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For many years, ergot alkaloids have been considered both a problem to be mitigated
and a potential medical cure. These compounds have been primarily studied in the
medical/pharmaceutical [1] and agricultural fields [2]. Depending on one’s perspective,
the impact that ergot alkaloids have had on the progress of human medicine and livestock
production can be either positive or negative. The dose or concentration of ergot alkaloid
exposure is paramount. This can determine whether these compounds are implicated in
the morbidity and mortality of individuals with St. Anthony’s Fire, or whether they can be
used to treat migraines and post-partum bleeding; it can determine whether they are used
to maximize plant resistance and persistence, or whether they constitute an animal welfare
concern for grazing livestock [3,4]. The ethics of ergot alkaloid use is debated to this day,
but there is no debating the impact of these compounds. Many of the positive and negative
issues associated with ergot alkaloids have specific conditions with regional implications,
but that does not diminish the magnitude of impact that these compounds have had on
humans, livestock, and plants globally.

Research evaluating ergot alkaloids can be both basic and applied. Many types of
research perspectives are necessary in understanding ergot alkaloids’ functions and how
these findings might be applied. The focus of this Special Issue concerns original research
and review articles that highlight benefits and detriments, and successes and failures
involving ergot alkloids around the world with deference to regional distinctions. Research
models range from fungus, to plant, to mammal; and the ergot alkaloids produced by both
Claviceps and Epichloë spp. of fungi are included in this Special Issue. All submissions focus
on ergot alkaloids’ effects (positive or negative) in different contexts. There is a benefit to
this shared interest, even if the issues with ergot alkaloids do not directly overlap.

Significant advancements in the manipulation of plant–endophyte symbioses have
been made in recent years to optimize the profile and concentration of the secondary
compounds produced [5]. Eady [6] has reviewed the complexities plant breeders encounter
when selecting a desired plant–endophyte symbiont, with New Zealand ryegrass as a
model. This is a balance between selecting a source of ergot alkaloids that permit greater
plant persistence, and inhibiting ergot alkaloid production that results in mycotoxicosis in
grazing livestock in combination with desired plant traits. This makes the understanding of
ergot alkaloid production paramount. The potential of using various-omics technologies to
study ergot alkaloid production has been demonstrated in this Special Issue. In addition to
traditional selection processes, Florea et al. [7] demonstrate the use of CRISPR technology
to create a non-transgenic strain of Epichloë fungus without the genes necessary to produce
ergot alkaloids. Fungi that produce ergot alkaloids can be endophytic and parasitic. Ergot
contamination of cereal crops in Canadian provinces has become an issue of increasing
concern. Hicks et al. [8] evaluate diversity in genes related to ergot alkaloid production in
Canadian strains of the parasitic Claviceps purpurea to better characterize and understand
the variation of ergot alkaloid content. Also looking at Canadian strains of C. purpurea,
Liu et al. [9] evaluated the evolution patterns of gene clusters associated with different
classes of ergot alkaloid production. Work of this caliber is critical to better understand this
evolving issue.
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Historically, human interactions with ergot alkaloids have been defined by large-scale
poisonings through the consumption of contaminated grains [1]. Incidents of human ergot
poisonings are increasingly rare due to improvements in crop management, grain screening
and cleaning [10], and the regulation of safe quantities in food and feed [11]. However,
there are still areas in the world where this can be an issue [12], and there is also still interest
in the pharmaceutical potential of ergot alkaloids. Their most prominent use has been the
treatment of migraines and controlling post-partum bleeding in the 18th and 19th centuries.
In a current review of the past gynecological and obstetric uses of ergot alkaloids, Smakosz
et al. [13] defined a potential role for the application of ergot alkaloids in modern obstetrics.
In addition to clinical uses of ergot alkaloids, research assessing the sustainable production
of ergot alkaloids in desirable formulations is needed. Shahid et al. [14] have developed a
response surface methodology to select strains of Penicillium citrinum for their ability to
produce ergot alkaloids in culture. Many researchers that study ergot alkaloids can relate
to the challenges associated with obtaining purified forms of desired ergot alkaloids in any
quantity.

Although medical applications focus on ergot alkaloids’ positive effects in humans,
animal agriculture has historically and consistently viewed ergot alkaloids as a problem
to be solved. Further, changing environmental conditions cause the ever-changing fungal
production of ergot alkaloid profiles and concentrations. This necessitates routine surveys
of grains and grasses. In this Special Issue, these are exemplified by the on-farm monitoring
of ergot alkaloid levels in Kentucky horse pastures described by Lea and Smith [15], as
well as the ergot alkaloids found in Slovenian feed grains, as described by Babic et al. [16].
Research of this nature is ongoing globally and contributes greatly to the mitigation of
large-scale problems as well as the identification of future areas in need of research.

The variation of the content and concentration of ergot alkaloids is further complicated
by livestock exposed to ergot alkaloids that demonstrate varied responses to the toxins.
Poole et al. [17] and Wilbanks et al. [18] have studied various aspects, including genetics,
that may make cattle more resistant to consumed ergot alkaloids. Ault-Seay et al. [19] used
advanced-omics technologies to look at the rumen microbial and host metabolomes to
provide a whole-animal characterization of impacts of ergot alkaloids. Mote and Filipov [20]
reviewed the use of interactomics to provide a systemic understanding of the pathologies
caused by ergot alkaloids that cause fescue toxicosis. A very specific pathology associated
with ergot alkaloids and ergotism is a chronic vasoconstriction. Yonpaim et al. [21] looked
at the acute exposure of ergot alkaloids on vasoactivity in ovine vasculature, and Valente
et al. [22] evaluated prolonged ergot alkaloid exposure on the vasoactivity of bovine
vasculature. Both studies [21,22] respectively evaluated aspects related to the ability of
ergot alkaloids to interact with adrenergic and serotonergic receptors [23], and both papers
concluded that receptor-mediated treatments for ergot alkaloid-induced vasoconstriction
could be explored as potential therapies. From a systemic evaluation of ergot alkaloids’
impact on the whole animal or microbiome, to the study of a specific symptom, there is
much yet to be learned about how ergot alkaloids disrupt mammalian physiology.

The collection of papers in the Global Impact of Ergot Alkaloids (https://www.mdpi.
com/journal/toxins/special_issues/ergot_alkaloid) (accessed on 17 February 2022) Special
Issue highlights the rich diversity of research and the complexity of the problems centered
around ergot alkaloids. Although many specific issues related to accidental or intentional
consumption of ergot alkaloids can be localized to a certain geographic region, the problems,
challenges, and fascination with ergot alkaloids is global.
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