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Abstract

New approaches to lineage tracking have allowed the study of differentiation in multicellular

organisms over many generations of cells. Understanding the phenotypic variability

observed in these lineage trees requires new statistical methods. Whereas an invariant cell

lineage, such as that for the nematode Caenorhabditis elegans, can be described by a line-

age map, defined as the pattern of phenotypes overlaid onto the binary tree, a traditional

lineage map is static and does not describe the variability inherent in the cell lineages of

higher organisms. Here, we introduce lineage variability maps which describe the pattern of

second-order variation in lineage trees. These maps can be undirected graphs of the partial

correlations between every lineal position, or directed graphs showing the dynamics of bifur-

cated patterns in each subtree. We show how to infer these graphical models for lineages of

any depth from sample sizes of only a few pedigrees. This required developing the general-

ized spectral analysis for a binary tree, the natural framework for describing tree-structured

variation. When tested on pedigrees from C. elegans expressing a marker for pharyngeal

differentiation potential, the variability maps recover essential features of the known lineage

map. When applied to highly-variable pedigrees monitoring cell size in T lymphocytes, the

maps show that most of the phenotype is set by the founder naive T cell. Lineage variability

maps thus elevate the concept of the lineage map to the population level, addressing ques-

tions about the potency and dynamics of cell lineages and providing a way to quantify the

progressive restriction of cell fate with increasing depth in the tree.

Author summary

Multicellular organisms develop from a single fertilized egg by sequential cell divisions.

The progeny from these divisions adopt different traits that are transmitted and modified

through many generations. By tracking how cell traits change with each successive cell

division throughout the family, or lineage, tree, it has been possible to understand where

and how these modifications are controlled at the single-cell level. This helps address

questions about, for example, the developmental origin of tissues, the sources of differenti-

ation in immune cells, or the relationship between primary tumors and metastases. Such

lineages often show large variability, with apparently similar founder cells giving rise to
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different patterns of descendants. In addition, questions about the range of accessible cell

types at different stages of the lineage tree are actually questions about lineage variability.

To characterize this variation, and thus understand the lineage at the population level, we

introduce lineage variability maps. Using data from worm and mammalian cell lineages

we show how these maps provide quantifiable answers to questions about any developing

lineage, such as the potency of progenitor cells and the restriction of cell fate at different

stages of the tree.

Introduction

The cells of developing organisms differentiate into their specialized types by integrating sig-

nals from their present surroundings with instructions inherited from their ancestors. This

interplay of mechanisms generates the pattern of phenotypes that emerges in the cell lineage

tree [1]. Measuring this phenotypic pattern requires recording two types of information: the

phenotype of each cell and the family relationships between the cells. The result is called a line-

age map [2]. Lineage maps illustrate the successive bifurcations in phenotypes that underpin a

particular differentiation pathway, providing an invaluable guide for experiments investigating

the mechanisms involved in fate determination [3]. Development in the nematode Caenorhab-
ditis elegans is the classic example of how the lineage map can help untangle the roles of pre-

programmed instruction and cell-to-cell communication [4–6] in cellular differentiation.

A crucial use of the lineage map is to identify the common ancestors of cells sharing a par-

ticular fate. This indicates how deeply within the lineage that fate was specified. Successfully

locating common ancestors depends first on being able to identify the subclones associated

with a phenotype. If a phenotype is clonal, meaning exclusive to a single subclone, we can asso-

ciate that phenotype with a single bifurcation at the most recent common ancestor; if it is non-

clonal, bifurcations at multiple ancestors were likely involved (note that even for simple organ-

isms like C. elegans, most phenotypes are non-clonal—see Table 1). Much of the logic for inter-

preting lineage maps and inferring differentiation pathways can be automated [7, 8]. However,

these techniques are difficult to implement in the presence of phenotypic variability.

Variability in cell lineages

The lineage map is a concept born from the study of invariant lineages, such as that for C. ele-
gans, where the fixed pattern of phenotypes can be found, in principle, by tracking the family

tree, or pedigree, from a single founder cell. When pedigrees are highly variable, however,

Table 1. Characteristics of some cell lineage patterns. Organisms are listed in order of increasing complexity. Lineages are characterized in terms of whether cell fate is

exclusive to a subclone, the degree of phenotypic variability, and whether the lineage tree measurement is ordered. Lineages from higher organisms are generally unor-

dered, have high variability, and may or may not be clonal.

Species Cell origin (tissue) Clonal Variability Ordered Ref.
Worm Embryonic (germ) ✔ low ✔ [5]

Embryonic (pharynx) ✘ low ✔ [5]

Leech Embryonic (epidermis) ✘ low ✔ [11]

Zebrafish Embryonic (various) ✘ high ✘ [19]

Mouse Embryonic (various) ✘ high ✘ [20]

Lymphoma ✔ high ✘ [21]

B-lymphocyte ✘ high ✘ [14]

https://doi.org/10.1371/journal.pcbi.1006745.t001
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seemingly identical founder cells can give rise to different patterns of descendants. Which of

these represents the lineage map? Simply averaging the phenotype at each lineal position by

pooling across multiple pedigrees may not give a representative pattern since the averaging

will suppress correlations between lineal positions. Furthermore, the variability between pedi-

grees, which reflects the potency of founder cells, is an important quantity itself and cannot be

represented in a lineage map. While lineage variability is minimal in simple organisms such as

C. elegans [9, 10] and leech [11], it is greater in higher organisms such as insects and verte-

brates [1, 12] and is significant in mammalian cells of clinical importance such as stem cells

[13] and lymphocytes [14, 15]. Such increased variability likely plays a role in being able to

respond effectively to environmental changes. Given the additional variation inherent in

molecular-level measurements [16] it is becoming increasingly important to extend the con-

cept of the lineage map to account for variability.

A fundamental property of any lineage tree measurement, which is crucial when studying

variability, is whether it is ordered or unordered. We define a lineage tree to be ordered if the

labels used to distinguish the lineal positions of two daughter cells (sisters) are meaningful.

This gives each daughter a unique identity. The tree is unordered if these labels are arbitrary,

making the daughter positions unidentifiable. This distinction has significant consequences in

a statistical analysis. For example, in an unordered tree consisting of a mother A and its arbi-

trarily-labeled daughters B and C, we should not distinguish between the properties of posi-

tions B and C when comparing different pedigrees; nor should we distinguish between the

mother-daughter relationships A-B and A-C.

The C. elegans lineage is an example of an ordered lineage. Here each daughter is labeled by

its orientation, at the time of division, with respect to the developing organism [4, 5, 17].

Daughters thus have meaningful labels. For example, a mother labeled ‘Epl’ divides into ‘Epla’,

the anterior daughter, and ‘Eplp’ the posterior daughter. In higher organisms, it can be difficult

or impossible to find a meaningful way to label each daughter in a pair. For example, in the in
vitro murine T-lymphocyte pedigrees discussed in this paper, the orientation of the mouse,

even if it were known, can hardly be expected to be a useful way to distinguish between daugh-

ter cells.

Now, if the phenotype pattern is invariant, a single complete pedigree measurement repre-

sents the lineage map and being unordered (or not) does not matter. However, when compar-

ing variable pedigrees, the unidentifiability of daughter positions can significantly affect the

ability to detect phenotypic patterns. For example, simply averaging different pedigrees to

enhance subtle bifurcation patterns risks instead canceling these patterns if the pedigrees are

not ordered the same way [18].

Since the majority of pedigree measurements from higher organisms are both variable and

unordered [1] (see Table 1), an important question is whether the concept of a lineage map is

even useful anymore. How can we associate fate specification with fixed lineal positions when

the pattern of descendants varies from one apparently identical founder to the next? Clearly a

statistical approach is required.

Previous statistical approaches

A number of statistical methods have been developed to analyze variable, unordered lineage

trees. Though these approaches do not directly address the question of how to construct a line-

age map, many of them address aspects of the problem.

The bifurcating autoregressive model [22, 23] was developed to estimate mother-daughter

and daughter-daughter correlations using a sample of unordered pedigrees from either E. coli
or tumor cultures. The model was later used to analyze data from ordered pedigrees to test for
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lineage asymmetry [24, 25]. This stationary, parametric model allowed for daughters to be con-

ditionally dependent (with respect to their common mother) but forced cousins and more dis-

tant relatives to be conditionally independent (with respect to their most recent common

ancestor). The subsequent discovery that cousins could be conditionally dependent motivated

a theory of cellular inheritance involving deterministic, nonlinear dynamics in lymphoblasts

[26]. However, such distant intragenerational dependence might instead be interpreted as a

delay between fate specification and expression, where a phenotype that has been specified in a

mother and its daughters is not expressed until its four granddaughters. These analyses illus-

trate the importance of having lineages that are large enough, and a model that is general

enough, to examine correlations of distant relatives [27]. They also remind us that simple

branching process models, which we here define to be those assuming conditional indepen-

dence of daughters, do not properly represent the correlations in a lineage, a fact that was

established in early lineage analyses [28, 29]. Although population numbers can be satisfacto-

rily modeled using branching processes [30], allowing for sibling correlations can affect the

inferred population dynamics [14, 31].

As we indicated earlier, identifying a subtree, or subclone, of shared phenotypes is the first

step to inferring where fate is specified. This idea forms the basis of methods to study cell state

transitions in bacterial cells or mouse embryonic stem cells [32, 33], where phenotypic similar-

ity among relatives in the same generation was used to infer how much earlier in the pedigree

a transition occurred. A similar idea was used in hematopoietic stem cells to infer the multi-

generational delay between when an invisible molecular decision occurred and when its effect

was expressed as a surface marker [34]. These models assume that cell states transition over

timescales that are slow compared to the cell cycle duration; alternatively they could be syn-

chronized to cell divisions [35]. Note that, in a lineage map, the generation of a cell is a mean-

ingful quantity, representing the number of divisions since the founder cell, whether that be a

zygote, a naive lymphocyte, or some progenitor initiated with a particular stimulus. Thus any

model of a developing lineage must be non-stationary.

Several other approaches to statistical lineage analysis have been reported recently. A factor

graph method was used to model conditional dependence between daughters [36], with the

goal of testing whether pre-programmed instruction or differential cell death was responsible

for differentiation of hematopoietic progenitor cells; direct inference of Nanog expression, a

pluripotency factor, was used to understand its dynamics in embryonic stem cell lineages [37];

and, a parametric characterization of lineage patterns has been applied to achieve early identi-

fication of hematopoietic stem cells [38]. However, these methods are of less relevance to our

question of how to build a statistical lineage map.

Outline

Major efforts are underway to improve the throughput and quality of lineage measurements

(see reviews [13, 39–42] and commentary [43–45]). Recent breakthroughs have resulted in a

wealth of data from automated microscopy-based [19, 46–48] and sequencing-based [20, 49–

57] techniques. While the technological barriers for these measurements are severe, there are

significant barriers to the analysis of the data as well. As we have discussed, there is currently

no way to construct a useful lineage map from variable, unordered pedigrees. Yet, according to

Shapiro [40], “Central unresolved problems in human biology and medicine are in fact ques-

tions about the human cell lineage tree: its structure, dynamics, and variability during develop-

ment, growth, renewal, aging and disease.” It is important then to find a way to generalize the

concept of the lineage map to the population level.

Maps of variability in cell lineage trees
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In this paper we propose a solution by introducing lineage variability maps. These involve

the variances of, and covariances between, every position in the tree. A key idea is that, to

interpret lineage patterns, it is not only the phenotypic values at each lineal position that are

important, but also the phenotypic associations between different lineal positions. By develop-

ing a generalized spectral analysis for binary trees, we show how to estimate variability maps

for a lineage of any depth using measurements from only a few, unordered pedigrees. For

complete data, our approach is a non-parametric one, involving first and second moments of

the data but assuming no distribution function. We could thus, alternatively, refer to these

maps as second order lineage maps.

The rest of the paper is organized as follows. In the Methods section we describe essential

aspects of the data used in this paper, the analysis framework and labeling convention, and

how to estimate all pairwise associations by employing constraints on symmetry and sparsity.

In the Results section we interpret the covariance matrix in terms of graphical models, called

lineage variability maps, and show how these can be used to understand fate restriction and

expression throughout the lineage. In the Discussion section we examine the implications and

future prospects of this analysis.

Methods

Ethics statement

All experiments using mice were performed in accordance with the Animal Experimentation

Ethics Committee of the Peter MacCallum Cancer Centre (Approval E427) and mice were sac-

rificed by anaesthetic overdose.

Lineage data

Data from 3 types of lineages are analyzed in this paper. Experimental data from T cells pro-

vide an example of a lineage with significant variability and no obvious structure. Previously-

published data from C. elegans are the example of a lineage with complicated but highly-repro-

ducible structure. Finally, a simulated, stationary branching process provides the benchmark

of a featureless, variable lineage and to test the accuracy of the inference procedure. In more

detail:

T cells New lineage measurement on CD8+ T cells from GFP:OT-1 transgenic mice. Naive

cells, expressing a T cell receptor for SIINFEKL peptide from ovalbumin, interact with pep-

tide-pulsed bone marrow-derived dendritic cells to activate clonal expansion [58]. Cells and

their descendants are tracked using time-lapse fluorescence microscopy and analyzed using

custom software [59]. Although multiple phenotypic traits were recorded, in this paper the

only trait analyzed is the average area of a dividing cell over its lifetime. Note that only

dividing cells were used in the analysis; cells whose fate is unknown, or which died, were

counted as missing data. For the early generations used in this study, the numbers of cell

deaths were negligible so there was no need to account for cell death explicitly. 19 replicate

families were used.

Worm Published [60] embryonic lineage data from the RW10425 transgenic strain of C. ele-
gans. In this strain the PHA-4 gene for pharyngeal and intestinal tissue is tagged with green

fluorescent protein whose lifetime-averaged expression intensity is used as the phenotypic

trait in our analysis. Gut differentiation occurs early during embryogenesis, with PHA-4
expression beginning by generations 7 and 8. There are 10 replicate pedigrees. Note that,

although these lineage data are ordered, we treat them as unordered in order to compare

results with the other unordered datasets in this study.

Maps of variability in cell lineage trees
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Branching Process Simulated lineages from a stationary branching process. 20 replicate pedi-

grees are used, with a missing data fraction of 20% assumed. Here we define a branching

process to be one where the correlation between mothers and daughters is h and daughters

are conditionally independent with respect to their common mother. Then, the correlation

between any two lineal positions B and B0 is hD(B,B0), where D(B, B0) is the lineage distance

between them. For example, the correlation between sisters is h2 and between cousins is h4

and so on. In this study we assume h = 0.8. As will be shown in Section “Lineage variability

maps”, the underlying graphical model of partial correlations for this branching process is a

binary tree. This is generally not the case for real lineages.

Sample pedigrees from these 3 lineage types are shown in Fig 1 while the expression of each

phenotype as a function of generation is shown in Fig 2.

Analysis framework and labeling conventions

In this study, lineage data are regarded as repeated measurements on pedigrees arising from

individual founder cells, each selected at random from a population of similar cells. We restrict

our attention to modeling a single trait from pedigrees subject to the same conditions. A sam-

ple consisting of multiple replicate pedigrees can then be represented by a two-factor array

Fig 1. Illustration of pedigree data. Shown are 5 sample pedigrees from each of the 3 lineage types. Each pedigree originates from a

different founder cell and is, for compactness, drawn as a radial tree. Each node on the tree represents a cell, where node color

reflects the strength of the cell phenotype under analysis (liftetime-averaged cell size for T cells, PHA-4 expression intensity for C.
elegans). For T cells the root node is the naive cell while for the worm lineage the root node is the zygote (labelled P0). The absence of

a node on the tree represents a missing data point. Labels for each worm cell position are given in Section S1.6 in S1 Appendix. Data

shown here, and throughout the paper, are provided in the supporting information. Note how the worm pedigrees display clear,

invariant patterns whereas the T-cell pedigrees (and the branching process) have no obvious repeatable structure.

https://doi.org/10.1371/journal.pcbi.1006745.g001
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(Yij), where i has n levels corresponding to the number of pedigrees and j has p levels corre-

sponding to the number of lineal positions within a pedigree. With no meaningful distinctions

among pedigrees (they are all of the same cell type and subject to the same conditions) we

assume they are independent and identically-distributed replicates. The data can thus be repre-

sented by a matrix Y with n replicates (rows) and p variables (columns).

Each of the p dimensions corresponds to a lineal position. We use a binary number to label

each position so that, for example, the first 3 generations are labeled as founder (1), daughters

(10, 11), and granddaughters (100, 101, 110, 111), where each label thus encodes the lineal

position. We will also need to define a nomenclature for generations and subtrees. Genera-

tions, g, refer to the depth in the tree where the founder cell is defined to be at generation g = 1.

Subtrees are defined by two indices, (ℓ, τ), where ℓ refers to the longitudinal coordinate and τ
to the transverse coordinate of the root node (see Fig 3). In our convention, the subtree at ℓ = 1

Fig 2. Expression of each phenotype as a function of generation. The vertical axis represents the strength of expression for each

measured phenotype. For T cells this is the lifetime-averaged cell area in μm2; for C. elegans it is the lifetime-averaged intensity of

green fluorescent protein used to tag PHA-4 expression.

https://doi.org/10.1371/journal.pcbi.1006745.g002

Fig 3. Labeling convention for a lineage tree. (a) Each lineal position is labeled with a binary number. The founder of

the tree is located at generation g = 1. (b) Each subtree is labeled with two indices (ℓ, τ) representing the longitudinal

(ℓ) and transverse (τ) coordinates of its root. Because, as we discuss later, roots of subtrees are associated with sources

of variation we need to create a ‘subtree’ located outside the lineage, called (0, 0) (in red), to represent variation among

pedigrees. Note that, in an unordered tree, τ values are unidentifiable and will often be ignored.

https://doi.org/10.1371/journal.pcbi.1006745.g003
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is the entire tree. As we will show, subtrees will be associated with sources of variation, and we

need to define a ‘subtree’ at ℓ = 0 that sits outside the lineage and represents variation among

lineages. This concept does not exist for a lineage map but is essential for a lineage variability

map since different pedigrees may not be the same.

Often in lineage measurements there are many more lineal positions (p) than there are

pedigrees (n). Thus p≳ n, with the disparity getting exponentially worse with the number

of generations studied. Performing reliable inference when p/n> 1 is an open research

question [61]. Best results are achieved when prior knowledge of the problem can be

incorporated.

In the next section we describe increasingly more sophisticated steps to reduce the effective

dimensionality of the inference calculation, first by exploiting known symmetry properties and

then by using observed sparsity properties. Our goal is to identify a scheme where the number

of replicates required is independent of the number of generations studied. This will allow vari-

ability maps over many generations to be constructed using data from only a few pedigrees.

Covariance estimation

The essential idea for this analysis is to measure second-order variation throughout the lineage

by estimating the variance of, and covariance between, every lineal position. This population

covariance matrix S for the lineage involves no assumption about the underlying distribution.

It involves just the first and second order moments of the data.

Unstructured covariance. Let y be a p-dimensional random variable representing the sin-

gle trait for each lineal position. A naive method for estimating the covariance matrix for y is

to assume it has no structure. This means that only data from the same lineal position in differ-

ent pedigrees can be pooled. The sample mean (y�) and (biased) sample covariance (S) are given

by

y�¼
1

n

Xn

i¼1

Y i; S ¼
1

n

Xn

i¼1

Y iY
0

i � �y �y 0; Y i 2 R
p
; i ¼ 1; � � � ; n; ð1Þ

where Yi is the data vector from pedigree i. This results in the usual estimates of the population

mean, μ, and population covariance matrix, Ŝ,

μ̂ ¼ �y; Σ̂ ¼ S: ð2Þ

This is not a practical way to estimate S since, as is well known, S will not be positive defi-

nite unless n> p. To appreciate why this is a prohibitive limitation for lineage data, we exam-

ine the complexity of the problem using 3 measures: the effective number of dimensions peff,

the number of unknown variance-covariance parameters N S, and the minimum number of

replicates nmin required to ensure Ŝ is positive definite. These are given by

peff ¼ p; N S ¼ pðpþ 1Þ=2; nmin ¼ pþ 1: ð3Þ

Now because the number of lineal positions for a complete tree of G generations grows

exponentially as p = 2G − 1, this means that the number of dimensions, the number of

unknowns, and, most importantly, the number of replicates required, nmin, increases exponen-

tially with the number of generations being studied. This makes the unstructured covariance

matrix impractical for analyzing trees. As we invoke more constraints, we will examine the

reduction in these complexity measures. For example, although peff = p for this unstructured

case, with symmetry structure peff < p.

Maps of variability in cell lineage trees
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For the analysis to be practical, nmin should be small and independent of G. Then S can be

estimated up to any generation G with a modest number of pedigrees nmin. To achieve this,

our approach is to identify constraints associated with symmetry and sparsity that are specific

to the problem of tree-structured variation.

Symmetry. To understand how symmetry invariance constrains tree-structured

variation, we start with intuitive arguments for why certain covariance matrix elements must

be equal in an unordered tree. This gives rise to a particular structured form for S. We then

describe how the framework of symmetry invariance formalizes this intuition and reveals the

independent (orthogonal) components underlying this structured form. The result is a non-

parametric spectral analysis for trees that facilitates both inference and interpretation in tree-

structured data.

Structured covariance matrix. To reduce the number of unknowns in S, we begin by

identifying a pattern of shared means, variances, and covariances that arise in the unordered

tree. This allows pooling of data within a pedigree, in addition to the pooling between pedi-

grees already used in the unstructured covariance estimate.

For the case of first moments, the pattern of shared elements is found by recognizing that,

for an unordered tree, lineal positions within the same generation are unidentifiable. Equiva-

lently, we could say that the labels identifying members of the same generation are not mean-

ingful. Thus all members within a generation must be assigned the same mean. For example,

the mean vector for a 3-generation tree is

1 10 11 100 101 110 111

μG ¼ ðq1 q2 q2 q3 q3 q3 q3Þ
0
;

ð4Þ

where the subscript G denotes a quantity with symmetry structure, qg is the mean of a cell in

generation g, and we have explicitly written the cell labels above each element. It is self-evident

that data can be pooled within generations to improve the estimate of these shared means.

Note how, because the tree is unordered, the only information in the first moment of the

data is the average of each generation. Other details about the lineage pattern have been lost.

Thus, in unordered trees, we must look at second moments of the data if we want to understand
lineage patterns at the population level.

For the case of second moments, the pattern of shared elements is found by recognizing

which relationships are equivalent. For example, as we mentioned in the introduction, the two

mother-daughter relationships between generation 1 and 2 must be assigned the same covari-

ance since there is no way to distinguish between the two. We can generalize this intuition by

adopting a labeling scheme that incorporates the generation of each cell in a pair and the gen-

eration of their Most Recent Common Ancestor (MRCA). For example, the pair of cells 10
and 110, which have 1 as their MRCA, should be identified with the 3-index ‘231’, where the

first two indices specify the generation of each cell (2 and 3) and the third index specifies the

generation of their MRCA (1). Now since the 3-index for a different cell pair 11 and 101 is

also ‘231’, the two covariances must be equal.

Note how our 3-index scheme identifies the specific generations of both cells and their

MRCA, not just the lineage distance between the two cells. This is necessary because, for non-

stationary variation in a tree, specific generations are meaningful, not just generational differ-

ences. For example, we need to allow for the possibility that sisters in generation 3 have a dif-

ferent statistical association than do sisters in generation 2, even though the lineage distance

(between sisters) is the same.

Maps of variability in cell lineage trees
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Applying this labeling scheme to each variance and covariance element, the following struc-

tured covariance matrix emerges for a 3-generation tree

ð5Þ

where the subscript G denotes a covariance matrix with shared elements. Improved covariance

estimation can thus be achieved by pooling across matrix elements which have the same

3-index.

Note that the outer product of the structured mean, μGμ
0
G, has a pattern of shared elements

that are bounded by the lines in Eq 5. The shared parameters in this less complex pattern are

identified by the first two indices of the 3-index in Eq 5. This highlights how SG describes the

structure of variation that is in addition to that due to generational trends seen in Fig 2.

We emphasize that assuming shared variances and covariances is necessary because, in an

unordered tree, we have no information to assume otherwise. We are certainly not assuming
that the biology of the lineage tree is symmetric. When we assume shared parameters for an

unordered tree we are following the same reasoning as when we assume random effects, rather

than fixed effects, for batched data when the labels for different batches are not meaningful

(see e.g. p.21 [62]).

Permutation invariance. This pattern of shared means, variances and covariances can be

found more formally from symmetry considerations. An object is defined to have a symmetry

if it remains invariant under the actions of a group (see Weyl [63] for the classic introduction).

A lineage tree has a symmetry because (the action of) permuting daughter subtrees does not

change the relationships between any of the lineal positions. After the permutation, every cell

still has the same mother, daughters, cousins and so on (see Fig 4). The permutation has

changed no essential information about the tree.

For our purposes, the key idea is that S remains invariant under such permutations of sub-

trees (since the symmetry group of S is a subgroup of the symmetry group of μμ0 we can focus

our attention on the symmetry group of S). Quantifying this intuitive idea involves group

representation theory, where matrix multiplications are used to represent symmetry opera-

tions [64]. For example, ifDs is the (p-dimensional) permutation matrix representing the

action s of the group G, then the permutation s of the variables in y is represented byDs y. The

same permutation of variables in the matrix S is represented byDsΣD
0

s, where such conjuga-

tion byDs is necessary to permute both rows and columns.

The condition that S be invariant under the action of any member of G can thus be stated

as

DsSD
0

s ¼ Σ; 8s 2 G: ð6Þ

Any symmetry-invariant (i.e. G-invariant) S thus belongs to the set

WG ¼ fM 2 R
p�pj DsMD

0

s ¼ M 8s 2 Gg; ð7Þ

referred to as the fixed point subspace of the group G [65]. This is the set of all matrices that

are invariant with respect to the group.
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Group-averaged covariance. A standard technique for transforming an unconstrained

matrix S into one that is symmetry invariant is the group-average or Reynolds operator (see

p. 74 [66]) given by

PGðΣÞ ¼
1

jGj

X

s2G

DsΣD
0

s; PG : Rp�p
!WG;

¼ ΣG;

ð8Þ

where jGj is the order of the group (the number of group elements). This projects the matrix

onto the fixed point subspace by averaging over shared elements (referred to as the orbits) of

S. It is straightforward to check that the pattern that arises from PGðΣÞ, when G is the symme-

try group of the tree, is the same as that shown in Eq 5. Thus, averaging S over all its allowed

permutations (members of the group) generates a structured covariance matrix that is invari-

ant to (any further) permutations of the group.

Although the group-average (Eq 8) automatically generates the correct structured covari-

ance for the symmetry group, it is not a practical method for tree-structured data since the

number of permutations, jGj, grows super-exponentially with G [67]. The method is thus

more of a conceptual bridge, connecting the symmetry formalism to the covariance structure,

than a practical method for deriving the covariance structure itself.

To convert from unstructured to structured means, variances and covariances it is more

practical to pool elements by following the shared index structure derived previously (Eqs 4

and 5). Nevertheless, we will still refer to this action of pooling across shared elements as the

operation PðÞ, however it is accomplished in practice. Thus, to find the structured sample

mean and covariance,

�yG ¼ Pð�yÞ; ð9Þ

SG ¼ PðSÞ: ð10Þ

Fig 4. Permutation symmetry of a tree. Here the 8 allowed permutations of a tree with 3 generations are shown.

These permutations, which involve the swapping of labels starting from the original arrangement in the top left corner,

are allowed because they do not change the relationships in the tree. For example, consider the swapping of labels

between sisters 101 and 100 (second from left in top row). Despite the swap, those lineal positions still have the same

sister and mother. After any of the 8 permutations shown here, every lineal position still has the same mother, sister,

cousins, granddaughters etc. In other words, the lineage tree relationships are invariant to this set of permutations.

https://doi.org/10.1371/journal.pcbi.1006745.g004
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Generalized spectral analysis. The true benefit of the symmetry formalism is in how it

can reduce the original high-dimensional problem into independent lower-dimensional prob-

lems that have scientific meaning (see p.161 [68]). This is achieved through a linear transfor-

mation from the set of original variables to the set of natural variables defined by the

symmetry of the system. The most well-known example of this is the spectral decomposition

of stationary time series data where the underlying symmetry is cyclic and the corresponding

natural variables are the Fourier components. Decomposition of a system into its natural vari-

ables is thus called generalized spectral analysis, or simply spectral (or harmonic) analysis [68]

and has been used in many areas of science and engineering [64].

Formal application of generalized spectral analysis to covariance estimation has been dis-

cussed recently [65, 69]. To motivate its application to a complete tree, here we briefly summa-

rize two well-known types of spectral decomposition, Fourier analysis and the analysis of

variance (ANOVA), showing how the underlying symmetry of the system defines a linear

transformation that diagonalizes the structured covariance matrix.

Fourier analysis. Consider the 4-variable system with the cyclic symmetry shown in Fig 5a.

These variables could be a temporal sequence where the absolute value of time is not meaning-

ful. Any cyclic shifting of the variables, which does not change in their relative ordering, does

not change the system. The covariance matrix then has a circulant structure

ΣF
G ¼

a b c b
b a b c
c b a b
b c b a

2

6
6
6
6
4

3

7
7
7
7
5
: ð11Þ

It is well-known that the circulant structure defines a unitary transformation matrix called

the discrete Fourier transform (DFT) matrix which, for 4 variables, is given by

F ¼
1

2

1 1 1 1

1 � i � 1 i
1 � 1 1 � 1

1 i � 1 � i

2

6
6
6
6
4

3

7
7
7
7
5
: ð12Þ

Fig 5. Cyclic and tree-structured symmetries. (a) A cyclic symmetry structure is one that remains invariant under a

shift of all the variables (around the circle in the figure shown) that preserves their relative ordering. This cyclic

symmetry defines the discrete Fourier transform. (b) A tree symmetry structure is one that remains invariant under

permutations within groups and permutations of groups. This symmetry gives rise to ANOVA for nested pairs and

also defines the Haar wavelet transform. It is applicable when it is just the leaf nodes that are of interest. (c) When all

the nodes of a tree are of interest, the underlying symmetry is still that for the tree. The associated transformation is

derived in this paper and discussed in the next section.

https://doi.org/10.1371/journal.pcbi.1006745.g005
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Each column represents a natural variable for the cyclic symmetry group, better known as a

Fourier basis vector. Using F to transform ΣF
G into this natural basis results in a diagonal

matrix

ΣF
O
¼ FyΣF

GF ¼

aþ 2bþ c � � �

� a � c � �

� � a � 2bþ c �

� � � a � c

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð13Þ

called the spectral covariance, where the diagonal elements represent the spectrum. Thus,

the circulant-structured matrix is transformed into the spectral covariance using the DFT

matrix.

ANOVA on nested pairs (Haar wavelet analysis). Now consider a system consisting of

nested batches of variables, a standard problem in the analysis of variance, or variance compo-

nents analysis. Consider the case of 2 batches each containing 2 variables. This structure can

be depicted as the leaves on a binary tree shown in Fig 5b. The symmetry operations for this

structure are the permutations within groups and permutations of groups, or, as we discussed

earlier, the exchange of daughter subtrees. The covariance matrix invariant under these sym-

metry operations has the form

ΣH
G ¼

a b c c

b a c c

c c a b

c c b a

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; ð14Þ

which was given in the bottom right corner of Eq 5. The matrix that diagonalizes this struc-

ture,

H ¼
1

2

1 1
ffiffiffi
2
p

0

1 1 �
ffiffiffi
2
p

0

1 � 1 0
ffiffiffi
2
p

1 � 1 0 �
ffiffiffi
2
p

2

6
6
6
6
4

3

7
7
7
7
5
; ð15Þ

is known as the Haar (wavelet) transform matrix. Each column defines a natural variable for

the tree symmetry and represents a source of variation or a wavelet component. UsingH to

transform ΣH
G into this natural basis results in a (diagonalized) spectral covariance

ΣH
O
¼ HyΣH

GH ¼

aþ bþ 2c � � �

� aþ b � 2c � �

� � a � b �

� � � a � b

2

6
6
6
6
4

3

7
7
7
7
5
; ð16Þ

where the diagonal elements are known as the components of variance (if we regard this from

the ANOVA perspective), or the Haar wavelet spectrum (if we regard this as wavelet analysis).

Here there are 3 sources of variation: between trees (a + b + 2c), within trees (a + b − 2c), and

within subtrees (a − b).
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We emphasize that the change-of-basis matrices F and H are defined by the symmetry

of each system. They transform the original variables into a set of non-interacting natural

variables (Fourier or Haar wavelet components) which define the meaningful components

of variance. It was Tukey [70] who first showed that Fourier decomposition can be

regarded as a branch of variance components analysis (see Speed [71] for more extensive

discussion).

It is worth pointing out how this diagonalization, or eigendecomposition, of the covariance

matrix, relates to traditional principal components analysis. In generalized spectral analysis,

the eigenvectors (given by the columns in F andH), or, more precisely, the eigenspaces, are

determined by the structure of S and do not depend on its entries. In addition, the eigenvalues

are linear functions of the entries. Neither of these properties are true, in general, for principal

components analysis.

Generalized spectral analysis of a complete tree. Having examined the case of a tree

where only the leaf nodes are of interest (Fig 5b), we now examine the case where all positions

in the tree are of interest (Fig 5c). For the complete tree, we already know the structured

covariance ΣG (see Eq 5). Our tasks then are to derive the change-of-basis matrix, interpret the

natural variables, and calculate the spectral covariance.

Formal derivation of the change-of-basis matrix, T, for a complete tree is shown in Section

S1.2 in S1 Appendix. This represents the generalization of the Haar transform matrixH to a

complete tree. For a 3-generation tree it is given by

ð17Þ

where the columns, as usual, define the natural variables.

There are two equivalent ways to interpret these natural variables: from the ANOVA per-

spective, and from the wavelet perspective. From the nested ANOVA perspective, each natural

variable is associated with a source of variation (ℓ, τ) located at the root of a subtree. From the

wavelet perspective, ℓ and τ correspond to the dilation and translation indices, respectively, for

the wavelet coefficients (see e.g. [72]). In both perspectives, because we are considering a tree

with multiple generations, we need a third index, g, specifying the generation in which the var-

iation is observed in order to uniquely identify each natural variable (see Fig 3 for the labeling

convention). The 3-index label (ℓ, τ, g) is given above each column in Eq 17, with vertical lines

used to partition the different ℓ.

Maps of variability in cell lineage trees
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Extending the change-of-basis matrix to 4 generations gives

A visual representation of how these natural variables are constructed from the original var-

iables is shown in Fig 6 for the case of a 4-generation tree. This emphasizes how the ℓ-coordi-

nate of the source of variation characterizes the scale of the pattern. Fig 7 shows a few

examples of the natural variables to illustrate how they are convenient, elemental components

for describing tree-structured variation.

The natural variables thus correspond to patterns of bifurcated expression on subtrees,

or, more succinctly, bifurcated subtrees. These are the analogs to Fourier components, and

could in fact be referred to as generalized Fourier components for the tree. Thus it is not sub-

trees that are the fundamental units of expression in a binary tree but rather bifurcated

subtrees.

The natural variables are not particularly surprising: they are just those one would define

in a nested ANOVA or Haar wavelet analysis if each generation were considered separately.

Perhaps more surprising is their arrangement in T: although Eq 17 contains every column of

the Haar transform matrix for generations 2 (dotted lines) and 3 (dashed lines), these matrices

are not incorporated simply as a direct sum. Instead, representation theory demands that we

group the natural variables by (ℓ, τ). When we do this and apply T to ΣG from Eq 5 we get a

block-diagonalized spectral covariance,

ΣO ¼ T
yΣGT

¼

j
x
ð0Þ

11
x
ð0Þ

12
x
ð0Þ

13

x
ð0Þ

12
x
ð0Þ

22
x
ð0Þ

23

x
ð0Þ

13
x
ð0Þ

23
x
ð0Þ

33

j
: :

: :

: :

: :

: :

: :

: : :

: : : jx
ð1Þ

22
x
ð1Þ

23

x
ð1Þ

23
x
ð1Þ

33
j

: :

: :

: : :

: : :

: :

: : jx
ð2Þ

33
:

: x
ð2Þ

33
j

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
ð18Þ
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where each block corresponds to a source of variation ℓ and its associated generations g, where

g> ℓ. Here we label matrix elements as x
ð‘Þ

gg0 where subscripts refer to the pair of interacting

generations, g and g0 (there is no need to use τ as a label since elements differing only in τ have

identical values). Note how the components of variation that we encountered on the diagonal

Fig 6. Construction of the natural variables for a tree with 4 generations. Each natural variable is identified by a

source of variation (ℓ, τ), corresponding to the root of a subtree, and a generation g. The + and − at each lineal position

illustrate how the original variables are combined to form a natural variable. The 15 natural variables thus defined by

the 3-tuple (ℓ, τ, g) are listed in the bottom row. Since the τ coordinates are indistinguishable, only 10 of the natural

variables (those with τ = 0, say) are unique.

https://doi.org/10.1371/journal.pcbi.1006745.g006

Fig 7. Bifurcated subtrees. Patterns on a tree can be described in terms of natural variables, or elemental components,

examples of which are shown here. Each component is a bifurcated pattern centered on a subtree (ℓ, τ) and expressed

in a generation g (where τ is ignored in an unordered tree). For example, the blue/non-blue bifurcated pattern

occupies a subtree rooted at ℓ = 3 and observed at generations 5, 6, and 7. Note that ℓ = 1 variation (on the right) is a

bifurcation across the whole pedigree. Variation among different pedigrees would be labeled with ℓ = 0.

https://doi.org/10.1371/journal.pcbi.1006745.g007
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in ΣH
O

(Eq 16), where only third generation variables were of interest, are here labeled as x
ð0Þ

33
,

x
ð1Þ

33
, and x

ð2Þ

33
. They are still on the diagonal but are grouped with their counterparts from gener-

ations 1 and 2.

To better appreciate the block-diagonal structure of SO, we show it as a heat map for the

case of a 4-generation tree (Fig 8b) along with the corresponding ΣG (Fig 8a). This emphasizes

how each block ℓ is further block-diagonalized by τ. In the terminology of group representa-

tion theory, ℓ identifies an isotypic subspace while τ identifies an irreducible subspace—a sub-

set of the isotypic subspace. In Fig 8b, the isotypic blocks are bounded by dashed lines, while

the irreducible blocks are bounded by dotted lines.

The primary benefit of identifying the spectral transformation for the complete tree is that

SO contains all the information in ΣG but in a much simpler form. Having pooled data to esti-

mate Σ̂G one simply performs the linear transformation to get Σ̂O.

We pause briefly to examine how this generalized spectral analysis for a complete tree is

analogous to traditional Fourier analysis for a time series. As we mentioned, bifurcated sub-

trees are the natural variables for a binary tree and are thus analogous to sine and cosine

waves. Any pattern on a tree, whether or not it is clonal, can thus be defined as a superposition

of bifurcated subtrees. This idea is useful when trying to interpret non-clonal lineage patterns:

whereas a clonal pattern is associated with a single subtree, a non-clonal pattern is a superposi-

tion of multiple subtrees.

Another analogy is between the ordering of the tree and the phase of a time series. Our abil-

ity to average different trees regardless of their ordering is similar to the ability to average the

spectra of different time series each having unknown (and potentially different) starting

phases. One knows that to pool data across different time series, one should average their spec-

tra, not the different time series themselves. Other analogies are shown in Table 2.

Fig 8. Heat maps of SG and SO for a complete tree. This example was taken from the first 4 generations of the branching process.

Natural variables along the axes of SO are given in the format (ℓ, τ, g). Isotypic blocks are bounded by dashed squares and

correspond to a given ℓ. Irreducible blocks correspond to a source of variation (ℓ, τ) and are bounded by a dotted square. For ℓ = 0

and 1 the isotypic and irreducible blocks coincide since there is only one τ index value.

https://doi.org/10.1371/journal.pcbi.1006745.g008
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Complexity of the structured covariance. Spectral decomposition shows that the high-

dimensional covariance estimation problem involving shared parameters in Σ̂G is equivalent to

several, lower-dimensional covariance estimation problems given by the irreducible blocks in

Σ̂O. We can use this to calculate the complexity of Σ̂O as we did for the unstructured covariance

(Eq 3).

Because each unique irreducible block is an independent, unstructured estimate of a covari-

ance matrix, the effective number of dimensions, peff, is given by summing the number of

dimensions for each unique irreducible subspace. The number of free parameters in the covari-

ance matrix, N Σ, is found by summing the number of parameters in each unique irreducible

block. The minimum number of replicates required, nmin, is found from the dimensionality of

the largest irreducible block (ℓ = 0). Thus

peff ¼
XG� 1

‘¼0

ðG � ‘Þ ¼
GðGþ 1Þ

2
¼ OðG2Þ; ð19Þ

N S ¼
1

2

XG� 1

‘¼0

ðG � ‘ÞðG � ‘þ 1Þ ¼
G
6
ðGþ 1ÞðGþ 2Þ ¼ OðG3Þ; ð20Þ

nmin ¼ Gþ 1 ¼ OðGÞ: ð21Þ

The group-symmetric model is thus significantly more constrained than the unstructured

model, with the number of parameters growing polynomially with G instead of exponentially

(compare Eq 3). Note how peff < p (when G� 3), a reduction in the effective number of

dimensions that was not apparent from ΣG alone.

Nevertheless, even with these symmetry constraints, nmin still grows with G, albeit linearly

(Eq 21) instead of exponentially (Eq 3). This means that, for a fixed set of n replicates, there

will always be a limit to the number of generations that can be analyzed. We need an additional

constraint.

Sparsity. The additional constraint comes from imposing a sparsity requirement on each

irreducible subspace by restricting the Markov order, M, of each time series. This constraint

represents a simple case of a decomposable graphical model and results in a Markov-con-

strained spectral covariance estimate, Σ̂O and structured covariance estimate Σ̂G. As shown in

Section S1.3 in S1 Appendix, the minimum number of replicates required to ensure positive

definiteness is now nmin ¼Mþ 2, which, as desired, is independent of G. Thus, if M ¼ 1 for

example, only n� 3 pedigrees are required to ensure Σ̂ is positive definite, regardless of the

number of generations analyzed.

Table 2. Generalized spectral analysis. Well-known quantities in Fourier analysis have their direct analogs in the

spectral analysis of a tree.

Fourier analysis Tree analysis
Sine, Cosine waves Bifurcated subtrees

Phase Ordering of the tree

Auto-covariance Structured covariance, ΣG (Eq 1)

Discrete Fourier Transform matrix Change-of-basis matrix, T (Eq 17)

Power spectrum Spectral covariance, SO (Eq 18)

https://doi.org/10.1371/journal.pcbi.1006745.t002
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Missing data. The covariance estimates described above assume complete data. In reality,

some measurements are missing, often because data collection is imperfect but also because

cells die and have no descendants (although in the datasets analyzed in the paper, cell death is

essentially negligible). A simple solution is to apply the Expectation-Maximization (EM) algo-

rithm [73], assuming a multivariate Gaussian to impute the missing data. This is described in

Section S1.4 in S1 Appendix.

We remark that, until now, the covariance estimation procedure we have described is distri-

bution-free, providing a non-parametric estimate of second-order variation. It is only to

account for missing data that we invoke a distributional assumption. In Section S1.5 in S1

Appendix we show that the maximum likelihood estimate (MLE) for a multivariate Gaussian

with the symmetry and Markovian constraints discussed above is in fact the covariance esti-

mate we have already found.

Summary of algorithm. Here we summarize the complete algorithm for estimating the

mean and covariance of a complete tree, showing how the symmetry and sparsity constraints

are incorporated into the EM algorithm to account for missing data:

Results

Our method for estimating Σ̂ described above can in principle be applied to lineages with any

number of generations and needs only a few replicates (pedigrees) to ensure positive

1. Initialize μ̂ and Σ̂ with a starting guess.

2. Expectation step. Estimate the expected value of the sufficient statistics for each

replicate by accounting for missing data using the current estimates for μ̂ and Σ̂ in

Eqs S13, S14. Calculate the resulting (unstructured) sample mean, y�, and covari-

ance, S, using Eq S15.

3. Maximization step.

a Impose the symmetry constraint by pooling over shared elements: y�G ¼ Pðy�Þ and

SG ¼ PðSÞ (Eqs 9 and 10). The estimated mean is then μ̂ ¼ y�G.

b Transform to the sample spectral covariance, SO ¼ T
ySGT.

c From each unique irreducible block, Sð‘ÞO , estimate Σ̂ð‘ÞO using S9 and S10, assuming a

Markov chain of order M.

d Construct the spectral covariance estimate Σ̂O from a direct sum of irreducible

blocks Σ̂ð‘ÞO (Eq S11).

e Inverse transform to the structured covariance estimate, Σ̂G ¼ T Σ̂OT
y. This is the

new covariance estimate, Σ̂ ¼ Σ̂G.

4. Return to Step 2 until convergence.
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definiteness. We now turn to the problem of interpreting Σ̂ and using it to answer questions

about a lineage.

Lineage variability maps

We can visualize Σ̂G and Σ̂O using graphical models to produce different ‘maps’ of the varia-

tion in the lineage. We call these lineage variability maps. To depict Σ̂G we use undirected

graphs, since lineal positions within a generation have no ordering. We call the result a line-

age correlation map. To depict Σ̂O we can use directed graphs, since the natural variables in

an irreducible subspace are ordered in a sequence. Thus the spectral transformation enables
the undirected graph to be converted into a directed one. This graph, which we call a dynamic

lineage map, compactly represents the dynamics of the bifurcated expression pattern in each

subtree.

Lineage correlation map. To visualize the network of statistical associations between dif-

ferent lineal positions we use undirected graphs [74, 75] defined either by marginal or by con-

ditional associations. For the network of marginal associations the strength of an edge between

a pair of variables is defined by the Pearson correlation coefficient, rjj0 ¼ sjj0=
ffiffiffiffiffiffiffiffiffiffiffi
sjjsj0 j0
p

where σjj0

is an element of Σ̂. For the network of conditional associations the strength of an edge is

determined by the partial correlation %jj0 jV fj;j0g ¼ � kjj0=
ffiffiffiffiffiffiffiffiffiffiffi
kjjkj0j0
p

where κjj0 is an element of K̂ ,

and Vn{j, j0} refers to the set of variables excluding j and j0.
Both types of undirected graphs are shown in Fig 9 for the 3 lineage types. The network of

conditional associations identifies direct interactions between variables, conditioned on all

other variables, and, as expected, generally provides a sparser representation than does the net-

work of marginal associations.

Note how a binary tree is revealed in the graph of partial correlations for the branching pro-

cess (Fig 9f). This is expected since our branching process defined daughters to be condition-

ally uncorrelated. In the network of partial correlations this assumption reveals itself as the

lack of an edge between sisters. In contrast, in the partial correlation graphs for T-cell (Fig 9d)

and worm (Fig 9e) lineages, sisters are often joined by edges. This arises when the correlation

between sisters is greater or less than the squared correlation between mother and daughter, a

long-documented observation in cell lineages (see e.g. [28, 29]). This is the simplest demon-

stration of the fact that phenotypic variation in real lineages cannot be modeled as a branching

process.

The graphs in Fig 9 allow us to examine how the network of phenotypic associations com-

pares with the network of lineal relationships; though the latter is a binary tree, the former

may not be. This emphasizes that, although we must assume that phenotypic variation in an

unordered tree has the symmetry of a binary tree, we do not assume it has the sparsity of a

binary tree.

A problem with representing each lineal position as a node is that the graph appears clut-

tered since there are many edges and nodes with similar strengths. This problem gets exponen-

tially worse with increasing generations. Such redundancies disappear when examining the

tree over its natural variables.

Dynamic lineage map. The spectral transformation dramatically simplifies the lineage

variability map, decomposing the (potentially) complete graph over all lineal positions shown

in the previous section into a set of G independent graphs, each of which is a time series. Since

the natural variables in an irreducible subspace have a clear ordering (by generation), an irre-

ducible block can be represented by a directed graph [76–78], with each of its variables condi-

tioned on the past only (rather than on both the past and the future).
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To construct such a directed graph, consider the vector of natural variables, zℓ, belonging to

each irreducible subspace, ℓ. The irreducible block is then given by

Σð‘ÞO ¼ Eðz‘z0‘Þ: ð22Þ

Since the variables in zℓ comprise a time series, they can be modeled using a linear struc-

tural equation:

z‘j ¼ ε‘j þ
Xj� 1

j0¼‘þ1

b‘jj0z‘j0 ; for ‘ < j � G; ð23Þ

where, for a given irreducible subspace ℓ, zℓ j is the natural variable for generation j, βℓ jj0 is the

regression coefficient of generation j on j0, and εℓ j is an independent random variable describ-

ing variation originating at generation j that has a mean of zero and expected variance Eðε2
‘jÞ.

To determine these model parameters, we start by rewriting Eq 23 in terms of a lower-

Fig 9. Lineage correlation maps. These are undirected graphs in the original variables (shown as binary numbers). Each generation

is arranged in an arc centered on the root node. The color of edges in each graph corresponds to the correlation (top row) or partial

correlation (bottom row) between pairs of lineal positions. To avoid clutter, only the first 4 generations are shown. Note how the

graph (f) of partial correlations for the simulated branching process, where daughters are conditionally uncorrelated, is a binary tree.

This is not the case for the real lineages.

https://doi.org/10.1371/journal.pcbi.1006745.g009
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triangular matrix Bℓ = (bℓ jj0):

B‘z‘ ¼ ε‘; ð24Þ

b‘jj0 ¼

(
1; if j ¼ j0

0; if j � j0 < 0 or j � j0 > M

� b‘jj0 ; otherwise:

ð25Þ

Now, the modified Cholesky decomposition of Σð‘ÞO is

Σð‘ÞO ¼ L‘Φ‘L
0

‘
; ð26Þ

where Fℓ is diagonal and Lℓ is lower triangular. Combining this with Eq 22 and then Eq 24, we

see that

L‘Φ‘L
0

‘
¼ Eðz‘z0‘Þ; ð27Þ

¼ B� 1

‘
Eðε‘ε0‘ÞðB

� 1

‘
Þ
0
: ð28Þ

Thus the parameters in the structural equation model are found directly from the modified

Cholesky decomposition:

B‘ ¼ L
� 1

‘
; Eðε‘ε0‘Þ ¼ Φ‘: ð29Þ

The directed graph can then be defined with edge weights given by βℓ jj0 and node sizes

given by Eðε2
‘jÞ. The edge weights represent transmission of variation while the node sizes rep-

resent innovations. If |βjj0|<1 then transmission is regressive, with descendants gradually los-

ing memory of previous generations. However, if |βjj0|>1 then variation from source (ℓ)
observed at generation j0 is amplified during transmission to generation j. Thus large variation

can either arise directly from a large innovation or it can be the result of strong amplification

of small variation (or both).

These directed graphs compactly summarize the dynamics of phenotypic variation along

each subtree. Examples for the 3 lineages types are shown in Fig 10. Each connected

Fig 10. Dynamic lineage maps. These directed graphs in the natural variables show the dynamics of the bifurcated expression

pattern in each subtree ℓ. The color (and thickness) of an edge between node j and j0 corresponds to the transmission strength, βℓ jj0.
The size of the node corresponds to the innovation strength, Eðε2

‘jÞ.

https://doi.org/10.1371/journal.pcbi.1006745.g010
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component, given by a row, represents how the bifurcated expression pattern associated with a

subtree ℓ propagates down successive generations.

As expected, the worm graph has the most distinct structure (Fig 10b). Transmission and

innovation is small for the first few generations of each subtree, before “turning on” after gen-

eration 6. This means that the bifurcated expression of a subtree is silent for many generations

before appearing simultaneously in multiple descendants at a later generation. Note how trans-

mission and innovation for ℓ = 0 are weak, indicating little inter-pedigree variation, as

expected for a totipotent cell. Strong transmission is observed in particular subtrees at certain

generations. For example, transmission is highest for ℓ = 2 between generations 6 and 7, and

for ℓ = 5 between generations 7 and 8. We will discuss these features later when we assess the

fate restriction associated with each subtree.

Although, for the worm, these characteristics could have been inferred just by visualizing

the pedigrees directly, the point is that we now have a statistical method to extract such fea-

tures when the lineage is variable. For example, the primary feature of the graph for T cells,

which was not obvious from just looking at the lineages, is that subtree ℓ = 0 has the largest

innovations and consistently strong transmission between generations (the exception is from

generation 1, whose phenotype is not transmitted). This indicates that much of the variation is

between pedigrees, rather than within the pedigree as it was for the worm. We will describe

this in more detail in the next section.

Finally, we note that the graph for the branching process is essentially featureless across all

generations and in all subtrees, as would be expected for a stationary process.

Fate profiles

Lineage variability maps describe the pattern of phenotypic associations throughout the line-

age. However, as with lineage maps, our interest is often in using them to infer where fate is

specified. In the introduction, we described how this involves identifying the most recent com-

mon ancestor of cells with shared fate. For a clonal pattern, where a cell fate is exclusive to a

single subtree, we would infer that fate was specified at (or near) a single lineal position—the

root of that subtree. For a non-clonal pattern, where cell fate is expressed in multiple subtrees,

we would infer that fate was specified at multiple lineal positions. In C. elegans these inferences

can be made visually [5]. Here we show how, by knowing the lineage variability map Σ, we can

make these inferences statistically, overcoming the problem of how to identify subtrees with

shared phenotypes when lineages are variable.

Before we begin, we must define what we mean by cell fate. In this study we define cell fate

to be the measured phenotype of a cell at the latest generation studied, G. This practical defini-

tion allows us to analyze cell fate whether or not the phenotype in the last generation is actually

a terminal fate. Also, by defining cell fate as the phenotype itself rather than as a cell type

(determined by that phenotype), we can use the phenotypic measurements as is, without hav-

ing to cluster or threshold them. Such discretization procedures can be difficult to define when

phenotypes exist on a continuum of differentiation, as is often the case [79].

Having defined fate, we turn now to explaining its variability in terms of aspects of the line-

age. We first partition the variability among the subtrees, or sources of variation. This quanti-

fies how much of a cell’s fate is restricted by, or specified by, each subtree. We then examine

the correlation of a cell’s fate with the phenotypes of its ancestors. This identifies the earlier

generations over which a phenotypic fate has been stably expressed. Together these two mea-

sures, of fate restriction and fate expression, make up what we call fate profiles.

Fate restriction by subtree. To determine how much cell fate is restricted by (i.e. specified

by) each subtree, we partition the fate variability among the different sources of variation, each
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of which is located at the root of a bifurcated subtree. This is just the traditional problem of var-

iance components analysis in nested groups (see Fig 5b). Since we have already calculated the

spectral covariance matrix, we need only locate the appropriate components of variance along

its diagonal (see Eq 18).

Consider the variance of a cell in generation G, given by σGGG (see Eq 5). This can be writ-

ten as the the sum of independent contributions from each source (ℓ, τ). These are known as

the (normalized) components of variance in a classical ANOVA [71]. A convenient way to

show this decomposition in our framework is to perform the inverse spectral transform of SO

(for an example, see Section S1.2.9 in S1 Appendix). The result is

sGGG ¼
1

Nsrc

XG� 1

‘¼0

Xd‘ � 1

t¼0

x
ð‘Þ

GG; d‘ ¼

(
1; if ‘ ¼ 0;

2‘� 1; if ‘ � 1;
ð30Þ

¼
1

Nsrc

XG� 1

‘¼0

x
ð‘Þ

GGd‘; ð31Þ

where dℓ is the number of transverse sources of variation at a given ℓ, and Nsrc ¼
PG� 1

‘¼0
d‘ ¼ 2G

is the total number of sources of variation in a G-generation tree. The component of variance

corresponding to source ℓ is thus given by x
ð‘Þ

GGd‘=Nsrc where x
ð‘Þ

GG is found along the diagonal

of SO.

The resulting proportion of variance attributable to the ℓ-th source for a cell in generation

G is given by

Z2ð‘jGÞ ¼
x
ð‘Þ

GGd‘
PG� 1

‘0¼0
x
ð‘0Þ

GGd‘0
; 0 � ‘ < G: ð32Þ

This measures the relative importance of each source of variation ℓ in explaining cell fate.

Equivalently, it measures how much cell fate is restricted by subtree ℓ.
It will also be useful to calculate the cumulative proportion of total variance attributable to

subtrees from 0 to ℓ, inclusive,

Z2
cmlð‘jGÞ ¼

P‘

‘0¼0
x
ð‘0Þ

GGd‘0
PG� 1

‘0¼0
x
ð‘0Þ

GGd‘0
; 0 � ‘ < G: ð33Þ

This gives a running total of the cell fate restricted by each successive subtree, starting at ℓ =

0 and is related to the intraclass correlation.

An obvious question is whether η2(ℓ|G) would differ if we had simply performed a variance

components analysis on the single generation G, ignoring measurements in the other genera-

tions. With complete data, our method would give the identical result to a variance compo-

nents calculation: using a decomposable model for a Markov chain ensures that estimates of

diagonal elements in SO (the components of variance) are given by the corresponding diago-

nal elements in SO. If there were incomplete data however, data from other generations would

help to estimate the missing data in generation G, improving the estimate of η2(ℓ|G).

Fate expression by generation. Having determined how much fate is restricted by each

subtree, we now determine how much cell fate is expressed in each earlier generation. We do

this by correlating the phenotype of a cell in generation G with those of its direct ancestors.

The degree to which earlier generations are correlated with the last is a measure of when fate

becomes expressed.

This definition of fate expression emphasizes the stability, or persistence, of a phenotypic

fate rather than the absolute value of a phenotypic measurement. We have chosen this
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definition since our analysis should be general enough to work on data with substantial vari-

ability, where it may be difficult to define a cell fate in terms of some threshold level of

expression.

Given a lineal position in generation G and its direct ancestor in generation g, the propor-

tion of explained variance is just the squared correlation coefficient, or coefficient of determi-

nation,

R2ðgjGÞ ¼
s2
gG

sggsGG
¼ r2

gG; 1 � g < G: ð34Þ

In the subscripts we have simplified the 3-index notation from Eq 5 by ignoring the third

index. This does not cause confusion since in this context we are only concerned with direct

ancestors.

Generalizing to prediction using multiple generations of direct ancestors up to and includ-

ing that in generation g gives

R2
cmlðgjGÞ ¼

ΣGgΣ
� 1

gg ΣgG
sGG

ð35Þ

where g represents a vector of direct ancestors of the cell in generation G that are from genera-

tions 1 to g inclusive. Note that Eq 35 accounts for possible dependencies in the variation

between ancestors. Unlike for the case of components of variance, contributions from different

ancestral generations are not (in general) orthogonal.

Comparing fate restriction and fate expression. Our measures of fate restriction and

fate expression are complementary ways of explaining the variation of cell fate: η2(ℓ|G)

explains fate in terms of shared ancestry (subtrees) while R2(g|G) explains fate in terms of

ancestral phenotypes. We call these fate profiles. Both are plotted in Fig 11, with the top row

giving the explained variance and the bottom row giving the cumulative explained variance.

η2(ℓ|G) (blue line, top row) shows how much variation in G is restricted by each of the sub-

trees ℓ. For T cells, ℓ = 0 is by far the most important “subtree” for explaining fate (at G = 5).

This is consistent with a cell that has limited potency, where the choice of founder cell severely

restricts the range of fates available. In this case, any founder cell has already had 80% of its cell

fate restricted. For the worm, cell fate is restricted by all subtrees except ℓ = 0. Each zygote thus

has 100% of its cell fate potential. This is consistent with the behavior for a totipotent cell. All

subsequent subtrees contribute to cell fate, with ℓ = 2, 3, 5 being particularly important. This

spread of fate specification over different subtrees might have been expected given the non-

clonal expression pattern of PHA-4. While a clonal pattern is projected onto a single subtree,

non-clonal patterns are projected onto multiple subtrees. For the branching process, contribu-

tions from all subtrees are comparable, as expected. Each subtree is, roughly speaking, equally

important.

R2(g|G) (orange line, top row) gives the correlation of a cell in generation G with its direct

ancestor in generation g. For T cells, R2(g|G)’0 for g = 1 indicating that, even though most cell

fate (at least at G = 5) is set by the choice of founder cell, the founder does not actually resemble

its descendants. For the worm, R2(g|G)’0 for 1� g� 6. Thus none of the complicated struc-

ture in η2 for 0� ℓ� 6 is reflected in R2.

This difference between fate restriction and fate expression is highlighted by the cumulative

explained variance shown in the bottom row of Fig 11. For the worm, Z2
cml increases with

each subtree (for ℓ> 0) while R2
cmlðgjGÞ remains zero until g = 7. For the T cell, Z2

cml starts high

at ℓ = 0, while R2
cmlðgjGÞ starts at zero and increases slowly with each generation. Contrast this
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with the branching process where Z2
cml and R2

cml both start near zero and increase steadily in a

similar fashion. Clearly a T cell lineage cannot be modeled as a branching process.

In the worm lineage, such fate restriction before fate expression captures what is perhaps

obvious from the lineage map. Looking at Fig 1b we see how PHA-4 expression is negligible

until generation 7 whereupon it appears simultaneously across multiple subtrees. This implies

that cells across those subtrees coordinated their fates before expressing them. Thus, for the

worm, the fate profile merely restates, albeit in a quantitative way, what can be visualized in a

single (invariant) pedigree. However, the advantage of the fate profile is that it can be applied

to variable lineages, when simple visualization fails.

Discussion

The lineage map, which has been instrumental in the discovery of fate specification mecha-

nisms in simple organisms, was born from the study of invariant lineages and is not a particu-

larly useful concept for understanding the more ubiquitous case of variable lineages. To

Fig 11. Fate profiles for different lineages. Explained variance (top row) and the cumulative explained variance (bottom row).

η2(ℓ|G) (blue) measures how much the fate of a cell at generation G is restricted by each subtree ℓ. R2(g|G) (orange) measures how

much a generation-G cell’s phenotype is correlated with its direct ancestor in generation g. Note that because the Markov process is

assumed to be first order (see Section ‘Sparsity.’), R2 ¼ R2
cml. For the case of the simulated branching process the exact result is also

shown. This illustrates the accuracy of the inference procedure.

https://doi.org/10.1371/journal.pcbi.1006745.g011
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address this limitation, we have introduced lineage variability maps, which provide a way to

describe lineages at the population level. Whereas the lineage map is a description of the fixed

pattern of phenotypes across a pedigree, the lineage variability map describes the pattern of

phenotypic associations across a pedigree. This map of phenotypic associations, S, provides

quantitative answers to essential scientific questions such as those about cell potency, fate

restriction, and the sources of variation in a lineage.

We have constructed lineage variability maps from a sample of highly-variable pedigrees

from CD8+ T-lymphocytes up to five generations. These show that most of the variation in cell

fate, defined here to be average cell size at generation 5, is explained by the choice of naive cell.

Yet, despite the pivotal role played by this founder in restricting cell fate, its phenotype is not

predictive of fate: though a naive cell may specify that its descendants be large, it may not be

large itself (at least on average).

Although we expect to apply our technique primarily to variable pedigrees which are diffi-

cult to interpret by visualization alone, we can also apply it to invariant lineages to check our

results. In fact, by constructing lineage variability maps from sample wild-type pedigrees from

C. elegans marked for pharyngeal expression, we successfully recovered essential information

in the known lineage map, identifying global features such as the small degree of inter-pedigree

variation characteristic of a totipotent zygote, and the several-generation delay between fate

specification and expression.

Yet our lineage variability maps capture important finer detail as well. Consider the peak in

fate restriction at ℓ = 2 observed in Fig 11b. This arises from the strong bifurcation of fate

traced back to the division of both P1 and of AB, progenitors located at ℓ = 2 (see Section S1.6

in S1 Appendix for the labeling of lineal positions in the worm). That only a single daughter

from P1 and from AB exhibit pharyngeal fate results in the spike in fate restriction that we

observe. Interestingly, this phenomenon, of pharyngeal fate ensuing from two cousins at gen-

eration 3 (ABa and EMS) but not from their sisters, is a phenomenon that has been investi-

gated in detail [80]. Such work laid the foundation for further studies leading to the

understanding of the molecular and cellular mechanisms for specification of pharyngeal tissue

[81]. This demonstrates how, even though we may be ignorant of the ordering of the lineage,

we can still detect a fate bifurcation event of biological relevance that had previously required

knowledge of this ordering. In other words, although we must assume lineage relationships are

symmetric, this does not prevent us from detecting the effects of asymmetric lineage patterns

from the ‘boost’ they give to the variance in particular subtrees.

Recent technological innovations have introduced a variety of methods for recording line-

age data, involving both advanced imaging [19, 46–48] and genetic barcoding [20, 49, 51–57]

techniques. With the statistical lineage mapping and fate profiling methods described in this

manuscript, it should be possible to quantify fundamental properties of these lineages, such as

the potency of progenitors, whether heterogeneity is clonal, and at what depth such heteroge-

neity appears. Just as the visual identification of fate bifurcations in the worm lineage map

enabled the location of fate specification events to be discovered, the capacity to perform sys-

tematic screens to rapidly identify the important stages of fate restriction should contribute to

a deeper understanding of the mechanisms of fate specification in more complex, more vari-

able systems.
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