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Purpose: Following transplantation, cultured retinal progenitor cells (RPCs) integrate into the diseased host retina and
exhibit morphologies and markers indicative of local cellular phenotypes. In vitro analysis of cultured RPCs allows detailed
examination of marker gene expression during the initial phase of differentiation and can provide insight into the variables
influencing this process.
Methods: Using cultured murine RPCs, this study compares the effects of fetal bovine serum (FBS) with those of ciliary
neurotrophic factor (CNTF), individually or in combination with epidermal growth factor (EGF). Differentiation was
assessed by way of the relative expression of 17 genes using quantitative PCR (qPCR) at five time points over a seven-
day period.
Results: Both CNTF and FBS rapidly altered the gene expression of RPCs, with very marked upregulation of glial fibrillary
acidic protein (GFAP; FBS>CNTF) and marked down-regulation of the proliferation marker Ki-67, consistent with the
induction of differentiation. The evidence supports a preponderantly pro-glial influence for both the FBS and CNTF,
however, neuronal markers were also upregulated to a lesser extent. Immunocytochemistry confirmed subpopulations
labeling with neuronal markers, including rhodopsin. In the presence of sustained EGF stimulation, the differentiating
influences of both FBS and CNTF remained perceptible as transient peaks of relative gene expression, but were markedly
diminished overall.
Conclusions: This study  shows  that  it  is  possible to compare the  relative efficacy of in vitro differentiation protocols
using murine RPCs and qPCR. The differentiating influences of both serum and CNTF were confirmed, but shown
to be powerfully moderated  by  EGF.  This suggests that  EGF withdrawal is  the dominant  feature of  these  differentiation
protocols and that exposure to either serum or CNTF is  insufficient  to irreversibly commit a  cultured RPC population
to terminal differentiation unless accompanied by concomitant cessation of mitogenic stimulation.

The permanent loss of retinal neurons underlies several
common blinding conditions, most of which are effectively
untreatable. The idea of replacing lost neurons in the diseased
retina has long been entertained as a speculative, yet
ostensibly unrealistic, notion up until the advent of the current
area of retinal transplantation studies. The demonstration that
grafts of embryonic retinal tissue could survive and form
functional connections [1,2] with the host visual system in
mammals led to renewed investigations of the potential for
orthotopic graft-to-host integration within the retina. With
these studies, the limitations of immature retinal tissue grafts
gradually became apparent [3]. In particular, it emerged that
a method was needed for achieving the widespread integration
of grafted cells. This result was first reported following the
use of hippocampal progenitor cells as donor cells [4,5].
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The work with brain-derived progenitor cells showed that
these cells were capable of cytoarchitectural integration and
morphological development consistent with retinal neurons,
including photoreceptors [5], and survived without the need
for exogenous immune suppression [6], however, the
evidence for expression of photoreceptor markers was quite
limited [7]. Together, these findings suggested that brain
progenitors are developmentally restricted from fully
differentiating into photoreceptors under the conditions
tested. To explore whether more complete photoreceptor
differentiation could be achieved using an alternate cell type,
progenitor cells were subsequently cultured from the
immature retina. These retinal progenitor cells (RPCs) not
only integrated into the outer nuclear layer (ONL) of the retina
but also expressed the photoreceptor markers, recoverin and
rhodopsin, and were associated with partial preservation of
light sensitivity in animals with photoreceptor degeneration
[8]. Similar results have subsequently been obtained with
uncultured precursor cells [9] and following differentiation of
embryonic stem cells [10,11], lending additional support to
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the basic premise of retinal cell replacement through cell
transplantation.

Viewed as a potential therapeutic strategy, the
replacement of retinal cell types using stem, progenitor, or
precursor cells presupposes that the grafted cells not only
integrate but also differentiate completely and along the
appropriate lineages. The availability of cultured RPCs now
affords a greater opportunity for systematic investigation of
the differentiation process in vitro. Differentiation conditions
that are among the most widely applied to retinal explants and
RPC cultures include the substitution of mitogenic growth
factors with either fetal bovine serum (FBS) or ciliary
neurotrophic factor (CNTF), the later representing an example
of a defined, serum-free condition.

The differentiating influence of serum has long been
appreciated and neural stem and progenitor cells were only
successfully propagated in culture once a serum-free method
had been established [12]. CNTF has not only been implicated
in retinal development, but has also been shown to influence
RPCs [13] and retinal explants [14], and has found an
additional role in the neuroprotection of degenerating
photoreceptors [15-17]. FBS and CNTF have both been
reported to result in glial specification and induction of glial
fibrillary acid protein (GFAP) gene expression [13,18-21].
Interestingly, both methods have also been reported to
promote the differentiation of particular neural cell types
[13,14,22-24]. To help clarify the relative influences of these
different treatment conditions, direct comparisons of FBS-
and CNTF-mediated differentiation are needed.

Here we employ quantitative PCR (qPCR) to examine the
early sequential changes induced by these treatment
conditions in the expression of a profile of genes
encompassing progenitor, neuronal, and glial markers by
murine RPCs. These results are in turn compared to RPC
cultures treated with the same differentiating agents, but in the
presence of sustained mitogenic stimulation with epidermal
growth factor (EGF). This represents, to our knowledge, the
first direct comparative analysis of the relative effects of these
commonly employed conditions on a type of CNS progenitor
cell.

METHODS
Isolation and culture of retinal progenitor cells: RPCs were
previously isolated from the neural retina of postnatal day one
GFP transgenic mice [8]. Briefly, retinas of newborn GFP
transgenic mice (gift from Dr. Masaru Okabe, University of
Osaka, Japan) were surgically removed following
decapitation and finely chopped with forceps and digested 20
min in 0.1% type I collagenase (Invitrogen, Carlsbad, CA).
The supernatant with dissociated cells was then passed
through a 100 μm mesh strainer and centrifuged. It was then
seeded in complete culture medium, henceforth designated
standard medium (SM), consisting of advanced DMEM/F12

(Invitrogen), 1% N2 neural supplement (Invitrogen), 2 mM
L-glutamine  (Invitrogen), 50 U/ml  penicillin-streptomycin
(Invitrogen), and 20 ng/ml epidermal growth factor
(recombinant human EGF; Invitrogen). Cultured medium was
changed every two days. GFP+ clusters (neurospheres)
appeared within the first two to three days and proliferating
cells were passaged at regular intervals of four to five days.
These cells were immunoreactive for nestin (a marker for
neural progenitor cells) and proliferation marker Ki-67. All
animals were handled according to ARVO animal usage
standards and following approval by the animal care and use
committee of the Schepens Eye Research Institute, where
original derivation of the cells was performed.
Differentiation of retinal progenitor cells in vitro: Passage 30
RPCs were trypsinized and dissociated into single cells with
a fire-polished glass pipette. These cells were then plated at a
density of 5×104 cells/ml in T75 flasks or fibronectin-coated
four-well culture slides and allowed to grow for 16–20 h at
37 °C in SM. The EGF-containing SM was then replaced with
one of four alternate differentiation media still containing
advanced DMEM/F12, which had 2 mM L-glutamine, 1% N2
neural supplement and 50 U/ml  penicillin-streptomycin,  but
with different active reagents, namely, 10% FBS (Sigma-
Aldrich, St. Louis, MO), 10 ng/ml CNTF (Chemicon,
Temecula, CA), 10% FBS+20 ng/ml EGF, or 10 ng/ml CNTF
+20 ng/ml EGF (Table 1). Controls were replated in SM. The
medium was changed every two to three days. The cells were
collected for RNA extraction at multiple time points, namely,
day 1, day 3, day 5, and day 7. RNA was analyzed using
quantitative reverse transcription (RT)–polymerase chain
reaction (PCR). Additional cells were grown on four-well
slides under 10% FBS conditions or in SM and fixed after
seven days for immunocytochemical studies.
Cell viability assay: To assess the influence of treatment on
cell viability, we tested GFP-mouse retinal progenitor cells
(gmRPCs) under six different conditions consisting of
baseline media and either no growth factors, 20 ng/ml EGF,
10 ng/ml CNTF, 10% FBS, 20 ng/ml EGF + 10 ng/ml CNTF
or 20 ng/ml EGF +10% FBS, for three days. Cell viability was
measured using the Cell Counting Kit-8 (CCK-8) assay
(catalog number: CK07–11; Dojindo, Kumamoto, Japan). In
brief, cells were suspended at a final concentration of
1×104 cells/well and cultured in 96-well flat-bottomed
microplates. After three days, 10 μl of 2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium, monosodium salt (WST-8) was added to each
well, mixed, and the plates incubated for an additional 4 h at
37 °C to convert WST-8 into formazan. The absorbance at 450
nm (OD450) was measured with a spectrophotometer, and the
resulting OD450 values obtained, which were directly
proportional to cell viability. All experiments were performed
in triplicate.
RNA isolation and quality controls: Total RNA was extracted
from each sample using the RNeasy Mini Kit (Qiagen,
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Valencia, CA). DNaseI was used to digest and eliminate any
contaminating genomic DNA. RNA concentration was
measured for each sample at a wavelength of 260 nm (A260),
and the purity of extracted total RNA was determined by the
A260/A280 ratio. Quantitative RT–PCR analyses were only
performed on samples that had A260/ A280 ratios between
1.9 and 2.1.
Reverse transcription and quantitative PCR analysis: We
used 2 µg of total RNA in a 20 µl reaction for reverse
transcription employing an Omniscript cDNA Synthesis Kit
(Qiagen). A primer set for each gene was designed using
Primer3 software. The primers were synthesized
commercially (Invitrogen), and qPCR was performed using
an Applied Biosystems 7500 Fast Real-Time PCR Detection
System (Applied Biosystems, Foster, CA) in 20 µl total
volume containing 10 µl of 2× Power SYBR Green PCR
Master Mix (Applied Biosystems), 10 µl of cDNA, and 300
nM of gene-specific primers (Table 2). Cycling parameters
for qPCR were as follows: initial denaturation at 95 °C for 10
min, followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C.
To normalize template input, we measured β-actin (ACTB)
(endogenous control) transcript levels for each sample. The
PCR efficiency of the reaction was measured with primers
using serial dilution of cDNA (1:1, 1:5, 1:25, 1:125, 1:625,
and 1:3,125). The relative expression of the gene of interest,

(Etarget)ΔCt target (control−treated)

(Eref)ΔCt ref (control−treated)

was then evaluated by the Pfaffl method [25]. The value
obtained from cycle threshold (Ct) represents the number of
PCR cycles at which an increase in fluorescence signal (and
therefore cDNA) can be detected above background and the
increase is exponential for the particular gene. Data are
expressed as fold change relative to untreated controls, after
normalizing to ACTB.

Gene profile: The cells used in the current study have been
shown to be similar in phenotypic potential to late RPCs [8,
13,26]. The markers examined were therefore chosen to
reflect distinguish cell types within the anticipated phenotypic
spectrum (Table 2).

Immunolabeling: RPCs were plated on four-well chamber
slides coated with fibronectin. Cells were fed every two days
and fixed on day 7 with freshly prepared 4%
paraformaldehyde (Invitrogen) in 0.1 M phosphate-buffered
saline (PBS; 2.68 mM KCI, 1.47 mM KH2PO4, 135.60 mM
NaCl, 8.10 mM Na2HPO4) for 20 min at room temperature.
After cells were washed in PBS, they were incubated for 1 h
at room temperature in antibody blocking buffer that
comprised the following: PBS containing 10% (v/v) normal
goat serum (NGS; Biosource, Camarillo, CA), 0.3% Triton
X-100, 0.1% NaN3 (Sigma-Aldrich, Saint Louis, MO). Slides
were then incubated in primary antibodies (Table 3) for 24 h
at 4 °C. After washing, slides were incubated for 1 h at room
temperature in fluorescent-conjugated secondary antibody,
either 1:500 Alexa Fluor546 goat anti-mouse or Alexa Fluor546

goat anti-rabbit (Becton Dickinson, Franklin Lakes, NJ) in
PBS, followed by washings. Cell nuclei were counterstained
with 1.5 µg/ml 4',6-diamidino-2-phenylindole (DAPI;
Invitrogen, Molecular Probes, Eugene, OR) in Vectashield
Hard Set Mounting Medium (Vector Laboratories,
Burlingame, CA) for 15 min at room temperature. Negative
controls for immunolabeling were performed in parallel using
the same protocol but with omission of the primary antibody.
Fluorescent labeling was judged as positive only with
reference to the negative controls. Immunoreactive cells were
visualized and images recorded using a Nikon fluorescent
microscope (Eclipse E600; Nikon, Melville, NY) with
excitation and emission wavelengths of fluorescence filters as
follows (in nanometers): blue, excitation: 400–418, emission:
450–465; green, excitation: 465–495, emission: 515–555; red,
excitation: 525–555, emission: 590–650.

TABLE 1. CULTURE CONDITIONS USED

Treatment EGF CNTF FBS
Proliferation (SM) 20 ng/ml
Differentiation 10%

10 ng/ml
Combination 20 ng/ml 10%

20 ng/ml 10 ng/ml
Media used in the experiments are illustrated here with key differences in active components shown for comparison. Proliferation
conditions were based on the use of EGF-based standard medium (SM), while differentiation conditions consisted of either FBS
or CNTF, at the concentrations shown, in the absence of EGF. In addition, there were 2 combination treatments used in which
the mitogen EGF was combined with a differentiating agent, one example being EGF + FBS and the other EGF+CNTF, at the
concentrations shown. Abbreviations: EGF represents epidermal growth factor, CNTF represents ciliary neurotrophic factor,
FBS represents fetal bovine serum, SM represents standard medium. Percent is by volume.
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RESULTS
Dynamic changes in relative gene expression occurring early
in the course of murine RPCs differentiation were examined.
To do this, neurospheres were dissociated into single cells,
plated, and grown under five culture conditions for a seven-
day period. These included proliferation conditions (SM), two
different differentiation conditions (FBS, CNTF), and two
different combined conditions (FBS+EGF; CNTF+EGF).
Morphological observations were made and gene expression
data collected over the course of the experiment.

Treatment-induced changes in RPC morphology: With
time in culture, the cells exhibited increasingly divergent
morphologies in response to the treatment conditions
employed. Control RPCs replated in proliferation medium
(SM) continued to maintain the appearance of
undifferentiated progenitors, either as single cells or cellular
clusters of various size, in either case adherent to the uncoated
flask or floating in suspension. Characteristically, adherent
cells extended only occasional short processes with few, if
any, branches (Figure 1A,B). With FBS or FBS+EGF
treatment, most cells extended short processes on the first day,
with some cells becoming larger with polygonal morphology.
Over time, more than 95% of the cells extended two or more
long processes that coalesced to form an apparent network
between cells by day 7. A higher density of processes was
observed in FBS compared with EGF+FBS treatment (Figure
1C,D,G,H). There was a substantial attrition in cell number
associated with CNTF treatment. Most of the surviving cells
extended short processes at day 1 and had long, thin neurite-
like processes at day 7 (Figure 1E,F). There was less cell loss
associated with combined EGF+CNTF treatment, with some
cells extending short processes from day 1 through day 7;
however, long or thick processes were not observed (Figure
1I,J).

Cell viability as a function of treatment condition: Our
initial results, as described in the previous section, indicated
that RPC survival was not equivalent under the different

conditions and that a marked attrition in cell number was
evident in medium containing CNTF (10 ng/ml) alone. To
document this phenomenon and provide a direct comparison
to other treatment conditions, we employed a formazan-based
cell viability assay. In this assay, optical density at OD450

reflects the amount of reaction product in viable cells and is
directly proportional to cell number (Figure 2). This assay
confirmed high viability in the presence of EGF, alone
(positive control) or in combination with CNTF or FBS. FBS
was associated with sustained cellular viability but lower cell
numbers, even in the presence of EGF. In contrast, CNTF
alone was associated with markedly diminished cell numbers,
approaching the low viability seen in the complete absence of
added growth factors (negative control).

Quantitative evaluation of the effect of FBS on RPC gene
expression using qPCR: For RPCs grown under FBS
treatment conditions, most genes in the expression profile
were gradually upregulated over the course of the seven-day
period of observation (Figure 3A-C). Specifically, the results
from qPCR (at day 7) showed a very large increase in the
expression of GFAP (>2,000 fold), together with much
smaller yet notable (>twofold) upregulation of vimentin (4.3
fold), PKC-α (3.4 fold), rhodopsin (RHO; 3.3 fold), Mash1
(2.8 fold), β3-tubulin (2.6 fold), Hes5 (2.6 fold), and Sox2 (2.1
fold). Other genes showing marginally increased expression
included Pax6, Notch1, DCX, and Map2. With FBS,
expression of Ki-67 was markedly downregulated (28.5 fold),
with smaller yet notable (>twofold) decreases in the
expression of CRALBP (3.3 fold) and Hes1 (2.1 fold).
Recoverin (Rcvrn) decreased marginally.

Quantitative evaluation of the effect of CNTF on RPC
gene expression using qPCR: Following treatment with
CNTF, expression of most progenitor-associated markers was
downregulated slightly, or was unchanged, as compared to
controls grown in SM (Figure 4A), while most precursor and
differentiation markers were upregulated with relative

TABLE 3. PRIMARY ANTIBODIES USED FOR IMMUNOCYTOCHEMISTRY

Antibodies Type Specificity in retina Source Dilution
Nestin Mouse monoclonal Progenitors, reactive glia BD 1:200
Vimentin Mouse monoclonal Progenitors, reactive glia Sigma 1:200
Ki-67 Mouse monoclonal Proliferating cells BD 1:200
GFAP Mouse monoclonal Glia Chemicon 1:200
β3-tubulin Mouse monoclonal Neurons Chemicon 1:100
Rhodopsin Mouse monoclonal Photoreceptors (rods) Chemicon 1:100
PKC-α Rabbit polyclonal Bipolar neurons BD 1:200

Antibodies were selected to identify expressed protein epitopes that comprised a subset of the transcripts examined by
quantitative PCR. This was done to provide confirmation at the protein level of results obtained at the level of RNA. In addition,
the use of immunocytochemistry allowed examination of the relative distribution and intensity of expression levels across the
cultured populations and correlation of marker expression with cellular morphology. Abbreviations: GFAP represents glial
fibrillary acidic protein, PKC represents protein kinase C.
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Figure 1. RPC treatment with different culture conditions resulted in
morphological changes. RPC neurospheres were dissociated into
single cells and grown under five culture conditions. In each case,
some cells attached to the surface of the flask and extended processes
(yellow arrows point to examples), while others formed clusters that
often extended beyond the plane of focus (red asterisks mark
examples). For purposes of analysis, attention was directed to the
former as opposed to the latter. A, B: Under standard proliferation
conditions (EGF), RPCs continued to maintain the appearance of
undifferentiated neuroectodermal cells, singly or in clusters, and
either adhered to the uncoated flask or floated in the culture medium.
Some adherent cells extended short processes. C, D, G, H: With FBS
or EGF+FBS treatment, most cells were adherent and gave out short
processes by the first day, some cells becoming large with polygonal
morphology (C, G); with time, most cells exhibited two or more long
processes which formed a network between cells by day 7 (D, H),
and these processes were of finer caliber with FBS treatment (D) than
was observed with EGF+FBS (H). E, F: After CNTF treatment, most
cells exhibited short processes on day 1 (E) and formed long neurite-
like processes by day 7 (F). I, J: In EGF+CNTF treatment, some cells
had short processes from day 1 to day 7, whereas long processes were
not observed.

expression levels tending to increase progressively over the
seven-day course of the study (Figure 4B,C). Seven days of
treatment with CNTF resulted in substantial upregulation of
GFAP (>400 fold), although this increase was not as large as
that seen with FBS treatment. There were much smaller yet
notable (≥ twofold) increases in the expression of DCX (8.2
fold), Hes5 (4.8 fold), RHO (fourfold), vimentin (Vim; 2.4
fold), Map2 (2.2 fold), PKC-α (2.2 fold), and Mash1
(twofold). Other genes displaying marginal increases in
expression included Sox2, β3-tubulin, and Rcvrn. Expression
of Ki-67 decreased sharply (19.6 fold). Genes with marginal
decreases included Hes1, Notch1, and CRALBP.

The combined effect of EGF+FBS on RPC gene
expression, evaluated by qPCR: RPCs were next treated with
EGF+FBS to evaluate simultaneous exposure to both of these
treatment variables. Under these conditions, 15 out of 17
genes exhibited initial increases in expression levels followed
by subsequent declines from peak levels by day 7 (Figure 5).
During this period, GFAP was strongly upregulated (>200
fold), albeit to a level approximately one order of magnitude
lower than with FBS in the absence of EGF. Furthermore,
GFAP expression peaked on day 5, and, although still quite
elevated relative to controls, fell well below peak values by
day 7. Other genes exhibited a similar pattern with a transient
peak, albeit of much lower amplitude than that seen for
GFAP. Hes5 expression increased up until day 5 (3.6 fold),
then dropped below control levels on day 7. DCX also peaked
on day 5 (2.5 fold), as did Vim (2.3 fold). PKC-α peaked on
day 1, then decreased. Several markers showed the same
general pattern of a transient peak, although relative changes
in expression were marginal as compared to controls. These
included Sox2, Hes1, Pax6, Notch1, Ki-67, Mash1, Map2,

Figure 2. Impact of treatment conditions on RPC viability. Cells were
plated at 1×104 cell/well and cellular viability assessed using a
formazan-based assay after three days exposure to the media
compositions used in the current study. These consisted of no added
growth factors, 10 ng/ml CNTF alone, 10% FBS alone, 20 ng/ml
EGF alone, EGF in combination with CNT, and EGF in combination
with FBS. Optical density at 450 nm is proportional to cell number.
The error bars show standard deviation.
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Rcvrn, and CRALBP. In contrast, nestin and β3-tubulin went
against this trend and appeared to dip slightly on day 3 before
ending higher on day 7, although the changes in expression
for these markers were marginal (<2 fold). There was no
notable (≥2 fold) downregulation of gene expression within
the first five days of treatment compared with baseline
controls. However, there were substantial drops from peak
levels for many genes by day 7, as described, and a subset
were notably (≥ twofold) lower than baseline expression
levels at this time point, namely CRALBP (5.9 fold), DCX (3.6
fold), Rcvrn (3.2 fold), Hes1 (2.1 fold), and Ki-67 (twofold).

The combined effect of EGF+CNTF on RPC gene
expression, evaluated by qPCR: EGF+CNTF treatment
produced results across the tested profile that tended to follow
a similar temporal pattern to that seen with FBS+EGF,
namely, a transient peak of increased expression, albeit in this
case of lesser amplitude (Figure 6). All transcripts except
nestin peaked before day 7, and 14 of these peaked on day 5.
GFAP again displayed the greatest relative increase among
the genes examined, however, under these conditions the peak
increase was only 7.9 fold. This represents less than 2% of the
maximum increase in GFAP expression seen with CNTF
alone over the same seven-day period. None of the 16 other
genes sustained a twofold or greater increase in expression,
although DCX, Rcvrn, Vim, and Sox2 showed transient
elevations in the range of 2.0–2.5 fold. Expression of

Figure 3. Effect of FBS on gene expression profile of RPCs by qPCR.
The transcripts examined included markers associated with
immaturity (A) nestin, vimentin, Sox2, Hes1, Hes5, Pax6, Notch1,
and Ki-67, as well as markers associated with lineage specification
(B) Mash1, DCX, β3-tubulin, Map2, recoverin, rhodopsin, PKC-α,
CRALBP, and (C) GFAP. The glial marker GFAP is presented
separately because of the markedly greater expression levels. FBS
treatment resulted in upregulation of most genes examined over the
period of investigation, although none as substantially as GFAP.
Abbreviations: day 1 (d1), day 3 (d3), day 5 (d5), day 7 (d7). The
error bars show standard deviation.

CRALBP, Hes5, and Rho were downregulated by 2.4, 2.1, and
2.1 fold respectively. As seen with EGF + FBS, nestin dipped
on days 3 and 5, only to peak on day 7. Similarly PKC-α was
again highest on day 1 and dropped from there. β3-tubulin
again appeared to dip slightly on day 3.

Effect of FBS on RPC marker expression, evaluated by
immunocytochemistry: PCR detects changes in message
expression, however, the extent to which these changes are
reflected at the level of proteins is also of interest.
Immunocytochemistry was employed for this purpose in the
selected example of RPCs grown on fibronectin-coated four-
well slides in the absence or presence of FBS for seven days
(Figure 7). Results for protein expression were consistent with
those seen at the message level under FBS treatment
conditions. At baseline, over 85% of the RPCs expressed
nestin and over 40% expressed Ki-67, indicative of active
proliferation. Following seven days of FBS treatment,
prominent upregulation of GFAP was quite apparent and
increased expression of other differentiation markers was
evident as well, including β3-tubulin and PKC-α. A subset of
treated cells exhibited rhodopsin labeling. In contrast,
expression of Ki-67 was clearly lower with FBS. Nestin
labeling was widespread in the undifferentiated cells and less
so following seven days of exposure to FBS, yet was intensely
expressed by a minority subpopulation (Figure 7B). This
result provides a correlate for the data seen in Figure 3 in
which total nestin message increased over the seven days of

Figure 4. Effect of CNTF on gene expression profile of RPCs by
qPCR. With CNTF treatment, expression of the proliferation marker
Ki-67 decreased sharply while other progenitor markers were
downregulated slightly or remained unchanged, with the exception of
vimentin and Hes5, which increased (A). Most lineage and
differentiation markers (B, C) were upregulated and tended to
progressively increase from day 1 to day 7. Abbreviations: day 1 (d1),
day 3 (d3), day 5 (d5), day 7 (d7). The error bars show standard
deviation.
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FBS treatment, despite the known association of nestin with
undifferentiated RPCs.

Final cell densities in chamber slides were dependent
upon treatment conditions (see Figure 2). Estimated
percentage of cultured cells labeling for specific markers
under treatment conditions are as shown (Table 4).

DISCUSSION
This study examines gene expression during the initial phase
of RPC differentiation in vitro and reveals quantitative
differences between treatment conditions, as well as dynamic
changes in marker transcript levels occurring over a seven-
day period. Together, these results demonstrate the utility of
qPCR as a method for the investigation of dynamic changes
in the gene expression of cultured RPCs under different
treatment conditions. In particular, the findings of the present
study call into question the notion that exposure to serum, or
to defined factors such as CNTF, is entirely sufficient to
reliably commit all cells of a given population to terminal
differentiation. The present data indicate that continued
exposure to EGF markedly diminishes the initial impact of
serum and CNTF on gene expression and further undermines
the influence of these reagents out to day 7, thereby
implicating mitogen withdrawal as a particularly important
component of differentiation protocols. This issue is not
without consequence in the context of potential clinical
applications, particularly in the design of protocols for the
controlled differentiation of stem cells before transplantation.

It is widely appreciated that stem cells can self-renew and,
potentially, be expanded in large numbers. The ultimate value

Figure 5. Effect of EGF+FBS on gene expression profile of RPCs by
qPCR. When RPCs were treated with EGF+FBS, there was a
tendency for gene expression levels to be modestly upregulated from
day 1 through days 3 or 5 and then drop from peak levels by day 7
(A, B). GFAP was again markedly upregulated, yet  also dropped
from peak levels on day 7 (C). Abbreviations: day 1 (d1), day 3 (d3),
day 5 (d5), day 7 (d7). The error bars show standard deviation.

of these cells, however, lies in their ability to replace mature
cell types and thereby restore function to injured, diseased, or
aging tissues. To accomplish this, stem cells must lose their
phenotypic plasticity and undergo fate determination and
differentiation. RPCs represent a subtype of the tissue-specific
multipotent cells found through out the neuraxis during
development [12,27-29], or even into adulthood [30], and
often referred to as neural stem cells. RPCs are unique to the
developing neural retina [31] and share many, but not all, of
the characteristics of the equivalent stem-like cells that are
found elsewhere in the central nervous system [8,32,33].

Functional differentiation following transplantation
remains the essential measure of a stem cell’s therapeutic
utility, as well as safety. That being the case, it is equally true
that in vitro testing is considerably more efficient. Additional
reasons for interest in methods of inducing differentiation in
vitro include the safety advantages of differentiating stem
cells in a controlled environment before transplantation, as
well as pre-selection of partially differentiated cells with
optimal potential for integration, as has been reported for rod
photoreceptor precursor cells [9]. Therefore, the time course
and relative completeness of in vitro differentiation are issues
of importance, together with the phenotypic identity of the
resulting cellular populations and subpopulations.

Both serum and CNTF have been used as methods of
differentiating both brain- and retina-derived progenitor cells,
and both of these methods are known to promote the
expression of the intermediate filament GFAP. This marker
has long been associated with glial populations, particularly

Figure 6. Effect of EGF+CNTF on gene expression profile of RPCs
by qPCR. A: Expression levels of progenitor markers did not vary
notably except for marginal increases in vimentin and Sox2. B, C:
Except for an increase in GFAP, which was small compared to the
data in Figure 2, Figure 3, and Figure 4, expression of lineage and
differentiation markers varied only slightly, with recoverin and DCX
showing modest increases. Abbreviations: day 1 (d1), day 3 (d3), day
5 (d5), day 7 (d7).
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mature astrocytes, but also reactive or cultured Müller cells.
We have previously reported that cultured murine RPCs of the
type used here express minimal, if any, GFAP under baseline
proliferation conditions, but strongly express this marker
(along with other lineage markers) after exposure to serum
[8] or CNTF [13]. The present study reveals the temporal
characteristics of GFAP induction and shows that the
magnitude of GFAP upregulation is vastly greater than that
seen for any of the neuronal lineage transcripts examined,
thereby confirming the pro-glial influence of both the FBS and
CNTF. That noted, immunolabeling showed that neuronal

phenotypes still outnumber GFAP+ profiles following FBS
treatment, indicating that glial specification is restricted to a
subpopulation of cells under those conditions. Although a
subpopulation, these nascent cells of glial phenotype are
remarkable in that they were not evident in prior studies of
gmRPCs transplanted to the diseased retina [8]. Furthermore,
the present study was able to assess the relative efficacy of
these conditions and reveals that FBS is considerable more
potent in the induction of GFAP than is CNTF. In neither case
was the mature Müller cell marker CRALBP upregulated over

Figure 7. Effect of FBS on RPC expression of markers as shown by immunocytochemistry. RPCs were grown in the absence (A, C, E, G, I,
K) or presence (B, D, F, H, J, L) of FBS for seven days, fixed, and immunolabeled with antibodies against nestin (A, B), Ki-67 (C, D), β3-tubulin
(E, F), GFAP (G, H), rhodopsin (I, J); and PKC-α (K, L). Final cell densities in chamber slides were dependent upon treatment conditions.
Cell nuclei were counterstained with DAPI. Scale bars represent 100 μm.

TABLE 4. ESTIMATED PERCENTAGE OF CULTURED CELLS LABELING FOR SPECIFIC MARKERS.
nestin Ki-67 β3-tubulin GFAP rhodopsin PKC-α

EGF 94 40 16 0 18 (low) (marginal)
FBS 18 8 46 22 (high) 20 (high) 70

Immunolabeled profiles were counted under specific culture conditions and percentage of labeled cells was calculated relative
to total DAPI-positive nuclei. In some instances there were striking differences in the intensity of labeling, noted here in
parentheses. Abbreviations: EGF represents EGF-based proliferation conditions; FBS represents FBS-based differentiation
conditions.
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seven-day span of this study, perhaps relating to the difference
in dosage when compared to other studies [23].

Beyond the powerful induction of GFAP, both FBS and
CNTF were associated with more modest increases in
transcripts for the related intermediate filament Vim and
neuronal markers were upregulated to varying extents. The
latter included the early markers Mash1 and doublecortin
(DCX), as well as βIII-tubulin, Map2, and the rod and bipolar
markers Rho, Rcvrn, and PKC-α. Upregulation of βIII-
tubulin, Rho, and PKC-α, in response to FBS was confirmed
at the protein level by immunocytochemistry and,
collectively, cells with these neuronal phenotypes
outnumbered those expressing GFAP. This was particularly
evident in the case of cells expressing the bipolar marker PKC-
α. Taken together, these data are consistent with the co-
induction of various neuronal subpopulations within the pool
of differentiating RPCs, as previously suggested by
nonquantitative methods in the setting of both FBS [8] and
CNTF [13] treatment. Neither method induces a purely
neuronal or glial population and attempts to source rod
photoreceptor cell types at high yield will likely benefit from
alternate approaches.

Concomitant to the upregulation of lineage markers, the
cell cycle marker Ki-67 was progressively downregulated for
both FBS and CNTF treatment conditions, consistent with an
accumulation of post-mitotic cells during the differentiation
process. This appears to relate more to the removal of EGF
from the medium than to the presence of either FBS or CNTF.
A more nuanced interpretation is needed for the data from
markers of developmental immaturity, particularly nestin.
Nestin is known to be highly expressed by neural stem cells,
as well as the RPCs used here [8]. For that reason, nestin levels
would be predicted to decrease under differentiation
conditions, yet in the present study were modestly elevated
for FBS and remained steady with CNTF. Here examination
of immunocytochemical labeling (Figure 7) provides a
potential explanation. As a population, FBS-treated murine
RPCs lost their immature morphologies as well as widespread
nestin immunoreactivity, however, a minority subpopulation
with a more glial appearance exhibited intense nestin labeling
and it is possible that message from these latter cells negated
the overall drop in signal from the population as a whole. Of
note, nestin is known to be upregulated in developing and
reactive Müller cells [34], along with the other intermediate
filament proteins GFAP and vimentin. Similarly, the notch
signaling pathway, including the Hes transcription factors, are
strongly expressed in neural stem cells and RPCs, but also
participate in neural differentiation, specifically including
gliogenesis [35].

Differentiation conditions used for neural stem/
progenitor cells typically involve both the addition of an active
“pro-differentiation” component (e.g., FBS or CNTF, as used
here) together with discontinuation of mitogenic growth

factors (e.g., EGF, as used here). Such an approach reveals
little about the relative influences of these competing
components of the protocol, therefore in the present study
RPCs were also cultured under combined conditions in which
EGF was continued, along with the addition of either FBS or
CNTF. Under these conditions, the induction of GFAP still
occurred but was muted compared to FBS or CNTF in the
absence of EGF. In addition, GFAP message did not increase
steadily over the course of the seven-day period, but peaked
at day 5 for both conditions. The induction of other markers
was likewise muted and frequently showed a transient peak
as well. Of particular interest is the data for the proliferation
marker Ki-67. Whereas this marker was strongly
downregulated under both differentiation conditions, it was
only moderately suppressed for EGF+FBS and even
somewhat elevated for EGF+CNTF.

Collectively, these data show that the overall
differentiating influences of both FBS and CNTF are
considerably diminished in the presence of sustained EGF
stimulation. The underlying mechanism is unclear at present
but might reflect a reversal of early induction or an escape of
EGF-responsive subpopulations. In either case this finding
does not support the notion that exposure to serum or CNTF
is in itself sufficient to irreversibly commit a neural stem cell
population to terminal differentiation. In contrast, cessation
of stimulation with recombinant EGF is sufficient to induce
changes in morphology and marker expression consistent with
early differentiation. These data would serve to caution that
mere exposure of cultured stem cells to “pro-differentiation”
agents may be insufficient to guarantee exit from the cell cycle
and that elimination of mitotic stimulation may play a more
important role. Another point underscored by the current
study is that cessation of mitogenic stimulation is associated
with significantly decreased progenitor cell viability which
can be offset by the addition of serum, but not CNTF, likely
due to growth factors present in the former. Together, these
findings highlight the challenges still faced when attempting
to differentiate stem cells under defined, serum-free
conditions. Salient to this point, a recent in vitro study has
reported that embryonic stem (ES) cell-derived retinal
precursors can be differentiated into photoreceptors in
conjunction with sustained mitogenic FGFs, however, this
process was still relatively inefficient and required lengthy
time periods in culture [11]. These challenges noted, progress
is being made toward the shared goal of establishing truly
serum-free conditions for the differentiation of RPCs into
photoreceptors and their committed precursors.
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