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The association between cerebral small vessel disease (SVD) – in the form of white
matter lesions, infarctions, and hemorrhages – with vascular cognitive impairment (VCI),
has mostly been deduced from observational studies. Pathological conditions affecting
the small vessels of the brain and leading to SVD have suggested plausible molecular
mechanisms involved in vascular damage and their impact on brain function. However,
much still needs to be clarified in understanding the pathophysiology of VCI, the role of
neurodegenerative processes such as Alzheimer’s disease, and the impact of aging itself.
In addition, both genetic predispositions and environmental exposures may potentiate
the development of SVD and interact with normal aging to impact cognitive function and
require further study. Advances in technology, in the analysis of genetic and epigenetic
data, neuroimaging such as magnetic resonance imaging, and new biomarkers will help to
clarify the complex factors leading to SVD and the expression of VCI.
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INTRODUCTION
Stroke remains the No. 1 cause of disability and the fourth lead-
ing cause of death in the US (Roger et al., 2012). Prevention
strategies aimed at treating modifiable risk factors have been
advocated by clinicians and epidemiologists (Rincon and Sacco,
2008). Among the important causes of stroke, hypertension-
related small vessel disease (SVD) and cerebral amyloid angiopathy
(CAA) are the most common forms, and have generated significant
academic interest because of their sinister impact on brain func-
tion. Understanding the pathophysiological mechanisms involved
in SVD and possible treatments has remained elusive (Pantoni,
2010). In this review, we sought to summarize recent advances
in the understanding of the pathophysiological mechanisms
of SVD.

SMALL VESSEL DISEASE
The term SVD refers to the syndrome of clinical, cognitive, neu-
roimaging, and neuropathological findings thought to arise from
damage to (a) small arteries, (b) arterioles, (c) capillaries, and
(d) small veins and venules in the brain (Moody et al., 1995).
SVD preferentially affects the vessels of the basal ganglia, periph-
eral white matter, leptomeningeal arteries, thalamic and cerebellar
white matter vessels, and vessels of the brainstem. Cortical vessels
are usually not involved in SVD (Thal et al., 2003).

Small vessel disease is an important clinico-pathological con-
dition as it is the cause of 20% of strokes worldwide, and the most
common cause of vascular and mixed dementia [vascular demen-
tia (VaD) and Alzheimer’s disease (AD); Pantoni, 2010; Gorelick
et al., 2011]. Dementia is currently a pressing public health prob-
lem as numbers of affected patients increase steadily. Vascular

brain injury is the second most common cause of dementia after
AD and a defining feature of vascular cognitive impairment (VCI;
Rincon and Wright, 2013). AD commonly coexists with cere-
brovascular disease in the elderly population. Though the risk
factors for both SVD and AD overlap (Dichgans and Zietemann,
2012), the differentiation on clinical grounds is often difficult
(Schneider et al., 2007).

Recently, studies have emphasized on the comorbidities asso-
ciated with AD and VaD. Established risk factors for both VaD
and AD are age, smoking, physical inactivity, obesity, diabetes
mellitus, stroke, and peripheral arterial disease (Dichgans and
Zietemann, 2012). Brains from AD patients exhibit more cere-
brovascular lesions than non-AD patients (Jellinger and Attems,
2005). Pathological examination of brains from AD patients
reveal higher prevalence of lacunes, white matter lesions (WMLs),
microbleeds, and CAA (Jellinger and Attems, 2005). Pathologi-
cal changes seen in AD have led authors to believe that vascular
brain damage is an important component of AD pathophysiol-
ogy (de la Torre, 2002). Almost all brains of AD patients have
CAA (Jellinger, 2002). This suggests a common β-amyloid-based
pathogenesis for the disease. However, despite this molecular rela-
tionship, CAA is a different entity from AD as less than 50%
of CAA cases meet the pathologic criteria for AD and >75%
of patients with AD have mild or no CAA at all (Vinters, 1987;
Ellis et al., 1996).

Cerebral amyloid angiopathy-related impairments in cerebral
perfusion may be responsible for subcortical WMLs and micro-
scopic damage seen in the disease (Gurol et al., 2006; Holland
et al., 2008; Viswanathan et al., 2008). Some studies have sug-
gested that advanced CAA is associated with a larger burden
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of WMLs as compared to healthy controls or AD patients
(Gurol et al., 2006; Holland et al., 2008). Interestingly, CAA
induced cognitive impairment may be a reflection of WMLs
independent of brain hemorrhages (Viswanathan et al., 2008). It
appears that CAA-related WMLs spread through similar areas
affected by hypertensive SVD. However, there is some sug-
gestion that CAA induced WMLs may be preferentially seen
in the posterior white matter (Zhu et al., 2012). In addition,
pathologic studies have suggested that cortical microinfarcts are
common in CAA (Soontornniyomkij et al., 2010). The pres-
ence of these microinfarcts may be unrelated to classic vascular
risk factors. The pathophysiological mechanisms thought to be
involved are impaired autoregulation, smooth muscle damage,
and capillary occlusion (Shin et al., 2007; Smith et al., 2008;
Thal et al., 2009).

Although pathological studies have shown a significantly higher
prevalence of vascular pathology in AD patients (Jellinger and
Attems, 2005) and despite stroke being a frequent occurrence in
elderly AD patients (Honig et al., 2003), the pathophysiological
mechanisms and impact of these cerebrovascular abnormalities
on cognitive decline in AD remains unclear.

DIAGNOSIS
Because small vessel damage cannot be readily visualized in vivo,
the effect of SVD on the brain parenchyma is usually inferred from
findings on computed tomography (CT) or magnetic resonance
imaging (MRI), and these changes are considered the hallmarks of
the disease. As such, SVD is often equated with brain parenchymal
lesions. However, it may be beneficial to broaden the definition
of this phenotype of SVD to include vascular damage prior to
ischemic injury, and use other measures of vascular dysfunc-
tion – such as measures of cerebral autoregulation. To date such
studies have been limited (Pantoni, 2010). This broader view of
SVD allows consideration of plausible therapeutic interventions
aimed at modulating the progression of disease before irreversible
damage is done.

Consequences of SVD in the brain parenchyma include lesions
located in the subcortical structures such as lacunar infarcts,
WMLs, and deep hemorrhages (large sub-cortical hemorrhages
and microbleeds; Pantoni, 2010; Table 1). The prevalence of
silent brain infarcts has varied across study populations, across
imaging techniques, and the definition of infarct used (Ver-
meer et al., 2007). Several large-population-based studies have
reported prevalence estimates of 8–28%, with differences mainly
explained by age (Vermeer et al., 2007). Microscopic damage,
which escapes the resolution of most CT and MRI machines,
is even more prevalent (Launer et al., 2011). Microscopic brain
infarcts (MBI) have been seen in up to 68% of community-based
participants (Launer et al., 2011). The therapeutic implications
of SVD are important, as SVD is the cause of up to 25% of
ischemic strokes and the majority of intracerebral hemorrhages
(Petty et al., 2000). No specific therapy exists in the acute set-
ting for strokes caused by SVD. Perhaps more importantly, there
is no suggestion that cornerstone treatments of ischemic stroke
such as aspirin, thrombolysis, or admission to a stroke unit or
neuroscience center are associated with better outcomes in this
subset of patients than for other stroke subtypes (Cocho et al.,

2006; Pantoni, 2010). Beyond control of blood pressure and statin
treatment (Dufouil et al., 2005; Mok et al., 2009), there appears
to be no effective therapy to limit the extent and progression
of SVD-related stroke. Thus, an opportunity exists to design
novel prevention strategies to treat SVD if the pathophysiologi-
cal factors that distinguish it from large vessel disease and cardiac
causes of stroke can be identified. Indeed, chronic hypoperfu-
sion, ischemia, and, finally, necrosis of brain tissue are often
associated with SVD and include a number of types of injuries
that serve as markers of disease severity, and relate to the risk
of poor outcomes and prognosis in a number of clinical settings
(Wright et al., 2008).

For the purpose of this review, we will concentrate on
SVD caused by traditional vascular risk factors (sporadic SVD),
rather than those caused by genetic abnormalities or associ-
ated with systemic conditions [i.e., cerebral autosomal dominant
arteriopathy with sub-cortical infarcts and leukoencephalopathy
(CADASIL), cerebral autosomal recessive arteriopathy with sub-
cortical infarcts and leukoencephalopathy (CARASIL), collagen 4
AI gene (COL4AI) mutations, Fabry’s, hereditary endotheliopathy
with retinopathy, nephropathy, and stroke (HERNS), and small
vessel arteritis].

DEEP BRAIN INFARCTS
This term refers to small sub-cortical infarcts of 3–20 mm in
diameter identified on either CT or MRI (Norrving, 2003; Ward-
law et al., 2013). Deep brain infarcts, often referred to as lacunar
strokes in the clinical setting, account for 20–30% of all stroke sub-
types, and have an incidence of about 33 per 100,000 persons/years
(Sudlow and Warlow, 1997). Acutely, deep brain infarcts are bet-
ter detected by MRI than by CT, and appear hyperintense on
diffusion-weighted imaging (DWI), and within hours to days
on T2-weighted imaging or fluid attenuated inversion recovery
(FLAIR) sequences (Patel and Markus, 2011). Chronic deep brain
infarcts appear hypo-intense on T1 and FLAIR, and often have
a hyper-intense rim around them on the latter sequence (Patel
and Markus, 2011). Once macrophages have removed infarcted
tissue, irregular cavities are left with surrounding gliosis, and lipid-
rich and hemosiderin-rich macrophages are left in surrounding
gliotic tissue along with extravasated plasma proteins, fibrinoid
necrosis, and vascular fragments (Fisher, 1968). Many risk fac-
tors associated with deep brain infarcts, such as older age, and
particularly hypertension, but also diabetes mellitus, smoking,
excess alcohol consumption, and dyslipidemia, are shared with
those of superficial infarcts. Some epidemiological studies suggest
these risk factors may not be as important as in infarcts related to
atherosclerotic arteriopathy (Jackson and Sudlow, 2005; Jackson
et al., 2010).

While CADASIL, CARASIL, Fabry’s disease, and a number of
other genetic forms of SVD are known, the genetic underpinning
of most SVD is poorly understood. However, recent studies are
beginning to show that genetic factors likely play a role. A genetic
mechanism leading to SVD has been suggested as underlying some
deep brain infarcts (Jackson et al., 2010). For example, a recent
population-based genome-wide association study (GWAS) on
covert MRI-defined brain infarcts found the novel risk-associated
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Table 1 | Glossary of definitions of SVD phenotypes.

Phenotype Known genetic mechanisms

Deep brain infarcts

Acute. Small sub-cortical infarcts 3–20 mm in diameter seen in CT or

MRI. These are best defined in the DWI sequence and appear

hyper-intense. Usually located in the territory of one perforating

arteriole. Imaging and clinical features suggest the event occurred in the

immediate previous weeks.

Chronic (lacunes). A round or ovoid sub-cortical fluid filled cavity of

3–20 mm in diameter seen in CT or MRI. These lesions are beds defined

in the FLAIR sequence and appear hypointense. Occasionally they have

a hyperintense surrounding rim. These lesions are consistent with

previous acute small sub-cortical infarcts or hemorrhages in the territory

of one perforating arteriole.

Novel risk-associated SNP rs2208454 on chromosome 20p12 (Debette

et al., 2010). This SNP is located in intron 3 of MACRO domain containing 2

(MACROD2) gene and in the downstream region of fibronectin leucine-rich

transmembrane protein-3 (FLRT3) gene (Debette et al., 2010). These regions

have been implicated in the regulation of growth factor signaling,

angiogenesis, and neurogenesis, and are associated with decreased risk of

cerebral infarction seen on MRI

White matter lesions

Rounded areas of decreased attenuation on CT, increased signal on

T2-weighted and FLAIR in the periventricular and white matter of the

cerebral hemispheres, basal ganglia (deep gray matter), pons, and

brainstem and cerebellum.

Six novel SNPs were identified on one locus of chromosome 17q25

(Fornage et al., 2011). These novel SNPs encompassed six known genes

including the WW domain binding protein gene (WBP2), two tripartite

motif-containing genes (TRIM65 and TRIM47), the mitochondrial ribosomal

protein L38 gene (MRPL38), the Fas-binding factor 1 gene (FB1), and the

acyl-coenzyme A oxidase 1 gene (ACOX1; Fornage et al., 2011). The genes

are known for being involved in a broad range of biological processes

including innate immunity, cell cycle regulation, vesicular trafficking,

neuroprotection, and apoptosis (Vandeputte et al., 2001; Meroni and

Diez-Roux, 2005; Ozato et al., 2008).

Cerebral microbleeds

Small punctuate areas up to 10 mm in diameter of hypointensity in T2*,

gradient echo, or susceptibility-weighted imaging. These lesions

correspond to small collections of hemosiderin-laden macrophages

around small perforating vessels.

A pattern of deep sub-cortical microbleeds has been associated with

vascular risk factors, and a greater burden of WMLs, deep brain infarcts,

and a lobar pattern associated with CAA and the ApoE4 genotype (Vernooij

et al., 2008).

CT, computed tomography; MRI, magnetic resonance imaging; DWI, diffusion weighted imaging; FLAIR, fluid attenuated inversion recovery; SNP, single nucleotide
polymorphism; WML, white matter lesions.

single nucleotide polymorphism (SNP) rs2208454 on chromo-
some 20p12 (Debette et al., 2010). This SNP is located in intron
3 of MACRO domain containing 2 (MACROD2) gene and in the
downstream region of fibronectin leucine-rich transmembrane
protein-3 (FLRT3) gene (Debette et al., 2010). These regions have
been implicated in the regulation of growth factor signaling, angio-
genesis, and neurogenesis, and are associated with decreased risk
of cerebral infarction seen on MRI (Debette et al., 2010).

Deep brain infarction is associated with classical clinical
syndromes (also named lacunar syndromes; Donnan and Nor-
rving, 2009) and are closely associated with radiological evi-
dence of ischemia, although some authors have demonstrated
that the clinical syndrome may not be entirely predictive of
the lesion or location (Gan et al., 1997; Arboix et al., 2010).
The presence of sub-clinical evidence of brain ischemia, or
“silent” brain infarcts (Vermeer et al., 2007), makes it diffi-
cult to identify associated risk factors, underlying mechanisms,
and potential therapies for intervention. Though deep brain

infarcts have an overall better prognosis (Norrving, 2003), they
have a higher rate of recurrence and affected individuals are
at greater risk of developing cognitive impairment, depression,
and long-term functional decline (Miyao et al., 1992; Samuels-
son et al., 1996; Yamamoto et al., 2002; Vermeer et al., 2003, 2007;
Baezner et al., 2008).

Recently, there has been a growing interest in the clinical sig-
nificance of deep brain infarcts and WMLs as causes of VCI. It
is important to note, that the classic lacunar syndromes did not
include cognitive impairment as a feature or dedicated syndrome
(Norrving, 2003). However, small deep brain infarcts are known to
cause so-called “strategic infarct dementia” (Tatemichi et al., 1992)
and the lesion burden has also been associated with dementia risk
(Koga et al., 2009). In one study, the presence of thalamic lacunes
was associated with poor global cognitive performance, low motor
activity and executive function performance; and the presence of
lacunes in the pallidum or putamen was associated with memory
dysfunction (Benisty et al., 2009). Deep brain infarcts have been
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associated with a number of outcomes that are relevant to VCI,
including cognitive decline, dementia, gait disturbance, urinary
incontinence, and disability (Miyao et al., 1992; Samuelsson et al.,
1996; Yamamoto et al., 2002; Vermeer et al., 2003, 2007; Baezner
et al., 2008), making the term “silent infarct” an inappropriate
and misleading term, given these poor outcomes (Pantoni, 2003;
Hachinski, 2008).

WHITE MATTER LESIONS
This phenotype of SVD represents a different entity than deep
brain infarcts, however, they often coexist (Pantoni, 2010).

The prevalence of WMLs in the white population is 80% or
greater in those 60 years old or older (de Leeuw et al., 2001),
and seen more in women as compared to men (de Leeuw et al.,
2001). Before the advent of MRI, WMLs were seen on CT imag-
ing as x-ray attenuation in white matter areas and described in
the literature by Hachinski et al. (1987) as “leukoaraiosis.” On
MRI, WMLs are seen as white matter hyperintensities (WMH)
on T2 and FLAIR sequences (Wardlaw et al., 2013). Such WMLs
are seen in white matter tracts surrounding the ventricular sys-
tem, though they are also seen in other areas and in the immediate
subcortical white matter. Magnetic resonance-based diffusion ten-
sor imaging (DTI) provides a measure the diffusion of water in
white matter tracts, allowing researchers to examine the patency
of axonal pathways in patients with SVD (de Laat et al., 2011).
Studies using DTI have shown that white matter integrity is
compromised immediately outside WMH lesions (Maillard et al.,
2011), suggesting that visible lesions are indicative of wider injury.
Additional promising MRI-based techniques for the study of
WMLs in SVD include magnetization transfer (MTI) and high-
field-MRI (Fazekas et al., 2005; Bastin et al., 2009; Kang et al.,
2010), as the severity of tissue changes associated with inciden-
tal WMLs in these patients cannot be sufficiently determined by
conventional MRI.

Population-based studies have demonstrated a strong associ-
ation between both age and hypertension and WMLs (Enzinger
et al., 2007). Similarly, pathological studies have shed some light
on the association between ischemia and WMLs as well (Enzinger
et al., 2007). Common pathological findings in WMLs are: mild
perivascular alterations to large areas with variable loss of fibers,
multiple small cavitations, and marked arteriolosclerosis (Fazekas
et al., 1993). In addition, WMLs have a variety of pathological
correlates depending on the severity of ischemic tissue dam-
age: myelin pallor, gliosis, axonal loss, complete nerve fiber
destruction (Fazekas et al., 1993), and, in the worst cases, blood–
brain barrier disruption and loss of endothelium (Young et al.,
2008). The tissue surrounding WMLs may be highly “active”
with foam cells, activated astrocytes, and microglia (Fazekas et al.,
1993). Up-regulation of inflammatory markers seen in these
areas, including apolipoprotein E (ApoE), α2-microglobulin, and
immunoglobulin G may also contribute to the pathophysiological
processes leading to WMLs (Lammie, 2002; Nag, 2003). Another
pathological process of deep small cerebral vessels particularly
affecting the small veins of periventricular areas is known as
venous collagenosis (Moody et al., 1995). This process, which has
received limited attention compared to arteriolosclerosis in rela-
tion to the pathophysiology of SVD, is primarily associated with

WMLs. Recent biological studies have demonstrated an associa-
tion between alterations in RNA transcription in multiple genes
involved in cell cycle, proteolysis, immunological modulation,
and apoptosis and WMLs (Simpson et al., 2009). Genetic fac-
tors also appear to play a role in the development of WMLs,
with reported heritability of up to 55–80% (Carmelli et al., 1998;
Atwood et al., 2004).

The results of GWAS also provide powerful tools to iden-
tify genes related to complex multifactorial traits such as WMLs.
In a recent meta-analysis of GWAS involving 9,361 individuals
of European descent and belonging to seven community-based
cohorts, six novel SNPs were identified on one locus of chromo-
some 17q25 (Fornage et al., 2011). These novel SNPs encompassed
six known genes including the WW domain binding protein
gene (WBP2), two tripartite motif-containing genes (TRIM65
and TRIM47), the mitochondrial ribosomal protein L38 gene
(MRPL38), the Fas-binding factor 1 gene (FB1), and the acyl-
coenzyme A oxidase 1 gene (ACOX1; Fornage et al., 2011). The
genes are known for being involved in a broad range of biolog-
ical processes including innate immunity, cell cycle regulation,
vesicular trafficking, neuroprotection, and apoptosis (Vandeputte
et al., 2001; Meroni and Diez-Roux, 2005; Ozato et al., 2008). This
provides the first step toward characterization of biological mech-
anisms that influence the pathophysiology associated with WMLs
(Fornage et al., 2011). The multiple pathophysiological processes
involved in the genesis of WMLs underscore the complexity of this
phenotype.

Though WMLs were historically considered incidental findings
of doubtful clinical significance, recent epidemiological stud-
ies have demonstrated that WMLs are associated with cognitive
decline (van Straaten et al.,2006; Frisoni et al.,2007; Pantoni, 2008;
Wright et al., 2008). Moreover, the combination of WMLs in
patients with deep brain infarcts is also associated with more cog-
nitive decline (Miyao et al., 1992; van Swieten et al., 1996). WMLs
are seen in at least 30% of patients with AD and in 60% of patients
with dementia (Steingart et al., 1987). Some studies have found
that a greater burden of WMLs is also associated with inconti-
nence, gait dyspraxia, and incident falls (de Leeuw et al., 2001;
Baezner et al., 2008; Srikanth et al., 2009). An appraisal of 16 stud-
ies confirmed the association between WMLs and cognitive decline
in different patient settings: hospital-based to population-based
(Pantoni et al., 2007). Finally, a large meta-analysis of 46 obser-
vational studies, demonstrated that WMLs are associated with
greater risk of future stroke, dementia, and death (Debette and
Markus, 2010). Effective therapies targeting the development of
WMLs based on the understanding of the pathophysiology and
plausible molecular targets are desperately needed.

CEREBRAL MICROBLEEDS
This phenotype of SVD refers to small deep or superficial
hemorrhages of 2–10 mm in diameter seen by MRI (Green-
berg et al., 2009; Shoamanesh et al., 2011; Wardlaw et al., 2013).
The T2∗ gradient echo sequence, and the newer susceptibility-
weighted imaging (SWI), provide sensitive methods for detecting
microbleeds (Tanaka et al., 1999). These lesions correspond to
small collections of hemosiderin-laden macrophages around small
perforating vessels (Greenberg et al., 2009; Shoamanesh et al.,
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2011; Wardlaw et al., 2013). Two types of cerebral microbleeds
have been described in the literature (Vernooij et al., 2008). A pat-
tern of deep sub-cortical microbleeds associated with vascular risk
factors, and a greater burden of WMLs and deep brain infarcts,
and a lobar pattern associated with CAA and the ApoE4 genotype
(Vernooij et al., 2008). The prevalence of cerebral microbleeds in
the general population is about 5% but could be as high as 23–
44% in those patients that have suffered ischemic strokes, and
52–83% in those that have suffered intracranial hemorrhage (ICH;
Cordonnier et al., 2007). Indeed, cerebral microbleeds are a strong
predictor of future spontaneous and symptomatic ICH (Lee et al.,
2004). The implications of SVD and cerebral microbleeds on clin-
ical management in acute ischemic stroke are very important.
Intravenous recombinant tissue plasminogen activator (i.v. rt-PA)
is an effective therapy in the acute setting of stroke (The National
Institute of Neurological Disorders and Stroke rt-PA Stroke Study
Group, 1995; Wardlaw et al., 2009; Lees et al., 2010). In addition to
older age, hypertension, and hyperglycemia, the presence of SVD
and microbleeds has been associated with a greater risk of ICH
(Neumann-Haefelin et al., 2006; Palumbo et al., 2007; Charidimou
et al., 2013). There is some data on the effect of SVD in candidates
for the extended t-PA window (3–4.5 h). However, a history of
prior stroke is considered to be a contraindication for thromboly-
sis in this time window, and as mentioned previously, patients with
a prior stroke have a higher prevalence of cerebral microbleeds
(Charidimou et al., 2013). Finally, the role of antiplatelet or anti-
coagulant therapy in patients with SVD and microbleeds deserves
comment. The presence of SVD and older age are each associated
with ICH risk during antiplatelet therapy, as reported by the Stroke
Prevention in Reversible Ischemia Trial (SPIRIT; Gorter, 1999).
In a systematic review, the burden of microbleeds in warfarin
users with ICH compared to other groups shows that microb-
leeds increase the risk of warfarin-associated ICH (Lovelock et al.,
2010). Therefore, in these patient population, conventional sec-
ondary prevention strategies using antiplatelet or anticoagulation
therapy requires a thorough analysis of the risk benefit ratio.

The correlation of cerebral microbleeds and cognition is a mat-
ter of current research. A greater burden of cerebral microbleeds
has been associated with cognitive impairment (Werring et al.,
2004), and some studies in subjects with CADASIL have found
a greater burden of cerebral microbleeds are associated with worse
functional ability (Viswanathan et al., 2010). A recent MRI-based
study confirmed that the presence of cerebral microbleeds was
associated with global cognitive dysfunction (Yakushiji et al., 2008)
in independent adults with no evidence of neurological dysfunc-
tion. The mechanisms underlying the pathological association
between cerebral microbleeds cognitive dysfunction and overt VCI
remain unclear (Charidimou and Werring, 2012).

FUTURE DIRECTIONS AND ONGOING RESEARCH
Small vessel disease is an important cause of stroke and VCI. Sin-
gle component clinical trials targeting classic risk factors for both
VaD and AD are ongoing. The ongoing SPRINT Memory and
cognition IN Decreased hypertension (SPRINT-MIND)1 study
will attempt to determine if lower systolic blood pressure (SBP)

1http://www.sprinttrial.org

goals influence the rate of incident dementia and MCI, global and
domain-specific cognitive function, and small vessel ischemic dis-
ease. The Aspirin in Reducing Events in the Elderly (ASPREE)
trial is evaluating the effect of daily aspirin on incident dementia
and physical disability. The sub-study of the Secondary Preven-
tion of Small Subcortical Strokes (SPS3) trial is looking at the rate
of cognitive decline in patients treated with aspirin and/or clopi-
dogrel (Benavente et al., 2011). The Efficacy and Safety Study of
Nimodipine to Prevent Mild Cognitive Impairment After Acute
Ischemic Strokes (NICE) is testing the hypothesis that the calcium
channel blocker nimodipine may be associated with less cogni-
tive decline and VaD. Additional ongoing trials are considering
the effect of multi-component interventions. The Finnish Geri-
atric Intervention Study to Prevent Cognitive Impairment and
Disability (FINGER) trial is using lifestyle counseling including
nutritional guidance, increased physical activity, cognitive train-
ing, increased social activity, and intensive monitoring of vascular
and metabolic risk factors to prevent VCI. The Austrian Poly-
intervention Study to Prevent Cognitive Decline After Ischemic
Stroke (ASPIS) trial is using Intensive control and motivation
for better compliance with medication, regular blood pressure
measurements, diet changes, and physical activity versus stan-
dard stroke care to prevent cognitive decline. The Prevention
of Dementia by Intensive Vascular Care (PREDIVA) trial uses
intensive vascular care with visiting a practice nurse every 4
months to assess vascular risk factors, including hypertension,
hypercholesterolemia, diabetes, overweight, smoking, and level
of physical exercise; intervention: lifestyle and medical to pre-
vent dementia and disability. Finally the Prevention of Decline in
Cognition After Stroke Trial (PODCAST) is testing the hypoth-
esis that intensive blood pressure (SBP < 125 mm Hg) and/or
lipid-lowering [low density lipoprotein (LDL) < 2.0 mmol/L]
versus moderate blood pressure (SBP < 140 mm Hg) and LDL
(<3.0 mmol/L) is associated with less cognitive decline, AD,
and/or VaD.

Novel molecular interventions using genetic approaches
include targeting of proteins related to specific pathways of
acute and chronic ischemia. Candidate genes include NOTCH3,
HTRA1, and APOE ε4 (Dichgans and Zietemann, 2012). There is
also interest in novel risk factors for dementia such as the role of
free radical oxygen formation in mediating some of the deleterious
effects of aging, hypertension and CAA-β-amyloid deposition on
small vessels (Iadecola et al., 2009).

CONCLUSION
The association between cerebral SVD and VCI has been deduced
mostly from case series and observational studies. Pathophysi-
ological studies of conditions affecting the small vessels of the
brain and leading to SVD have suggested plausible molecular
mechanisms involved in vascular damage and their impact on
brain function. Similarly, MRI technology has helped us to better
define surrogates of disease that may be used as markers of disease
onset, progression, and impact of future therapies. GWAS studies
have also elucidated some potential molecular mechanisms asso-
ciated in pathophysiology of certain phenotypes of SVD. However,
there is much that still needs to be clarified in understanding the
pathophysiology of VCI in relation to SVD. No specific therapy
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currently exists for SVD-related stroke, and, more importantly,
standard treatments for acute ischemic stroke are not associated
with better outcomes in patients with SVD. Effective therapies to
limit or halt the progression of SVD are needed. Until more is
known in reference to the pathophysiological mechanisms of SVD
and results of ongoing clinical trials become available, treatment
of vascular risk factures such as hypertension should be the focus
of prevention strategies. Based on the results of recent clinical tri-
als antiplatelets or combination antiplatelets should be used with
caution in this patient population.

Future prevention strategies will depend primarily on the
refinement of our understanding of the pathophysiology of this
condition. The results of clinical trials targeting known risk factors
for VCI are forthcoming.
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