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Transforming viruses can change a normal cell into a cancer cell during their normal life cycle. Persistent infections
with these viruses have been recognized to cause some types of cancer. These viruses have been implicated in the
modulation of various biological processes, such as proliferation, differentiation and apoptosis. The study of
infections caused by oncogenic viruses had helped in our understanding of several mechanisms that regulate cell
growth, as well as the molecular alterations leading to cancer. Therefore, transforming viruses provide models of
study that have enabled the advances in cancer research. Viruses with transforming abilities, include different
members of the Human Papillomavirus (HPV) family, Hepatitis C virus (HCV), Human T-cell Leukemia virus (HTLV-1),
Epstein Barr virus (EBV) and Kaposi's Sarcoma Herpesvirus (KSHV).

Apoptosis, or programmed cell death, is a tightly regulated process that plays an important role in development
and homeostasis. Additionally, it functions as an antiviral defense mechanism. The deregulation of apoptosis has
been implicated in the etiology of diverse diseases, including cancer. Oncogenic viruses employ different
mechanisms to inhibit the apoptotic process, allowing the propagation of infected and damaged cells. During this
process, some viral proteins are able to evade the immune system, while others can directly interact with the
caspases involved in apoptotic signaling. In some instances, viral proteins can also promote apoptosis, which may
be necessary for an accurate regulation of the initial stages of infection.

Introduction
Various factors are associated with the development of
cancer, including persistent viral infections, which are
responsible of 15 to 20% of all neoplastic processes [1].
Studies related to infectious diseases and cancer have
contributed significantly to our knowledge of cancer
pathogenesis. Several Nobel prizes have been awarded to
the researchers in this field [2], including Johannes An-
dreas Grib Fibiger (1926), for Spiroptera carcinoma and
its association with gastric tumors in rats; Peyton Rous
(1966), for cancer-inducing viruses; David Baltimore,
Renato Dulbecco and Howard M. Temin (1975), for the
interaction between tumor viruses and the genetic mater-
ial of the cell; Michael J. Bishop and Harold E. Varmus
(1989), for the cellular origin of retroviral oncogenes; and
Barry J. Marshall and Robin J. Warren (2005), for the
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bacterium Helicobacter pylori and its role in gastritis and
peptic ulcer disease. In 2008 Harald zur Hausen shared
the Nobel Prize award for his discovery of human papil-
loma viruses causing cervical cancer.

Other landmark studies have been of great relevance to
the field. For example, in 1991, Harold zur Hausen pro-
posed that a significant fraction of all human cancers
worldwide, approximately 1 in 5, are associated with viral
infections [3]. In 1910, Peyton Rous studied a cell-free
transmissible oncogenic pathogen [4], and in 1932, Shope
and Hurst demonstrated the oncogenic activity of a Papil-
lomavirus in domestic rabbits [5]. In 1936, Bittner
established the oncogenic role of mouse mammary virus
[6], and in 1951, Gross confirmed the viral cause of murine
leukemias [7]. In 1964, Epstein and collaborators showed
the association of a virus with Burkitt lymphoma [8].

Many researchers have demonstrated the viral etiology
of carcinomas of the uterine cervix. In 1974, Beral et al.
proposed that cervical cancer was a sexually transmitted
disease (STD) [9], and zur Hausen suggested that the
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Human Papillomavirus (HPV) was the putative oncovirus
[10]. It is now indisputable that cervical cancer, penile
cancer, some oropharyngeal cancers and other cancers of
the anogenital tract are caused by certain strains of HPV.
HPYV vaccines have demonstrated effectiveness in reducing
the incidence of cervical intraepithelial neoplasia [11],
confirming the significant contributions of HPV to the de-
velopment of cervical cancer.

During the same period, Vogel et al. presented prelim-
inary data on the role of Hepatitis B virus (HBV) in liver
cancer in Uganda [12], and in subsequent studies, a clear
etiological link emerged between HBV and hepatocellu-
lar carcinoma [13]. This link was later extended to
Hepatitis C virus (HCV) infections. In both cases, estab-
lish an association between the virus and tumor develop-
ment has been complicated, by the long incubation
period; the participation of chronic inflammation or cir-
rhosis in its pathogenesis; and the influence of cofactors,
such as dietary and aflatoxins. The HBV vaccine, which
was introduced in the last 15 years, has already demon-
strated its potential for lowering the risk of hepatocellu-
lar carcinoma [14].

The effect of viral proteins in the modulation of cell
proliferation and transformation has been widely studied
[15,16], and it is now clear that oncogenic viruses may
also interfere with the cellular control of apoptosis.
Some oncogenic viruses have developed different mech-
anisms for evading apoptotic signals, mainly via the ex-
pression of viral oncogenes. During this process, the
deregulation of the cell cycle and apoptotic pathways
can lead to changes in the cell that eventually promote
cancer development. Some of the mechanisms employed
by oncogenic viruses to avoid apoptosis, thus promoting
cell transformation, are provided in Table 1 [17-28].
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In many instances, the regulation of apoptotic signal-
ing has been associated with cancer development.

The study of the mechanisms by which viruses regu-
late apoptosis can contribute to the development of new
therapies against infectious diseases and cancer. In this
review, we will describe some of the mechanisms used
by oncogenic viruses to modulate apoptosis.

Apoptosis
Apoptosis is a fundamental cellular process required for
embryonic development, organogenesis and the elimin-
ation of damaged or aged cells during the maintenance
of cellular homeostasis [29]. In the physiological context,
apoptosis is strictly regulated. When this regulation fails,
a number of pathologies may result, such as auto-
immune or neurodegenerative diseases and cancer.
Apoptosis is a form of cell death that involves a series of
ordered events. The first phase is the commitment
phase, wherein the cell loses contact with its neighboring
cells and presents with modifications of the cytoskeleton,
causing a decrease in cell size and changes in cell
morphology [30]. During the second phase, the execu-
tion phase, there is an increase in intracellular Ca®"
which induces the activation of certain groups of enzymes,
such as endonucleases and proteases, such as caspases.
Additionally, the chromatin is condensed and fragmented,
forming vesicles of different sizes surrounded by a plasma
membrane. These vesicles, known as apoptotic bodies,
contain parts of the chromatin and cellular organelles
[30,31]. The final phase is the termination phase, which
involves phagocytosis and the degradation of the apoptotic
bodies [30].

Apoptotic death is triggered by different intra- or
extracellular stimuli. Intracellular death signals can be

Table 1 Human viruses related to cancer: viral proteins affecting apoptosis

Virus Cancer type Protein Mechanism
Epstein Barr Burkitt's lymphoma [17] EBNA3C Binds Rb and promotes cell cycle progression
Hodgkin's lymphoma [18] EBNA1 Inhibits p53 induced apoptosis

Nasopharyngeal carcinoma [19]
Gastric carcinoma [20]

Human Herpesvirus 8 (KSHV)  Kaposi's sarcoma [21,22]

LANAT Kaposina

Bind to p53 and inhibit p53-dependent apoptosis

Human Papillomavirus

Human T-cell leukemia virus
type 1 (HTLV)

Hepatitis B
Hepatitis C

Cervical cancer [23]

Oropharyngeal carcinoma [24]

Anal cancer [25]

Adult T-cell leukemia/lymphoma [26]

Hepatocellular carcinoma [27]

Hepatocellular carcinoma [28]

E6 Inhibits p53, Bak, FaDD and procaspase 8

E7 Pleiotropic effects inhibiting and promoting
apoptosis

E2 Binds and activates caspase 8 (HPV-18);

Interacts with c-Flip inhibiting its action

Tax Involved in regulation of cell-cycle, apoptosis, cellular
transcription, NFk@, chromatin remodeling

HBx Activates caspases 3 and 8

Core, NS3 and NS5A  Suppress p53-mediated apoptosis
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induced by cell stress, which promotes the liberation of
cytochrome ¢ from the mitochondria [29]. Extracellular
stimuli include UV radiation, the depletion of growth
factors, and the ligand-mediated activation of death
receptors.

The induction of apoptosis
Intrinsic and extrinsic pathways
In mammals, apoptosis is regulated by the activation of
two signaling pathways: the extrinsic and the intrinsic
pathways. The extrinsic pathway is regulated by mem-
brane death receptors, such as DR4/TRAIL-R1 and
DR5/TRAIL-R2. Tumor Necrosis Factor Receptor 1
(TNFR1), and Fas (CD95), are activated by their ligands
TRAIL, TNF, and FasL, respectively. The binding of the
ligand to its receptor induces the activation of the
caspase cascade (Figure 1) [32].

Conversely, the intrinsic pathway is regulated by mito-
chondrial proteins, that upon activation, cause the re-
lease of cytochrome c into the cytoplasm [33,34]. In the
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cytosol, a complex known as the apoptosome is formed
through the binding of Apoptotic Protease Activation
Factor 1 (Apaf-1), procaspase 9, and cytochrome c
[35-37]. The oligomerization of Apaf-1 activates caspase 9,
which, in turn, induces the proteolytic cleavage of other
substrates involved in cell death [33-35] (Figure 1).

At the biochemical level, when an inducer triggers a cell
death signal in a target cell, the cell death process ad-
vances through enzymatic intermediaries, thus directing
apoptosis. In both intrinsic and extrinsic pathways, the
main effector proteins are the caspases [32,36].

The caspases constitute a family of cysteine proteases
that are specific for aspartate. The caspase family mem-
bers are similar in amino acid sequence, structure, and
specificity [36]. Caspases are synthesized as zymogens,
and their activation requires specific cleavage at selected
aspartate residues. At the initial processing, an inactive
caspase is cleaved in a large (p20) and a small (p10) sub-
units, after which the N-terminal domain is removed to
form the catalytically active protease [32,36]. Caspases
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Figure 1 Apoptotic signaling pathways. The extrinsic pathway is requlated by membrane receptors. The interaction with their ligands Fas, Trail
and TNF, favors their trimerization, inducing the recruitment of FADD through the interaction with their death domains (DDs). The interaction of
FADD with procaspase 8 forms a complex called DISC, which favors its oligomerization and auto-cleavage. Active caspase 8 initiates the cascade
of effector caspases 3, 6 and 7. In the intrinsic pathway, Bax and Puma are translocated from the cytosol to the mitochondrial membrane as a
result of DNA damage, thus provoking the release of cytochrome c. Cytochrome c participates in the formation of the apoptosome, which is
involved in DNA degradation. AIF contribute to DNA and nuclear fragmentation.

TRAIL M M TNF

DR4
DRS

TNF-R1

Intrinsic pathway

|

e
___—Cjytochrome ¢ £

Apaf-1 ®

Smac =




Fuentes-Gonzalez et al. Virology Journal 2013, 10:182
http://www.virologyj.com/content/10/1/182

can be classified into two categories: initiator caspases
and executioner caspases. Initiator caspases have a long
N-terminal prodomain, which mediates the formation of
protein complexes that provide the molecular platform
for caspase activation and inhibition [32,36]. Initiator
caspases cleave and activate a few specific substrates, in-
cluding the zymogens of executioner caspases [32,36].
The activated executioner caspases then cleave their re-
spective substrates, which elicit apoptotic cell death,
along with its characteristic morphological features, such
as membrane blebbing, pyknotic nuclei, cell rounding,
and the formation of apoptotic vesicles [36].

Inhibitors of caspase activation (IAPs)
A balance between cell proliferation and apoptosis is re-
quired to avoid the development of pathologies such as
neurodegenerative diseases and cancer. In eukaryotic
cells, this balance is maintained mostly by a family of
proteins known as IAPs (Inhibitor of apoptosis proteins)
[37]. The IAP family is composed of 8 members; how-
ever, the best studied proteins in the family are the XIAP
(X-linked inhibitor of apoptosis protein), that can di-
rectly inhibit the effector caspases (caspases 3 and 7) as
well as the initiator caspase 9 [38]. Additionally, XIAP is
an ubiquitin ligase; therefore it can indirectly inhibit
apoptosis by inducing the degradation of caspases and
other pro-apoptotic proteins via the proteasome [39].
Cancer cells express elevated levels of IAPs, which has
been associated with chemoresistance, disease progres-
sion, and poor prognosis [40]. For example, under normal
circumstances, survivin, a member of the IAPs that has
been widely associated with the development of cancer, is
only expressed in embryonic tissues; however, it has been
found to be over-expressed in various tumors [41,42].

The role of oncogenic viruses in apoptosis

Although oncogenic viruses have been identified as etio-
logic agents in the development of different tumors, infec-
tion alone is not sufficient to induce cancer development.
Most of the people infected by these viruses do not neces-
sarily develop tumors. In those who do develop cancer,
many years separate the initial infection and the appear-
ance of a tumor, suggesting that many factors are involved
in the transformation process.

A number of viral proteins that are responsible for the
oncogenic capability of the virus, interact with elements
of the apoptotic signaling pathways and thus inhibit
their activities. Some viruses also regulate apoptosis by
affecting its inhibitors, such as members of the IAP family
and survivin. Conversely, other viral proteins can promote
apoptosis, an event that is most likely important for the
fine regulation of the initial stages of infection and is not
necessarily involved in the transformation process.
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Human papillomavirus

The main risk factor for the development of cervical
cancer is the persistent infection of Human Papillomavi-
rus [43]. Cervical cancer is the second most frequent
cancer and the second leading cause of cancer death in
women worldwide [44]. High risk HPVs (HR-HPV) refer
to HPV types associated with cervical cancer, while Low
risk HPVs (LR-HPV) are generally found in benign le-
sions or low grade cervical dysplasia [45,46].

Viral genome and structure

HPV is a small virus with a double-stranded DNA genome,
that is organized into three distinct regions (Figure 2A).
The early expression region (E) encodes proteins impli-
cated in replication and the control of viral transcription
(E1 and E2), as well as proteins that are involved in cellular
transformation and immortalization (E5, E6 and E7) [47].
The late expression region (L) includes genes involved in
capsid formation, L1 and L2. Finally, the region containing
the binding sites for numerous factors that control tran-
scription and viral replication is known as the Long Con-
trol Region, LCR or URR [48] Figure 2A.

Anti-apoptotic effect of HPV viral proteins

Many viruses, including HPV, have developed numerous
strategies to block host-mediated apoptosis. The ability
of HPV to persist in the host for long periods of time
without being eliminated attests to the sophistication of
its evasion mechanisms. A growing body of evidence
suggests that the oncoproteins of HR-HPVs, E6, E7 and
E5, can inhibit death receptor signaling at key points in
the pathway (Figure 2B). In doing so, HPV is able to
regulate the survival of infected cells to facilitate its rep-
lication cycle, thus ensuring the production and spread
of its progeny [50]. HPV-positive cervical cancers and
cell lines display a differential expression of several
caspases and the downregulation of Fas expression, lead-
ing to impaired apoptosis [49,51]. Multiple alterations in
both caspase expression and activation have been
reported in biopsies and cervical cancer-derived cell
lines that are HPV positive [49,51].

E7 protein

E7 oncoproteins from HR-HPVs can immortalize pri-
mary human keratinocytes. These oncoproteins inhibit
differentiation and activate cell cycle progression, mainly
due to the disruption of the pRb-E2F complex, releasing
active E2F and trans-activating several genes involved in
DNA synthesis [50]. In addition, E7 is a potent inhibitor
of p21CIP1 and p27KIP1 activity, thus bypassing the
normal G1 checkpoint control [52]. In addition to its
role in cell proliferation and viral replication, E7 has
pleiotropic effects on the cellular apoptotic pathways. It
has been demonstrated that E7 from HPV-16 induces
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Figure 2 The HPV proteins involved in apoptotic signaling pathways. A) The Human Papillomavirus Virus genome. All HPVs have a common
genomic organization and encode 8 proteins: E1, E2, E4, E5, E6 and E7 (early) and L1 and L2 (late). B) Participation of HPV proteins in apoptotic
pathways. E5 impairs the formation of the death-inducing signaling complex triggered by Fasl and TRAIL. E6 targets pro-apoptotic proteins such
as p53, Bax and Bak for proteolytic degradation; in contrast, E6 can also induce the expression of IAPs. E7 promotes the degradation of the anti-
apoptotic protein, pRb, releasing E2F-1. E2 induces apoptosis via the downregulation of E6/E7 mRNA; or direct binding and activation of
procaspase 8; or when it binds to p53. Modified from Lagunas-Martinez A. et al. (2010) [49].
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the degradation of pRb, an anti-apoptotic protein,
through the ubiquitin proteasome pathway (Figure 2B)
[52], suggesting that E7 might promote apoptosis. The
majority of studies suggest that E7 has a pro-apoptotic
role. It has been reported that when the HPV-16 E7
oncoprotein is expressed in the lens of transgenic mice,
the cells are predisposed to undergo apoptosis that is both
dependent on and independent of p53 [53]. Moreover, E7
has been shown to sensitize JD3 mouse lymphoma cells to
IFN-alpha-induced apoptosis [54], the co-expression of E7
and p21 induces apoptosis in U20S osteosarcoma cells
[55], and the overexpression of E7 in genital-derived
keratinocytes induces spontaneous cell death and sensi-
tizes the cells to TNF-mediated apoptosis [56]. However,
in some studies, E7 appears to be anti-apoptotic. Yuan
et al. suggested that E7 can inhibit TNF-mediated apop-
tosis in keratinocytes by up-regulating the expression of

the inhibitor of apoptosis protein, c-IAP2, and an
antiapoptotic protein [57]. In another study, it was
reported that the expression of E7 in fibroblasts delayed
Fas-mediated apoptosis and prevented TNF-mediated
apoptosis by suppressing caspase-8 activation [58].

The pleiotropic effects of both E6 and E7 on apoptosis
is indicative of their important role in immune evasion
and underscores the complexity of HPV-host interactions.

E6 protein

The E6 protein binds to numerous cellular targets impli-
cated in proliferation and apoptosis. One of the func-
tions of the HR-HPV E6 oncoproteins is the proteolytic
inactivation of certain pro-apoptotic proteins such as
p53 [59], Bak [60], FADD [61], procaspase-8 [62] and c-
myc [63], through the ubiquitin proteasome pathway
(Figure 2B).
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Bak and myc were the first apoptosis-related targets of
E6 to be identified. Thomas and Banks found that E6 in-
hibits Bak-mediated apoptosis by directly binding to
Bak, an interaction that is conserved from HR- to LR-
HPVs [64]. In laryngeal cells, E6 was found to inhibit
TNE-mediated apoptosis by reducing the expression of
Bak, without significantly affecting the expression of
caspase-3 and caspase-8. As in the case with p53, both
Bak and myc are ubiquitinated by E6AP, are able to bind
to E6 and are degraded in the ubiquitin-proteasome
pathway [64].

E5 protein

Recent studies have shown that the E5 protein inhibits
apoptosis mediated by the TRAIL and Fas receptors
(Figure 2B). E5 reduces the affinity of Fas for its ligand.
It blocks the TRAIL-mediated apoptotic signaling path-
way by preventing the formation of the TRAIL-DISC
complex and inhibits the proteolysis of caspases 8 and 3,
as well as of PARP [65].

E5 also protects tumor cells from apoptosis induced by
UV-irradiation by enhancing the PI3K-Akt and ERK1/2
MAP kinase signaling pathways [66]. In addition, the
HPV-16 E5 protein inhibits hydrogen peroxide-induced
apoptosis by stimulating the proteosomal degradation of
Bax. In contrast, E5 was also reported to sensitize human
keratinocytes to apoptosis induced by osmotic stress [66].
However, this effect may be due to cell membrane modifi-
cations caused by the highly hydrophobic E5 protein. By
modulating apoptosis, HPV 16 E5 allows HPV 16-infected
cervical cells to evade apoptosis induced by physical or
chemical stimuli. In addition, HPV 16 E5 may protect
infected cells from apoptotic stimuli derived from immune
effector cells by impairing FasL- and TRAIL-mediated
apoptosis, thus contributing to the evasion of host
immunosurveillance. All these activities may ultimately
lead to cervical carcinogenesis.

The pro-apoptotic effect of viral proteins

Viral infections can also promote pro-apoptotic pro-
cesses, and these opposing effects on apoptosis can be
mediated by the same proteins. For example, E6 and E7,
which can inhibit apoptosis, can also promote it. The
viral apoptotic effect is better understood during the es-
tablishment of an infection. The life cycle of HR-HPV
involves the fine regulation of the expression of viral on-
cogenes that will allow the cellular differentiation neces-
sary to produce viral particles.

Moody et al. [67] reported that HPV proteins activate
rather than suppress caspases, and this could be a neces-
sary condition for the productive HPV life cycle. The au-
thors observed that the treatment of HPV-31-positive
cells with caspase inhibitors significantly reduced viral
genome amplification. The identification of a caspase 3/7
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cleavage site (** DXXD *°) in the viral replication protein
E1, which is conserved in all genital HPVs, suggests that
this motif provides an important function in the
differentiation-dependent life cycle of papillomaviruses
[67]. It is possible that the expression of antiapoptotic pro-
teins, coupled with a low level of caspase activation, may
be important in providing the balance between cell viabil-
ity and cell death upon differentiation.

Protein E2

The viral E2 protein plays a critical role in the HPV life
cycle due to its ability to regulate viral DNA replication
and the transcription of E6 and E7 oncogenes [68]. The
integration of the viral DNA into the cellular genome is
considered a key element in the transformation process.
Viral episome rupture during integration frequently oc-
curs in a zone that limits E2 expression. Therefore, it is
probable that the effects of the full-length E2 will occur
preferentially during the initial stages of infection.

The direct induction of apoptosis by E2, independently
of E6 and E7, was first demonstrated in 1997 by Frattini
et al. [69], who observed the death of human foreskin
keratinocytes, when they were infected with adenovirus
expressing E2 from HPV31. Desaintes et al. [70], showed
that in HeLa cells, apoptosis was induced only by the
full-length E2 protein from HPV18, and not when the
transactivation domain of E2 was deleted. As both pro-
teins can repress the transcription of E6 and E7, this re-
sult indicated that apoptosis does not occur through the
repression of the viral oncogenes.

Some studies have shown that E2 can induce apoptosis
in HPV negative cell lines. Furthermore, this protein
binds to and activates pro caspase 8, through its transac-
tivation domain, overcoming the need for adaptor pro-
teins involved in the classical extrinsic pathway that is
Fas-dependent [71] (Figure 2B).

The involvement of caspase 8 in apoptosis induced by
E2 was also demonstrated in HPV16, in which E2 di-
rectly interacts with c-FLIP [72].

Because E2 is expressed in the intermediate differenti-
ated layers of the HPV infected lesions, it is possible that
in vivo, the modulation of caspase 8 by E2 might play a
role in the formation of warts, via an as yet unknown
mechanism [73].

The role of p53 in E2- induced apoptosis is contro-
versial. E2 induces apoptosis in HPV positive- and
negative-cell lines through both p53 dependent and
p53 independent mechanisms [71,74]. It is worth men-
tioning that E2 proteins from the low-risk HPV6 and
HPVI11 cannot induce apoptosis, which could be due
to their cellular localization, because the E2 proteins of
low-risk HPVs are located only in the nucleus, whereas
those of HR-HPVs are localized in the both nucleus
and cytoplasm [74].
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Even the role of E2 in apoptotic induction in HPV life
cycle is not yet understood, this effect could be related
to the activation of E1 during viral genome replication.
E2 could also be inducing apoptosis in those cells that
do not allow the virus to properly complete the viral
cycle.

Hepatitis viruses

Liver cancer or hepatocellular carcinoma (HCC) is the
third leading cause of cancer related deaths in the world
[75]. It is the fifth most common cancer in men and the
eighth in women. The Hepatitis virus is the main etio-
logic agent of HCC [76]. The Hepatitis viruses are the
most common infections that affect the liver. To date, 5
responsible agents for hepatitis have been identified and
are characterized as follows: Hepatitis A virus (HAV), B
(HBV), C (HCV), D (HDV), and Hepatitis E virus
(HEV). HBV and HCV are responsible for 70% of hepa-
tocellular carcinoma, of which 60% are caused by HCV
[77,78]. This phenomenon can be explained by certain
biological and clinical characteristics of HCV that favor
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hepatocarcinogenesis, such as the high capacity of HCV
to induce a chronic infection. In contrast, after 10 years
of infection, HBV only induces chronic cirrhosis in a
small percentage of patients (5-10%), while the percent-
age of patients who develop this disease as a conse-
quence of HCV infection is 55-60% [79].

Viral genome and structure

HCV belongs to the Flaviviridae family [80]. Its genome
comprises a single strand of DNA which encodes a single
3000 bp open reading frame (OREF), flanked by untrans-
lated regions (UTR) at the 5" and 3’ ends (Figure 3A)
[81]. The ORF encodes a polyprotein that is processed to
produce three structural proteins, core C, E1 and E2, a
small integral protein p7, and six nonstructural (NS) pro-
teins NS2, NS3, NS4A, NS4B, NS5A, and NS5B. The
structural proteins are found in the N-terminal region,
while the nonstructural proteins are encoded by the
C-terminus (Figure 3A) [82]. The main functions of
these viral proteins are summarized in Table 2 [83-91]
Figure 3A.
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Figure 3 The Hepatitis C virus and apoptotic signaling pathways. A) The Hepatitis C virus genome. A single open reading frame encodes
four structural proteins and six nonstructural proteins. B) HCV-infected hepatocytes are recognized by the immune cells, that promote apoptosis
via the death receptor ligands, TRAIL, TNFa, CD95 ligand, and TGF-B, as well as granzyme B/perforin (Pink lines). Ligand-induced apoptosis
activates caspase-8, whereas activation of caspase-9 occurs via the mitochondrial permeability transition (PT) pore, triggering the activation of
caspases cascade and the irreversible induction of apoptosis. For virtually all HCV proteins, pro- and anti-apoptotic effects have been described
(Yellow lines). The structural (core C, E1 and E2) and nonstructural (NS2, NS3, NS4A and NS5A) proteins participate in the extrinsic and intrinsic
apoptotic pathways. Modified from Fischer R. et al. (2007) [92].
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Table 2 Functions of HCV viral proteins
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Structural proteins Functions

Core Forms the nucleocapsid and participates in signaling pathways that control cellular proliferation and apoptosis [83].
E1 and E2 Glycoproteins that make up the viral envelope, they bind to the receptor on the host cell to facilitate viral entry [84].
p7 Creates hydrophobic pores with ionic channel activity. Fundamental in the assembly and release of viral particles [85].

Nonstructural proteins

NS2 Forms a catalytic complex with NS3 to cleave the NS2-NS3 junction. Important for the production of infectious viruses [86].

NS3 Serine protease that cleaves the junctions between NS3/NS4A, NS4A/NS4B, NS4B/NS5A and NS5A/NS5B. Contains a helicase
domain implicated in viral replication. Cofactor NS4A [87].

NS4A Important cofactor for NS3 activity participates in host innate immune response evasion and regulates viral transcription [88].
NS4B Induces formation of membranous web specialized sites where RNA replication takes place [89].

NS5A Binds viral RNA participating in viral replication; promotes particle assembly [90].

NS58B Is the RNA polymerase responsible for replication of the viral genome [91].

Apoptotic processes induced by HCV infection

The induction of apoptosis is a mechanism used by he-
patocytes to defend against HCV infection. The immune
response is mediated mainly by macrophages and nat-
ural killer (NK) cells, which can directly cause the death
of the infected cells [93]. Additionally, this process can
be mediated by the receptors and ligands of the Tumor
Necrosis Factor family, specifically, the TNFa/1 recep-
tors, CD95/CD95 ligands, and TRAIL receptors 1 and 2
(Figure 3B) [93]. The binding of the ligands to the death
receptors results in the activation of caspase 8 which in
turn, activates two signaling pathways. The first pathway
involves the proteolytic cleavage of Bid, the release of
mitochondrial cytochrome c, the activation of caspase 9
[94], and the effector caspases 3, 6 and 7. In the second
signaling pathway, caspase 8 directly activates the ef-
fector caspases. In this case, apoptosis is also regulated
by inhibitors, such as survivin and c-FLIP, which can
block caspase activity [95]. HCV viral proteins have the
ability to inhibit host induced apoptosis, fact that could
allow the establishment of a persistent infection.

The core protein

It has been demonstrated that the core protein of HCV
has both pro-apoptotic and anti-apoptotic functions.
This protein can inhibit CD95 receptors and TNFa in-
duced apoptosis by inhibiting the liberation of cyto-
chrome ¢ and, thus, by activating caspases 9, 3 and 7
(Figure 3B) [96]. Additionally, the direct binding of the
core protein to the cytoplasmic domains of the CD95 and
TNFa receptors has been reported to induce a pro-
apoptotic effect by altering mitochondrial function. Specif-
ically, this effect induces the production of reactive oxygen
species, causing a change in mitochondrial membrane po-
tential, which permits the release of cytochrome c [97].
Furthermore, it has been postulated that this protein can
bind to death domains, such as FADD and to the c-FLIP

inhibitor, resulting in an anti-apoptotic effect [98]. Many
studies have indicated that the core protein can modulate
p53 in a positive or negative manner [99,100].

HCV can also induce apoptosis through the interaction
of NS5A with the protein kinase R (PKR), the kinase regu-
lated by double-stranded RNA (dsRNA). PKR has different
functions, such as the evasion of the antiviral action of
interferon and the induction of apoptosis. This kinase cata-
lyzes the phosphorylation of the transcription factor elF-2,
leading to the inhibition of anti-apoptotic protein synthesis
during viral infection [101] (Figure 3B). In turn, PKR is ac-
tivated via binding to the NS5A viral protein.

E1 and E2 proteins

As is the case for other oncogenic viruses, is clear that
Hepatitis C has a dual role in regulating apoptosis. For in-
stance, HCV E1 and E2 proteins, which mediate the binding
and entry of HCV into the host cell, are capable of inhibiting
Fas-mediated apoptosis by repressing the activation of
caspase-8 and the release of cytochrome ¢ from the mito-
chondria [102]. However, these structural proteins increase
the expression of FasL and the ability of hepatocytes to in-
duce apoptosis in activated CD4+ and CD8+ T cells, which
may contribute to the persistence of HCV [103,104].

Nonstructural proteins
Figure 4 shows the roles played by HCV nonstructural
proteins in the apoptotic pathways. The processing of
nonstructural proteins involves the formation of auto-
catalytic protein complexes. NS2 is a transmembrane
protein, found in the endoplasmic reticulum. It binds to
and activates cell death-inducing DNA fragmentation
factor (DFFA)-like effector b, (CIDE-B), which is a key
inducer of the extrinsic apoptotic pathway [105].

The NS3 protein promotes the degradation of Cardif,
a protein that translocates to the mitochondrial mem-
brane and activates the intrinsic pathway [106]. When it
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Figure 4 HTLV-1 and apoptotic signaling pathways. A) The HTLV-1 viral genome. The genome consists of a single- positive strand of RNA.
The long terminal repeats (LTRs) flank the ORF (boxes) of the structural (orange, red, yellow and pink) and the nonstructural (blue, green) viral
proteins. B) Main death pathways controlled by HTLV-1 proteins. In infected cells receptor-mediated death (through CD95/Fas) is inhibited by a
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Bad and by activating the NF-kB pathway. The accessory proteins, p12 and p13, regulate Bcl-2 and caspases 3 and 9, and also ROS production

by mitochondria.

associates with the NS4A cofactor protein, a complex is
formed. This complex localizes in the mitochondria and
participates in the release of cytochrome c and the acti-
vation of caspase 8 [107]. The functions of NS5A are
not well defined yet; but it is thought to interfere with
the response to IFN and may participate in viral replica-
tion. With respect to its role in apoptosis, this protein
has sequences homologous to bcl-2 and binds to
FKBP38, increasing the anti-apoptotic effect of Bcl-2.
Conversely, it has been demonstrated that NS5A inhibits
the pro-apoptotic activity of Bax in hepatocytes cells
[108]. The anti-apoptotic effect of NS5A is also medi-
ated by the recruitment of p53 in the cytoplasm, the ac-
tivation of STAT3, and the increase in the expression of
Bcl-XL and p21.

The impact of the induction of apoptosis in chronic
HCYV infection not well understood. Almost for each of

the viral protein studied, according to the experimental
model, pro-apototic and anti-apoptotic effects have
been identified. The modulation of apoptosis by HCV
proteins is an important issue to study in order to
understand its role in acute HCV infection and
persistence.

Human t-cell leukemia virus type 1 (human t-lymphotropic
virus type 1)

Currently, there are close to 20 million people infected
with the Human T-Cell Leukemia virus type 1 (HTLV-1)
worldwide and between 3 to 5% of these individuals de-
velop diseases related to this infection [109].

HTLV-1 is a member of the Retroviridae family, which
is in the Oncovirus subfamily. It is a RNA retrovirus that
is involved in carcinogenic processes due to its participa-
tion in malignant adult T-cell leukemia. Additionally, it
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is involved in the development of a subacute myelop-
athy, termed HTLV-1 associated myelopathy [110].

Viral genome and structure

HTLV-1 mainly infects CD4+ T-lymphocytes; once the
infection has been established, it can remain integrated
in the host in the form of a provirus. HTLV-1 has a rela-
tively small genome of 9 kb, comprising the structural
and enzymatic genes gag, pro, pol, and env, which are
flanked by two terminal regions of repeated sequences
(LTRs) (Figure 4A) [108]. The long terminal repeat
(LTR) region is subdivided into three regions, U3, R and
U5 and contains cis-active elements that are essential for
the transcription and expression of viral genes. The pX
region contains four open reading frames (ORFs), that
encode the accessory proteins (p12', p13", p30™), the
posttranscriptional regulator REX (ORF III) and the
transactivator Tax (ORF IV) [111]. The regulatory pro-
teins Tax and HBZ play a particularly important role in
viral persistence and pathogenesis.

Role of Tax in apoptosis

Tax is a nuclear protein encoded by HTLV-1 that has
been implicated in viral replication, because it is a tran-
scriptional activator of the LTR. This protein participates
in infection, cell proliferation and cell survival [112]. Tax
can also activate transcription factors, such as: NF-kB,
CREB, SRE, and AP-1.

Tax suppresses a wide wide range of pro-apoptotic fac-
tors and induces the expression of apoptosis inhibitors.
Tax regulates important signaling pathways, such as the
nuclear factor of kappa light polypeptide gene enhancer
in B-cells (NF-kB), and Akt, both anti-apoptotic proteins
which are currently being studied as possible targets for
the treatment of adult T-cell leukemia/lymphoma
(ATLL) (Figure 4B) [113]. NF-«B is regulated by a family
of inhibitors, IkappaB, that retain NF-kB in the cyto-
plasm, thus preventing its function. The phosphorylation
of IkappaB inhibitors by the IKK complex leads to their
ubiquitination and degradation, thus activating NF-«B
[114]. This effect induces the transcription of a series of
anti-apoptotic proteins, such as the Bcl-xL [115] and ex-
pression of IAP proteins [116]. Tax activates IKK [117]
and can form complexes with the IKKa / IKKy proteins,
thus activating NF-xB [118]. Additionally, Tax can di-
rectly regulate the transcription of CBP/p300, a tran-
scriptional coactivator of NF-«xB [117-119].

Tax also modulates the signaling pathway regulated by
Akt, which is constitutively active in the majority of pa-
tients with ATLL [120]. Akt induces the activation of
transcription factors, such as AP-1 and B-catenin [121],
leading to expression of Bcl-xL, the repression of p53,
and overall cell survival.
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In addition to the structural proteins, HTVL-1 en-
codes two accessory proteins, p12 and pl3, that have
been implicated in the regulation of Bcl-2 family mem-
bers and caspase 3 and 9 (Figure 4B) [122].

The Epstein-barr virus

The Epstein-Barr virus (EBV) belongs to the gamma-1
subfamily of the herpes virus, also called lymphocriptovirus
(LCV). The LCVs only affect primates and EBV is the only
member that infects humans. EBV was initially isolated
from Burkitt lymphoma (BL) cells [123]. After primary in-
fection, this virus can establish long-term latent infections
in B-lymphocytes. EBV has been associated with a number
of lymphoid and solid tumors in both immunocompetent
and immunocompromised individuals.

Viral genome and structure

The Epstein-Barr virus has a linear, double-stranded
DNA genome of approximately 184 kb that is wrapped
inside a protein capsid (Figure 5). Its DNA contains a
short Ug and a long U;, domain that encode the majority
of its viral proteins, the internal region, IR1, and the ter-
minal tandem repeat region, TR. When the virus infects
a cell, which typically only requires a single virion, the
ends of the linear genome bind to each other and persist
as episomal DNA [124]. During the latent phase, there is
no production of EBV virus and only a small number of
viral genes are expressed. These genes affect the normal B
cell growth mechanisms, leading to the immortalization of
the cells [125]. The latent infection of immortalized B cells
is associated with six nuclear antigens, EBNA1, EBNA2,
EBNA3A, EBNA3B, EBNA3C and the leader protein
EBNA-LP; three membrane proteins, LMP-1, -2A and -2B;
two small nuclear RNAs, EBER1 and EBER2; and tran-
scripts from the BART region, which encodes the majority
of the EBV micro RNAs (miRNAs) [126]. The expression
of the complete repertoire of viral latent genes is referred
to as Latency III [127,128].

The BZLF1 and BRLF1 proteins are key mediators of
the transition from the latent cycle to the lytic cycle
transition. These proteins are transactivators for other
genes related to the lytic cycle and induce the expression
of the viral DNA polymerase. To induce the replication,
approximately 80 viral proteins are expressed during the
lytic phase, including transcriptional activators, DNA
replication factors, and structural proteins, such as the
antigens that form the viral capsid.

EBV and apoptosis

The fact that EBV positive BL tumor cells present the
virus in a latent form strongly suggests that EBV is es-
sential for the survival of BL cells in vivo. Even though
the virus can be eliminated from BL cells in culture
through continuous passages, the direct elimination of
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EBV from these cells induces apoptosis [129]. EBNA]1,
the EBERs, and the viral miRNAs have all been pro-
posed to be involved in BL cell proliferation and/or re-
sistance to apoptosis, thus conferring a selective
advantage to neoplastic cells. There is evidence that
EBNAL has an anti-apoptotic effect in BL cells [124],
but the mechanism has yet to be elucidated. Some
studies suggest have suggested that the EBERs and
EBNALI are sufficient to promote the malignant growth
of BL cells in vivo, even in the absence of any other la-
tent phase EBV proteins [129,130].

PKR is a central effector of many apoptotic and
stress signaling pathways, and is activated through di-
verse stimuli, including dsRNA. EBER1 has been
shown to be an inhibitor of PKR [131]. The EBERs are
dsRNA molecules that have the ability to inhibit PKR
activity by binding to it, thus preventing further inter-
actions with other dsRNA molecules and precluding
the induction of antiviral and apoptotic pathways. The
role of EBER in PKR inhibition during tumorigenesis
has not been elucidated. However, the tumorigenic po-
tential of cells that express inactive PKR has been
clearly documented [132]. In addition to inhibiting
PKR, EBERs have been implicated in apoptosis resis-
tance via the alteration of the expression of the central
anti-apoptotic factor, Bcl-2. Initial studies have shown

that BL clones expressing EBER also have increased
expression of Bcl-2 [133].

Moreover, during the EBV infectious cycle, the viral
protein LMP1 has been proposed to mimic the signaling
induced by CD40 by providing erroneous survival signals
in infected B cells within the germinal center [134].
LMP1 can contribute to neoplastic transformation and
to tumor progression by modulating the TNF receptor
pathway, through its interaction with the CTAR1 and
CTAR2 domains in a ligand-independent manner [135].
In turn, these domains interact with the factors associ-
ated with TNF-R (TRAFs) and the death domains
coupled with TNF-R (TRADDs) [136]. The association
of LMP1 with the TRAF and TRADD molecules acti-
vates a signaling cascade that results in the constitutive
activation of the JNK, NFKB and PI3K pathways. The
activation of these key-signaling pathways increases
cellular growth and promotes survival through the
induction of anti-apoptotic factors, including Bcl-2
and A20.

Kaposi’s sarcoma Herpesvirus

Kaposi’s sarcoma (KS) is a malignant, multifocal systemic
disease that originates from the vascular endothelium. The
disease has a variable clinical course and most frequently
manifests as skin lesions. Different clinical forms can be
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distinguished, including the so-called classic Kaposi’s sar-
coma, which results from immunosuppression and often
occurs in organ transplant recipients or after long-term
cortisone treatment; the endemic African Kaposi’s sarcoma;
and the epidemic HIV-associated Kaposi’s sarcoma. KS is
among the most common malignancies occurring in the
HIV-infected patients. Although the incidence of AIDS-
associated KS has declined since the implementation of
highly active antiretroviral treatment (HAART), up to 50%
of patients with AIDS-KS never achieve total remission
[137]. All types of Kaposi’s sarcoma are due to the infection
with Kaposi’s sarcoma-associated herpesvirus (KSHV), also
known as Human Herpesvirus 8 (HHV-8) [138]. While its
routes of transmission are not completely understood, im-
portant known routes are sexual transmission, saliva,
blood or organ transplantation [139]. In addition to KS,
KKSHYV has been associated with lymphoproliferative disor-
ders, including multicentric Castleman’s disease (MCD),
plasmablastic lymphoma, and primary effusion lymphoma
(PEL) [140].

KSHYV infects endothelial cells or circulating endothe-
lial and/or hematopoietic progenitors [141]. Its oncogen-
icity is supported by the numerous pro-angiogenic
molecules that are induced following the infection of
endothelial cells, including the VEGF-VEGER family, cy-
clooxygenase 2 (COX2) and angiogenin [142]. However,
in the general population, KSHV infection rarely leads
to KS, indicating the need of cofactors, such as immuno-
suppression, in order for a tumor to be induced.

The KSHV genome

The KSHV genome is a linear, double-stranded DNA of
approximately 165 to 170 kb in length [143]. During la-
tency, it may also exist in a circular, episomal form in the
host nucleus [144]. Among the viruses that infect humans,
KSHV is most closely related to the gammaherpesvirus,
Epstein Barr (EBV).

KSHV encodes 87 open reading frames (ORFs) and at
least 17 microRNAs, 14 of which co-express as a cluster.
KSHYV has at least 14 ORFs that encode cellular orthologues
that play important roles in controlling the cell cycle and cell
signaling [145].

The life cycle of all herpesviruses includes prolonged la-
tent and lytic phases. Reactivation occurs when the pro-
moter of ORF50 is activated and the replication and
transcription activator RTA is expressed, which is the main
regulator of the lytic replication program [145]. During the
latent phase, a subset of genes are expressed, such as the
latency-associated nuclear antigen (LANA), vCyclin,
vFLIP, kaposins and KSHV-encoded 17 miRNAs, which
are derived from the processing of 12 pre-miRNAs
[146]. These genes are required for viral episome
maintenance, host cell survival, and the suppression of
lytic gene activation [147]. These protein increase
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proliferative signals, decrease apoptosis and induce the
activation proangiogenic and inflammatory signals, as
well as limitless replicative potential.

The role of KSHV in apoptosis

Latent phase proteins

The multifunctional protein, LANA, maintains the viral
episome and can also interfere with important cellular
processes. The main functions of KSHV latent proteins
are exposed in Table 3. LANA is considered to be an
oncogenic protein due to its ability to dysregulate
tumor suppressor pathways associated with p53 and
pRb and to transform primary rat embryo fibroblasts
in cooperation with the cellular oncogene H-ras [148].
In addition, this protein has been shown to deregulate
Wnt signaling by altering the subcellular distribution
of glycogen synthase kinase 3 (GSK-3), a negative regu-
lator of B-catenin [149]. LANA modulates apoptosis by
direct binding to p53 (Figure 6). It also associates with
different host cell proteins, including chromatin-
associated proteins, which are involved in the epigen-
etic silencing of TGFpP expression. These associations
have antiproliferative and apoptotic effects on epithe-
lial, endothelial, and hematopoietic cell lineages [150]
Table 3.

vCyclin (viral homolog of cellular cyclin D) is a consti-
tutive activator of cyclin dependent kinase 6 (CDK6).
The expression of vCyclin and the formation of the
complex, vCyclin/CDK®6, leads to defects in cytokinesis,
which result in polyploidy and the activation of p53
[152]. However, in the absence of functional p53, cells
survive, exposing the oncogenic role of vCyclin. Sub-
strates of the vCyclin/CDK6 complex include pRb and
p27 [153]. As such, vCyclin efficiently accelerates cell-
cycle progression, even in the presence of CDK inhibitors.
In contrast, it has been demonstrated that the expression
of vCyclin in cells with increased levels of CDK6 triggers
apoptosis independently of p53 and pRb. These findings
suggest that vCyclin may have both growth-promoting
and apoptotic functions in the development of Kaposi’s
sarcoma.

VvELIP (viral FLICE inhibitory proteins) is a small poly-
peptide composed of two tandem death effector domains
(DEDs). The protein is homologous to the cellular FLIP
proteins, which are also called FLICE, and blocks the
signaling of caspase-8 (Figure 6). This protein could be
recruited to DISC through the interaction of its tandem
DEDs with DED. As such, FLIP excludes procaspase 8
from the DISC complex [154].

Several KSHV miRNAs have also been shown to
modulate host gene expression, suggesting some roles
for the miRNAs in the pathogenesis of malignancies
induced by KSHV [165]. The target of miR-K5 is the
Bcl2 associated factor, BCLAF1, which promotes
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Table 3 Functions of KSHV viral proteins

Latent phase proteins Functions

LANA 1,2 Establish and maintain the latency in KSHV infected cells, bind directly to p53 and pRb [148].
Kaposin A, B Induce the expression of growth factor receptors, possible transformation activity [151].

veyclin Forms a complex with CDK-6 to inactivate the Rb protein, promoting cell cycle progression and

proliferation [152]. Induces apoptosis independent of p53 [153].
VFLIP Blocks caspase 8 activation [154], potent activator of NFkB [154].
Lytic phase proteins

ORF50 (RTA) Regulates the lytic replication [155].

K1 Activator of the molecules that mimic signaling via the B cell antigen receptor [156].

K8 Regulates lytic-cycle DNA replication [157].

K3, K5 Mediate the down regulation of several immunomodulatory proteins, including CD86, intercellular
adhesion molecule 1 (ICAM-1; CD54), and IFN-R [158].

vIL-6 Induces angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3 signaling pathway [159].

VIRF-1 Binds and inhibits pro-death activities of proteins Bid and Bim [160].

vMIPs Binds to chemokine receptors and induce angiogenesis [161].

vGPCR Transformation activity; promotes the secretion the growth factors, such as VEGF, bFGF, IL-8, and IL-6 [162].

vBcl-2 Inhibits apoptosis [163].
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Figure 6 Different KSHV proteins inhibit intrinsic and extrinsic apoptotic pathways. VFLIP directly binds to death effector domains, or to
the TRAF complex, inhibiting activated-Fas signaling, or activating NF-kB. Both VIAP and vBCL-2 act at the mitochondria to stabilize the
mitochondrial membrane and inhibit the activating effects of BH3-only pro-apoptotic moleculesvCyclin LANA1, LANA2, K-bZIP and RTA inhibit
p53-induced apoptosis either through direct binding or through inhibition of the p300/CBP coactivator used in p53 transcriptional signaling.
VIRFbinds and inhibits pro-death activities of proteins Bid and Bim. Modified from Moore P.S. et al. (2007) [164].
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apoptosis [166]. MiR-K1 targets IkBa, an inhibitor of
NF-«kB, which inhibits the activation of lytic viral pro-
moters [167].

Lytic phase proteins

The aberrant expression of the ORF50 protein is required
for the initiation of the lytic phase and the expression of
many KSHV-encoded lytic genes, such as K1, K3, and K5;
viral macrophage inflammatory proteins (vMIPs); K12; viral
G-protein-coupled receptor (vGPCR); viral dihydrofolate re-
ductase (VDHFR); DNA replication factors; and thymidylate
synthase [168].

Other lytic proteins that are important in cellular trans-
formation are the viral orthologues of cellular proteins
such as viral interleukin-6 (vIL-6), vBCL-2, VIRF and
vCCLs, whose functions are summarized in Table 3.
vBCL-2 inhibits apoptosis through the inhibition of pro-
apoptotic BH3 domain-containing proteins (Figure 6)
[169,170]; while VIRF1 inhibits p53-induced apoptosis
through its interaction with the central DNA-binding do-
main of p53 and with the upstream ATM kinase [170].

K1, which is the first ORF of KSHYV, inhibits apoptosis by
inducing the release of growth factors such as VEFG, lead-
ing to the subsequent activation of the PI-3 K-AKT path-
way. Prior to cell lysis, the inhibition of apoptosis by lytic
proteins could also contribute to cell transformation, viral
replication and virion production and assembly [171].

Conclusions

With the acceptance that tumor viruses account for a
substantial fraction of human cancers, tumor virology
has evolved from a niche area of research to a central
and active field of cancer research. The recent develop-
ment of powerful new virus detection methods may fur-
ther extend the spectrum of virus-associated cancers in
the future. Cancers exhibiting epidemiological features
that are compatible with an infectious cause and cancers
that are linked to immunosuppression, are particularly
interesting candidates to screen, with the goal of identi-
fying new tumor viruses. Tumor viruses represent prom-
ising targets for specific preventive and therapeutic
anticancer strategies, as evidenced by the success of the
HBV and HPV vaccines. These findings should further
motivate research on improved or novel prophylactic
vaccines that may protect against other tumor viruses.
The deeper understanding of the biology of oncogenic
viruses and the defense mechanisms of the host should
also facilitate the development of specific therapeutic ap-
proaches, because viruses represent targets that are
unique to diseased cells.

Successful viral replication requires not only the effi-
cient production and spread of viral progeny, but also
the evasion of host defense mechanisms that limit viral
replication by Kkilling the infected cells. In addition to
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inducing immune and inflammatory responses, most vi-
ruses encode proteins that interact with the biochemical
pathways regulating apoptosis of the infected cell. For
some viruses, the inhibition of apoptosis seems to be es-
sential for the maintenance of viral latency. For other vi-
ruses, the carefully choreographed induction of apoptosis
during infection may represent the basis for cytotoxicity
and be an important outlet for the dissemination of virus
progeny. For non-lytic virus, pro-apoptotic effects could
be implicated in a properly completion of the viral cycle.
As these processes are understood in greater detail, the
opportunities for the development of new drugs to com-
bat clinically important viruses will almost certainly arise.
Such drugs could promote the early death of infected
cells, inhibit virus release or, in the case of latent viruses,
manipulate the latency switch to minimize the effects of
infection.

As the infection mechanisms of oncogenic viruses are
better characterized, remarkable insights into the mo-
lecular biology of apoptosis will be forthcoming.
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