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If a good layer of insulating fat would be sufficient to stay warm, leptin
deficient ob/ob mice should do fine in a cold environment since they
are massively obese. But once exposed to low temperatures, ob/ob
mice rapidly die of hypothermia. Even at ambient temperatures ob/ob
mice have a core body temperature that is 2 �C lower than that of wild
type littermates [1]. This hypothermia can be normalized through the
administration of leptin [2] demonstrating that leptin action controls
thermogenesis. Since the thermogenic effects of leptin are an
important contributor to its anti-obesity properties, it is important to
understand this basic biology from a clinical standpoint. How and
where does leptin regulate thermogenesis?
Brown adipose tissue (BAT) is the designate tissue for thermogenesis
in mammals, including humans, as it has the unique ability to uncouple
respiration from ATP production. BAT activity is centrally regulated
through the sympathetic nervous system. Key areas in the central
nervous system that regulate BAT activity appear to be the median
preoptic subnucleus (MnPO) of the preoptic area (POA). Both cool and
warm cutaneous thermosensory signals are transmitted from the
spinal dorsal horn to the POA via neurons in the lateral parabrachial
nucleus (LPB) [3]. Neurons in the MnPO project to sympathetic pre-
motor neurons in the rostral raphe pallidus (rRPa) to regulate sym-
pathetic BAT inputs. In addition to this MnPO-rRPa pathway regulating
BAT thermogenesis, prior studies have reported that neurons in the
dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) also
participate in the regulation of BAT activity [4]. Moreover, it has been
described that leptin receptor-expressing neurons in the DMH increase
sympathetic outflow to BAT and vice versa and that the injection of
leptin into the DMH/DHA normalized body temperature in ob/ob [5],
suggesting that leptin normalizes energy expenditure by inducing BAT
activation and thermogenesis via neurons in the DMH/DHA.
In the last issue of Molecular Metabolism, Rezai-Zadeh and colleagues
report that the injection of leptin into the DMH/DHA restores core body
temperature and increases locomotor activity in leptin deficient ob/ob
mice [6], providing a striking example of the role of leptin signaling
within the DMH/DHA in regulating energy expenditure. To define the
role of leptin receptor expressing (LepRb) neurons in the DMH/DHA, the
authors selectively activated these neurons via DREADDs, which are
mutated muscarinic receptors that lack responsiveness for acetyl-
choline but respond to an otherwise inert drug, clozapine-N-oxide. This
technique allows one to probe the role of LepRb neurons within the
DMH/DHA in the regulation of biological pathways, which is distinct
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from asking what leptin signaling does in these neurons. After only
three days of activation of DMH/DHA LepRb neurons via DREADDs,
mice lost body weight, which was only partially reduced after
b3-adrenergic blockade. Conversely, deletion of the leptin receptor
from DMH/DHA neurons promoted body weight gain by reducing en-
ergy expenditure, illustrating the physiological importance of DMH/DHA
LepRb neurons and leptin signaling in these neurons in the regulation
of whole body energy homeostasis.
Of particular interest is the finding that DMH/DHA LepRb neurons
directly project to the raphe pallidus that contains sympathetic pre-
motor neurons [7]. The activation of DMH/DHA LepRb neurons
increased BAT thermogenesis, which suggests that LepRb neurons in
the DMH/DHA provide excitatory synaptic inputs to rostral raphe pal-
lidus neurons. Indeed, a recent study by Nakamura’s group clearly
demonstrates that neurons in the rRPa directly receive glutamatergic
excitatory synaptic inputs from neurons in the DMH [7]. Given that
NPY-expressing neurons in these areas are activated by leptin [8] and
the deletion of NPY alters energy expenditure [9], it is plausible that
DMH NPY-expressing neurons interact with sympathetic premotor
neurons in the rRPa. There are cocaine- and amphetamine-regulated
transcript (CART)-expressing neurons in the DMH/DHA that appear to
co-express LepRb and thyrotropin-releasing hormone (TRH) [10]. Thus,
the identification of the phenotypes of the DMH/DHA LepRb neurons
will be very useful to understand how leptin regulates BAT activity and
may furthermore allow the identification of other signaling pathways
besides leptin that are amenable to therapeutic manipulation with the
aim to increase BAT thermogenesis.
Another important finding is that the activation of LepRb neurons not
only stimulates sympathetic outflow but also locomotion, which was
not prevented through beta3 blockade. This is consistent with the more
general role of the DMH in regulating wakefulness, arousal, feeding
and locomotor activity and is likely mediated via different projections of
lepRb-expressing neurons in the DMH/DHA. For instance, the DMH
also project to the lateral hypothalamus that contains orexin neurons
that are well known to play a critical role in locomotor activity.
Enhanced locomotion following activation of LepRB neurons in the
DMH/DHA could be mediated through these orexin neurons. Recent
work by Kataoka and colleagues clearly shows that optogenetic
stimulation of the DMH-PVN pathway did not increase BAT tempera-
ture, heart rate and arterial pressure, although stimulation of the
DMH-rMR pathway strongly alters these parameters [11]. Hence, the
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detailed cellular and neuroanatomical analysis of LepRb neurons in
these areas will be beneficial to understand how leptin fine-tunes the
balance between energy intake and expenditure in physiology.
Leptin regulates many other organ systems and bodily functions
ranging from food intake, glucose and lipid metabolism in organs such
as liver and adipose tissue to inflammation and blood pressure. It is
unlikely that leptin signaling in DMH neurons only regulates BAT
thermogenesis, but rather initiates a coordinate response that involves
fatty acid release from adipose tissue which is the major substrate for
thermogenesis in BAT. Future work should carefully examine a po-
tential role of leptin action in the DMH in regulating nutrient partitioning
such as hepatic glucose production and/or adipose tissue lipolysis,
both critical pathways that warrant the main energy sources for BAT,
glucose and fatty acids.
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