical pro-
cedures (“Intra-operative dataset RIDE” section). Bottom middle: the
neural network, trained on the synthetic data, tested on the bench-
mark sequences (“Neural network architecture” section). Right: test
benchmark of frames extracted from surgical procedure videos in RIDE
(“Testing” section)

Synthetic dataset generation

Every image seen through themicroscope comprises the reti-
nal fundus as a bottom, surgical tools as a middle, and the
border of the microscope field of view as a top layer (see
Fig. 3). The algorithm developed to create synthetic image
pairs is based on this arrangement. For each image pair to
be synthesised, instances of the three layers are created, each
including an opacity channel encoding shape information,
e.g. of the tools. A sequential combination of transformations
on the layers results in the per-layer optical flowground truth.
Using the opacity channels as masks, the layers are merged
resulting in an image pair, the completed optical flow ground
truth, and segmentation ground truths. Image noise and com-
pression artefacts are added to the image pair to mimic the
quality of the real-world videos.

The most prominent of the phenomena observed in the
intra-operative dataset RIDE have been implemented as
transformation functions that can be applied to any of the
image layers described above. Explicitly defining these trans-
formations for each record in datasets of thousands of
synthetic image pairs is not realistic. Therefore, we generate
random transformations by sampling parameters from uni-
form distributions based on observations on interventional
videos, e.g. with regard to maximum rotations to be expected
between two video frames.
Bottom layer—the retinal layer Clips of 10 s duration show-
ing the maximum area of retinal fundus are extracted from
each walk-through video. Given the camera frame rate of 25
frames per second, each clip contains, per patient, 250 3-

channel colour images at a resolution of 1920×1080 px. An
area containing only retinal fundus is identified by finding the
largest possible rectangle that fits into the image region with
a brightness below an adaptive threshold. Median filtering
(3 px kernel size) was used to reduce compression artefacts
and image noise while preserving small-scale features such
as thin vessels.
Middle layer—the tool layer All tools shown in the synthetic
datasets—light pipe, cutter, and forceps—are based on one
template each, manually segmented from single images of
these tools captured against a white background (see Fig. 1).
A number of transformations are applied to the templates:

• Template scaling, ranging from 0.8 to 1.5 to match tool
sizes in real images.

• Simulation of a 3D tool pose by stretching the tool shaft
width as it moves away from the centre of the image,
ranging from 1.5 to 3.

• Template rotation between − 80◦ and 80◦ off the hori-
zontal axis.

• Placement of tool tip on a point in the image between
0.2 and 0.8 of the image height, and 0.15 and 0.5 of the
image width if the tool is a light pipe, or between 0.4 and
0.85 of the image width for all other tools.

• Variable Gaussian blurring matching observed real tool
appearance (Fig. 2), kernel size ranging from 3 to 7 px.

• Conversion intoHSV colourspace: the hue and saturation
are adjusted to match the average colour of the retinal
fundus image the tool will be overlaid on, while the value
is randomly sampled between black and the value of the
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retinal fundus. This transformation accounts for the retina
being reflected on the metallic tool, as well as the varying
illumination of tools in the videos.

• Creation of a shadow as the projection of the tool onto the
retina. The offset, angle, and transparency are sampled
from uniform distributions between 0 and 70 px, − 45◦
and 45◦, and 0 and 0.5, respectively.

• Positioning of glaring along the centreline of the tool.
This is a common phenomenon that is difficult to model
realistically due to the complexity of the interaction
between light and the reflective metal tool shafts. We
approximate it by a number of connected, white, faded
ovals with a yellow and blue-coloured crest added to the
outline. The number of ovals and their radius are sam-
pled from a uniform distribution between 1 and 5 and
2 px and 12 px, respectively, while transparency of the
coloured crest is chosen between 0.1 and 0.6.

Top layer—the “field of view” layer The third and last layer
simulates the effect of the microscope, limiting the field of
view to a circular area with blurred edges. All areas exterior
to the field of view are black. The radius of this circle is
sampled from a uniform distribution between 0.4 and 0.8 of
the image height, and the centre position lies between 0.4
and 0.6 of the image height and width.

Layer transformations Each of the layers is then transformed
in different ways to arrive at two distinct images, the original
image and the transformed image, with a known optical flow
between them. Flow attributable to tool layers is removed
from this ground truth (see Fig. 4) to obtain training data that
will lead the network to learn to ignore tools and related
effects such as shadows in the test surgical intervention
videos. Transformations are applied to the layers by type:

• Transformations of the layer itself Local distortions
simulating bubbling due to an injection; geometric trans-
formations such as translation, rotation, and scaling,
simulating the appearance changes observed inRIDEdue
to movements of the microscope, tools, or the eye itself.
The latter transformations have a modifier that allows a
“double exposure” effect to be simulated. Such effects
appear in RIDE videos when sudden eye motion takes
place.

• Lens effect Pincushion distortion, simulating the distor-
tion occurring towards the edges of the microscope field
of view.

• Transformations without flow or segmentation ground
truth impact local or global intensity and contrast
changes, blurring, tool shadows, glare.

dataset parametersThemain dataset comprises 16 subsets of
2000 records each for a total of 32,000 image pairs, the same

order of magnitude as the Flying Chairs dataset Dosovitskiy
et al. [6]. Resolution was chosen as 512× 384 px, balancing
the need to retain the details of important retinal features with
the need to reduce the computational overhead of creating
and training on larger-resolution data.

The first five subsets contain just the retinal layer trans-
formed as follows: translation up to 10 px, rotation− 5◦ to 5◦,
scaling 0.9–1.1, pincushion distortion maximum 10–50 px,
and “bubbling” centred between 0.2 and 0.8 of the image
height and width, with a radius 0.15h to 0.3h, h being the
image height. The next five subsets contain a retinal and
a field of view layer, with the following permutations of
transformations (same values as before): translation, rota-
tion, scaling, local distortion, rotation, and scaling. The final
six subsets contain a retinal layer, one or two tool layers,
and a field of view layer, each with translation, rotation, and
scaling. To provide the network with data of varying com-
plexity and appearance, every layer in every subset has 10%
chance of Gaussian blur with a kernel size up to 5 px; 25%
chance of global brightness changes up to 15; 10% chance of
local brightness changes up to 40 (patch radius 0.1h–0.3h).
These hyperparameterswere chosenbasedon avisual inspec-
tion of our intra-operative dataset RIDE and in accordance
with guidance fromour clinical collaborators. Clinicians also
visually evaluated representative examples of the generated
sequences for their realism.

Twoadditional datasetswere createdwith the sameparam-
eters, but experiencing fewer transformations: “dataset-nl”
contains no tool shadows or reflections, while the tool hue
and saturation are not adjusted to match the retinal fundus.
“Dataset-nl-nb” is further “handicapped” by not including
any brightness changes.

Neural network architecture

The network employs the well-performing, fully convo-
lutional “FlowNetSimple” architecture [6] with a classic
encoder–decoder structure and skip connections. Two ways
for segmentation prediction were implemented: once as a
separate decoder branch following the design of the fully
convolutional network byShelhamer et al. [22] (called “FNS-
branch” in this paper), and once as additional channels of the
prediction tensor, which is then split into the optical flow and
the semantic segmentations (called “FNS-comb”). A leaky
rectified linear unit (l-ReLU) with a slope of 0.01 was chosen
as the standard activation function [23]. Further modifying
FlowNet, loss is calculated as an average across scales. This
has been shown to work well in applications such as deblur-
ring [18] and unsupervised optical flow prediction [20], and
mimics successful long-established variationalmethods [25].
Cost function The cost function consists of four loss terms
L with weightings λ: the flow loss, a regularisation loss
intended to reduce overfitting, the segmentation loss, and a
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Fig. 4 Top row: sample synthetic images showcasing representative
retinal appearances, tools, reflections, motion blur, and artificial noise.
Bottom row: a sample image from a synthetic data image pair, the cor-
responding full ground truth flow, and the simplified ground truth flow

used for suppressing the occlusions generated by the tools. Optical flow
vector direction is encoded in the hue, magnitude in the saturation (as
in [6])

total variation loss that promotes a smooth flow field:
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where the flow weighting λflow is always 1, nf is the number
of predicted flow vectors f ; pi is the probability of segmen-
tation class i ; superscripts pred and gt stand for “prediction”
and “ground truth”, subscript s for scale, x, y for spatial
coordinates, l for layer, j for spatial coordinates in feature
space; m is a Boolean array preventing the gradient at field
of view borders from being smoothed.
Training parameters Each subset of the synthetic dataset is
randomly split into 95% training, 5% validation, used exclu-
sively to verify that the network is indeed learning.Recall that
final testing is performed in real-world vitreoretinal surgi-
cal intervention videos and not the synthetic data. Following
the original FlowNet paper, the Adam optimiser with default
parameters (β1 = 0.9, β2 = 0.999) was used. From exper-
imentation on validation data, a mini-batch size of 10 was
chosen, and the learning rate decayed exponentially from an
initial value of 10−4 with a decay rate of 0.95 and a decay
step value of 104. The loss term weightings λseg, λreg, λvar
were set as 10−3, 10−7, and 10−6, respectively. Training was
run for 100 epochs as a standard to guarantee convergence
on real data without having to test the benchmark repeatedly.

Training and testing was run on a server with an NVIDIA
Quadro P6000 GPU, an Intel i7-6900K 16-core CPU, and
64GB RAM.

Testing

Wecurated a challengingbenchmark comprisingunseen real-
world clips from the collected surgical procedure videos for
testing. Our evaluation only includes points on the retina and
ignoresmotion estimations for areas outside the field of view.
Benchmark “BM” 32 clips, 8 s long for a total of 201 frames
each, originating from videos of surgical procedures from the
RIDE dataset. This benchmark cannot be selected randomly,
as that would include too many sequences without tools or
with very little movement. The following selection criteria
were applied:

• Continuous large-scale (rotation > 5◦, translation >

10 px, scaling > 10%) retinal motion in 10+ frames
without continuous blur over the same period.

• Tools moving across part of the visible retinal fundus.
• Presence of at least some of the phenomena from the top
two rows in Fig. 2.

The result is a collection of challenging clips repre-
sentative of surgical procedures. Resolution is reduced to
512 × 384 px to match the training data scale.
Point tracking In each sequence, four ground truth points
located on strong features such as vessel bifurcations were
annotated every ten frames. For the same frames, a binary
map indicating whether a pixel is located inside the field
of view of the microscope was created. The ground truth
points are tracked throughout each sequence, forwards and
backwards. The mean L2 distance from the ground truth at
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the 201-st (last) frame, i.e. the end-point error (EPE), is called
long sequence EPE (l-EPE). The same is done for each 11-
frames-long sequence fragment with ground truth annotation
at the start and the end. The overallmeanL2 distance from the
ground truth being called short sequence EPE (s-EPE)—this
is our main metric and the closest proxy for frame-on-frame
flow estimation errors. We report the s-EPE and l-EPE mean
and standard deviation across the benchmark.
Grid tracking Sequence EPEs are limited by the both tem-
porally and spatially sparsely available ground truths. To get
a dense error estimation despite this, we overlay a grid on
the first frame of each sequence, using the field of view seg-
mentation to limit it to the area recognised as retinal fundus.
The grid vertices are then tracked in a “loop” throughout
the benchmark sequence, on odd frames from 1 to 201, then
back to 1 on even frames. This ensures the algorithm cannot
achieve a zero tracking error with a random but invertible
prediction. An ideal tracking system would restore the grid
vertices back to the original position, the initial and final grid
being congruent. L2 distances of end to start vertex positions,
termed grid EPE, represent a quality measure for tracking of
the entire retina.

A “grid” size of a single pixel was chosen, implying that
106 pixels are tracked throughout the benchmark sequence.
This choice maximises how representative of the overall
tracking quality the statistics of the grid errors are. We report
the average grid EPE and average grid EPE standard devia-
tion over the benchmarks.

Since intuitive interpretation of optical flow visualisa-
tion is challenging, grid tracking additionally allows for a
qualitative evaluation of the output. The motions and defor-
mations of a superimposed grid are easily appreciated, while
the underlying image is clearly visible as well.

Benchmark without occlusions “BM-no-occ” In addition
to “BM”, a different set of 10 8s clips was also compiled. The
ground truth points in “BM-no-occ” are never occluded by
tools, glare, or similar effects, andwere specifically chosen to
allow a more direct comparison with the variational methods
(see “Experiments and results” section).

Experiments and results

Two network designs FNS-branch-ms-seg and FNS-comb-
ms-seg as well as FNS-comb variants without segmentations
and/or without multi-scale loss were tested. The suffix “ms”
refers to the use of multi-scale loss, the suffix “seg” to the
inclusion of a segmentation prediction. The validation EPE
on the synthetic data converges to a value of about 0.2 px for
FNS-comb-ms-seg, but rather than evaluating performance
on the synthetic data, we are primarily interested in tracking
unseen surgical procedure clips. To quantify the effect of
dataset size and fidelity, FNS-comb-ms-seg was also tested

with the width reduced from 38m learned parameters to 75%
and 50%,with the data split adjusted from95% for training to
65%and 35%, and on the two simplified datasets “dataset-nl”
and “dataset-nl-nb”.

Two variational methods are included as a baseline: the
Farnebäck method [7] included in OpenCV (termed FNB),
and the coarse-to-fine SIFT flow [13] (termed C2F) imple-
mented in C++ by its author1 and provided with a Python
wrapper.2 All methods that do not have segmentations were
provided with a ground truth segmentation every 10th frame
(see “Testing” section) to constrain tracking to the retina.

All networks run at over 50Hz for input images at 512 ×
384 px, whichmakes them suitable for real-time applications
in the operating theatre even at a higher resolution. The vari-
ational methods are significantly slower: FNB at 8Hz, C2F
at less than 0.2Hz, partially due to being implemented on
CPU rather than GPU.

All experimental results are collated in Table 1. The differ-
ent metrics show high consistency: higher short (11 frames)
sequence EPEs (s-EPE) are matched by higher long (201
frames) sequence EPEs (l-EPE), due to higher frame-to-
frame tracking errors compounding to a much larger overall
error on longer sequences. Themean grid error, not compared
with a ground truth, is highly correlated with the ground-
truth-based s-EPE, validating the grid EPE as an evaluation
method. The one outlier is the grid errors of the variational
baseline methods. This is explained by Fig. 5, which shows
a comparison of tracking quality. FNB tracks strong features
such as vessels and the tool very well, but many points in-
between have an estimated flow of zero: some grid vertices
move very little over the course of the clip, resulting in a low
grid errormean but high standard deviation.C2F ismore suc-
cessful at interpreting the retinal fundus as an object moving
“as one”, but it cannot ignore occlusions arising from surgical
tools; the flow prediction at such object borders is imprecise.
As a consequence, the grid moves with the retinal fundus to
some degree, but is deformed in many locations. FNS-comb-
ms-seg, by contrast, is able to track the grid while ignoring
tools, shadows, and reflections.

FNS-comb-ms-seg and FNS-branch-ms-seg perform best
overall, with “BM” s-EPE values of 2.6px and 2.7px, respec-
tively. Network versions without simultaneous segmentation
prediction or multi-scale loss perform consistently worse.
All variants outperform the variational baseline methods,
with corresponding values of 3.8px and 4.2px. Tracking
points not experiencing any occlusions in “BM-no-occ” is
less challenging, and all methods evaluate to significantly
lower s-EPE values. FNS-comb-ms-seg has the same mean
as FNB, but achieves a lower standard deviation. This can be
observed with all deep learning variants: even though aver-

1 https://people.csail.mit.edu/celiu/OpticalFlow.
2 https://github.com/pathak22/pyflow.
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Table 1 Experimental results BM-no-occ Evaluation benchmark BM

s-EPE s-EPE l-EPE Grid EPE

Baseline

FNB 2.0 (4.4) 3.8 (7.2) 24.1 (30.7) 14.0 (17.4)

C2F 2.3 (4.1) 4.2 (9.5) 26.4 (33.4) 13.3 (16.3)

Network type

FNS-branch-ms-seg 2.1 (2.4) 2.7 (2.7) 16.0 (10.8) 18.8 (9.4)

FNS-comb-ms-seg 2.0 (2.3) 2.6 (2.6) 14.7 (7.9) 15.8 (7.9)

FNS-comb-ms 2.3 (2.4) 2.9 (2.7) 19.5 (13.3) 21.9 (11.0)

FNS-comb-seg 2.4 (2.5) 3.0 (3.0) 19.7 (13.2) 23.5 (10.1)

FNS-comb 2.8 (2.8) 3.3 (3.0) 25.8 (14.7) 29.2 (13.2)

Network ablation

75% width 2.6 (2.7) 2.9 (2.7) 23.5 (17.3) 29.3 (13.4)

50% width 2.7 (2.9) 3.3 (3.2) 25.1 (17.5) 26.4 (12.8)

Dataset ablation

65% for training 2.6 (2.7) 3.0 (2.7) 21.3 (12.4) 26.1 (11.5)

35% for training 2.7 (2.7) 3.4 (3.3) 30.0 (20.8) 28.6 (11.6)

Dataset versions

Dataset-nl 2.3 (2.4) 3.1 (3.0) 23.2 (13.3) 25.6 (10.7)

Dataset-nl-nb 2.9 (2.8) 4.3 (7.0) 29.6 (21.9) 29.8 (12.7)

Bold values denotes best results in each category (or equal best results if there is more than one)
All errors in pixels, reported as “mean (standard deviation)”

Fig. 5 Illustration of grid tracking and flow field. 1st Row: benchmark
sequence #4, evaluated with FNB. 2nd Row: benchmark sequence #4,
evaluated with C2F. 3rd Row: benchmark sequence #4, evaluated with

FNS-comb-ms-seg (ours). 4th Row: benchmark sequence #3, evaluated
with FNS-comb-ms-seg. Videos accessible at bit.ly/2ObYdHi
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age performance might degrade due to less training data or
simpler datasets, the standard deviation remains lower than
for the variational methods, indicating an ability to track the
retina as one object.

Training a thinner network reduces tracking performance
on “BM” to a mean s-EPE of 2.9 px and 3.3 px, which is
consistent with a reduction of the representational capac-
ity of the network. Training on a fraction of the synthetic
data similarly increases s-EPE means to 3.0 px and 3.4 px:
this suggests enriching the training dataset could lead to
performance improvements. We also note that training on
simplified synthetic data degrades performance to 3.1 px for
“dataset-nl” and 4.3 px for “dataset-nl-nb”. This is a strong
argument in favour of improvements of the simulation of
phenomena observed in RIDE videos (see Fig. 2).

Conclusions and outlook

This paper presented a method to track points on challeng-
ing intra-operative retinal fundus videos through optical flow
estimation. We demonstrated that robust optical flow estima-
tion can be achieved by learning from complex synthetic
data. Optical flow is implicitly inpainted underneath surgi-
cal tools, enabling the tracking of the retinal fundus even
during occlusions in real surgical videos. Finally, our results
corroborate that optical flow prediction and semantic seg-
mentation, in this instance of the field of view, are mutually
supportive tasks. This paves the way for further investiga-
tion of tool segmentation as a secondary task. In the future
work, we will also investigate hyperparameter optimisation
to increase performance.
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