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Abstract
Adverse associations between air pollution and myocardial infarction (MI) are widely

reported in medical literature. However, inconsistency and sensitivity of the findings are still

big concerns. An exploratory investigation was undertaken to examine associations

between air pollutants and risk of acute MI (AMI) hospitalization in Alberta, Canada. A time

stratified case-crossover design was used to assess the transient effect of five air pollutants

(carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3) and particu-

late matter with an aerodynamic diameter�2.5 (PM2.5)) on the risk of AMI hospitalization

over the period 1999–2009. Subgroups were predefined to see if any susceptible group of

individuals existed. A three-step procedure, including univariate analysis, multivariate anal-

ysis, and bootstrap model averaging, was used. The multivariate analysis was used in an

effort to address adjustment uncertainty; whereas the bootstrap technique was used as a

way to account for regression model uncertainty. There were 25,894 AMI hospital admis-

sions during the 11-year period. Estimating health effects that are properly adjusted for all

possible confounding factors and accounting for model uncertainty are important for making

interpretations of air pollution–health effect associations. The most robust findings included:

(1) only 1-day lag NO2 concentrations (6-, 12- or 24-hour average), but not those of CO,

NO, O3 or PM2.5, were associated with an elevated risk of AMI hospitalization; (2) evidence

was suggested for an effect of elevated risk of hospitalization for NSTEMI (Non-ST Seg-

ment Elevation Myocardial Infarction), but not for STEMI (ST segment elevation myocardial

infarction); and (3) susceptible subgroups included elders (age�65) and elders with hyper-

tension. As this was only an exploratory study there is a need to replicate these findings

with other methodologies and datasets.
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Introduction
Adverse associations between air pollution and myocardial infarction (MI) are widely reported
in medical literature [1–30] and a recent systematic review [31] concluded significant associa-
tions with MI short-term risk increase for all pollutants except ozone. While part of the associa-
tions are to some extent apparent, mechanisms underlying these associations are not
completely understood [20]. Associations of health effects (particularly short-term) with air
pollutants are often relatively small [32]; and these types of studies can often have unfavorable
signal-to-noise ratios, and substantial correlations among both the exposures and the potential
confounders [33]. The health effects can be confounded by study design; lack of sufficient
adjustment for covariates; and flexibility in data collection, defining and quantifying exposure,
and analysis and reporting [34–36] and lead to variable results.

To highlight this, we summarized case-crossover study designs cited in PubMed before Sep
23 2014 that reported associations between ambient particulate matter (PM) and MI (Table A
in S1 File). A number of observations are made from Table A in S1 File: (i) most studies used
univariate or simple models adjusted/matched with selected meteorological factors (typically
relative humidity and temperature), and only a few studies were adjusted with a second air pol-
lutant; (ii) the findings did not always agree with each other across studies; and (iii) negative/
protective effects were not reported. Of eleven studies in Table A in S1 File investigating associ-
ations between fine particulate matter (PM2.5) and MI, three studies found no associations
[1,12,21], one of which included a very large sample of 452,343 MI cases [1]; and eight studies
reported associations [3–5,7,15,18,19,23].

We undertook an exploratory study examining associations between air pollutants and acute
myocardial infarction (AMI) hospital admission in Alberta, Canada. Of the various ways
described above in which these investigations can be confounded, we attempted to address issues
of i) adjustment uncertainty or lack of adjustment with co-pollutants commonly present in the
atmosphere and other meteorological variables (e.g., wind speed) [33,37], and ii) and regression
model uncertainty [38]. For this we developed a three-step procedure—nonparametric univari-
ate (simple model) testing, multivariate logistic regression analysis fully adjusted for co-pollutant
and meteorological variables, and bootstrap model averaging. The multivariate analysis was
used in an effort to address adjustment uncertainty; whereas the bootstrap technique was used
as a mechanism to account for uncertainty in our regression model. We applied this procedure
to data in Alberta spanning the period April 1, 1999 to March 31, 2010, searching in a large
amount of candidates for potential associations between air pollutants and AMI hospital
admission.

Materials and Methods

Health Administrative Data
Using Alberta Health administrative databases, a province-provider-registry system in Alberta,
we obtained all de-identified historical patient records with a primary diagnosis code of AMI,
International Classification of Diseases, version 10 (ICD-10), code I21-I22, or version 9 (ICD-
9), code 410. The resulting cohort with 25,894 patients was defined as: patient with his/her first
AMI admission event during April 1, 1999 to March 31, 2010; aged 20 or over and resident of
Alberta during AMI event period; living 15 km or less to the closest effective air pollution mon-
itoring station in Alberta; and living 50 km or less to the closest effective meteorological moni-
toring station in Alberta.

We classified a patient’s event with an AMI code as I214 (ICD-10) or 4107 (ICD-9) as hav-
ing Non-ST Segment Elevation Myocardial Infarction (NSTEMI), and the others as ST
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Segment Elevation Myocardial Infarction (STEMI). Secondary diagnosis codes (diagnosis
2–25) were used to define comorbidities for each patient, including hypertension (ICD-10
codes I10-I13 and I15, or ICD-9 codes 401), diabetes (ICD-10 codes E10- E14, or ICD-9 codes
250), and dysrhythmia (ICD-10 codes I47-I49, or ICD-9 codes 427). Both primary and second-
ary diagnosis codes were used for identifying if a patient had prehistory of heart disease (ICD-
10 codes I20-I25, or ICD-9 codes 410–414) before his/her AMI hospitalization event.

Sex and age (at the start date of an AMI hospitalization event) were used to define four sub-
cohorts (sub-cohorts of Male and Female, and sub-cohorts of Agecat1 and Agecat2 corre-
sponding to patients with age<65 or patients with age�65). Patients in the main cohort or in
one of the four sub-cohorts were further divided into subgroups defined by AMI type or
comorbidities, including: all patients in the cohort or sub-cohort, patients with NSTEMI,
patients with STEMI, patients with hypertension, patients with diabetes, patients with dys-
rhythmia, and patients with a prehistory of heart disease. Table 1 lists sample size for each of
these groups.

Air Pollutant and Meteorological Data
Air pollution data for Alberta were obtained from the Environment Canada National Ambient
Pollution Surveillance (NAPS) database [39] for the January 1999 to December 2010 period
and linked to patients in the cohort. The NAPS database contains quality assured data com-
piled by Environment Canada for air monitoring stations across Canada. Station locations in
Alberta are shown in Fig A in S1 File (left panel). Hourly records of five criteria air pollutants
from a total of 65 monitor stations in Alberta were available during the study period—carbon
monoxide (CO, with 14 stations), nitric oxide (NO, with 51 stations), nitrogen dioxide (NO2,
with 51 stations), ozone (O3, with 41 stations), and particulate matter with an aerodynamic
diameter�2.5 (PM2.5, with 40 stations). We were unable use sulfur dioxide (SO2) as a covariate
because of limited availability of pollutant records. SO2 is recognized as an important criteria
air pollutant in urban areas and an earlier study reported associations with acute myocardial
infarction hospital admissions London [40]. However our initial sample size before linkage
with SO2 data was 25,895 hospitalizations (Table 1), and after linkage with available SO2 data
from the NAPS database [39] we only had 18,011 hospitalizations (69.55% of the initial sam-
ple). This was too small to permit analysis of subgroups. Our main interest was in exploring
the usefulness of the three-step procedure to address adjustment uncertainty and regression
model uncertainty. From hourly concentration data for each of the other air pollutants we cal-
culated and used five concentration variables to represent each air pollutant for each day: daily
average (i.e., 24-hour average), 6-hour average for the hours 07:00 to 10:00 and 17:00 to 20:00,

Table 1. Number of hospitalizations for acute myocardial infarction in Alberta subgroups (1999–2009).

Cohort Whole STEMI NSTEMI Diabetes HTN Dysrhy PIHD

MAIN 25,894 12,750 13,144 6,209 13,733 4,501 7,415

MALE 17,488 8,998 8,490 4,011 8,640 2,904 4,892

FEMALE 8,406 3,752 4,654 2,198 5,093 1,597 2,523

AGECAT1 11,655 6,489 5,166 2,311 5,234 1,120 1,946

AGECAT2 14,239 6,261 7,978 3,898 8,499 3,381 5,469

Note: AGECAT1 = age <65; AGECAT2 = age �65; STEMI = ST Segment Elevation Myocardial Infarction; NSTEMI = Non-ST Segment Elevation

Myocardial Infarction; HTN = Hypertension; Dysrhy = Dysrhythmia; PIHD = prehistory of heart disease.

doi:10.1371/journal.pone.0132769.t001
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12-hour average for the hours 07:00 to 19:00, daily 1-hour maximum and daily 1-hour
minimum.

Daily meteorological data were obtained from the United States National Climatic Data
Center (NCDC) [41]. NCDC provides historical daily meteorological records for air tempera-
ture (daily average, minimum and maximum temperature, in °C), daily average dew point tem-
perature (°C), and daily average wind speed (in meter per hour). Historical records from 209
meteorological monitoring stations in Alberta were available for the study period. Locations of
these stations in Alberta are shown in Fig A in S1 File (right panel). We used five variables to
represent meteorological data for each day: minimum- and maximum-temperature, apparent-
temperature [42], average dew point temperature and average wind speed.

We adopted the following procedure to link patients in the cohort to air pollution data: (1)
latitude and longitude of both the postal-codes of patients and NAPS stations were used to cal-
culate a matrix of distance from each postal-code to each station; (2) a list of stations (up to 20)
within 15 km was found for each postal-code, ordered from closest to farthest if the list was not
null; (3) each patient was linked to a list of stations via postal-code; (4) checking in the list of
stations from the first to the last, available NAPS records were found for each patient dated the
same month with the exposure date (defined as 0-5th day before the onset day); and (5) patients
without NAPS records were eliminated. The linkage procedure was conducted separately for
each pollutant because each had a different set of monitoring stations. Patients without records
for any one of the five pollutants were eliminated. A similar strategy was used to link patients
to meteorological data. After linkage to air pollution and meteorological data, some patients
still had a few (or a small fraction) missing records for some air pollutant and meteorological
variables. About 3.01% of patients had at least one missing record in the 25 NAPS variables
that we used. About 0.01% of patients had at least one missing record in the 5 NCDCmeteoro-
logical variables that we used. A linear interpolation method was used for imputation of these
missing records.

Ethics Statement
Ethical approval for the study was granted by the University of Alberta’s Health Research Eth-
ics Board-Health Panel (IREB Pro00010852). Patient records/information was anonymized
and de-identified with a unique scrambled ID and released to us in this form by the ministry of
health prior to analysis.

Statistical Analysis
We used a case-crossover design [43] with the kth day (k ranging from 0 to 5) before onset of
an AMI hospitalization event as the case exposure period for a patient in the cohort. For selec-
tion of reference periods using a time-stratified reference-selection design [44,45], the whole
study period was stratified into calendar months, and all days in the same year, same month
and matching weekday of the hazard exposure day were selected as controls. This strategy is
reported as a preferred approach for minimizing confounding by time-trend as well as overlap
bias [46].

The following three-step procedure was used for searching for associations. In Step 1 we ini-
tially searched a total of 5,250 candidate variables in an univariate analysis—defined by 5
cohorts, 7 subgroups, 5 pollutants, 5 types of daily pollutant concentrations and 6 different lag
times (0- to 5-day lag)–for potentially significant associations for AMI hospitalization. Search-
ing was done one-at-a-time using the nonparametric Wilcoxon test and a p-value�0.1 as the
reference point to identify candidate variables for Step 2.
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When estimating health effects from air pollution, it is important to properly adjust for all
confounding factors, including exposure to co-pollutants [33,37]. In Step 2 a multivariate con-
ditional logistic regression model was built for each candidate variable of interest. The model
was fully adjusted for 20 pollution variables from other pollutants and the 5 metrological vari-
ables. A stepwise selection procedure was adopted to eliminate redundant variables and critical
level for a variable entry and critical level for a variable stay were both set at 0.25. Coefficient
estimation and OR estimation were calculated using the interquartile difference (i.e., difference
between the 25th and the 75th percentile concentration) for the candidate variable of interest.
Only if a candidate variable had p-value�0.05, was it selected into Step 3.

Model uncertainty is an important issue in the interpretation of air pollutant–acute health
effect associations [38,47]. An important air pollutant–acute health event association should be
replicable for multiple datasets. The bootstrap technique is a computer-intensive resampling
method that provides a direct computational way of testing this assumption and assessing
model uncertainty by repeated sampling from a set of data [48]. We used the bootstrap tech-
nique in Step 3 as a data perturbation method to create a set of 1,000 ‘similar data environ-
ments’ and then performed multivariate analysis described in Step 2 1,000 times. Medians
from the 1,000 multivariate logistic regression models were used to represent central tendency
for statistical parameters of interest. We reported the frequency (number of times) that a candi-
date variable of interest from Step 2 had p-value�0.05 for the 1,000 multivariate logistic
regression model replications as a simple measure of how robust/reliable an association is. Like
Bayesian model averaging [35], bootstrap model averaging incorporates model uncertainty
that results from searching through a set of candidate models and results are obtained easier
than through Bayesian analysis [48]. In our case, model averaging was only performed on
those variables identified as being potentially important after full adjustment for possible con-
founders. Further comparative analysis was employed to confirm some of the suggested robust
associations found in the three-step procedure. All related analyses were conducted in SAS
(release 9.3; SAS Institute, Cary, NC).

Results
There were a total 25,894 hospital admission records for AMI (average of 6.45 hospital admis-
sion events per day). Fig 1 displays a summary of monthly average frequency of AMI hospitali-
zations and monthly average levels of the air pollutants at Alberta NAPS air monitoring
stations over the study period. Obvious seasonal trends are apparent for several of the air pol-
lutants. Much higher (lower) NO and NO2 levels occur during winter (summer) which is oppo-
site to that of O3, which has lower (higher) levels occurring during winter (summer). The
highest monthly PM2.5 levels occur during the summer period (mid-June to mid-September).
As indicated in Fig 1, the monthly frequency of AMI hospitalizations averaged over the study
period did not differ substantially compared to monthly levels of NO2, NO and O3 averaged
over the study period. While this figure shows that AMI hospitalizations are insensitive to lev-
els of NO2, NO and O3 averaged over the study period, concentrations used to represent each
of these pollutants in the analysis were related to various daily levels (i.e., 24-hour, 6-hour and
12-hour averages, and daily 1-hour maximum and 1-hour minimum levels).

After Step 1 univariate analysis there were 192 of the 5,250 candidate variables with p-values
�0.1 (Table B in S1 File). After Step 2 multivariate analysis with full adjustment there were
only 37 variables with p-value�0.05 from the list of 192 (Table 2), reflecting many of the vari-
ables exhibiting only weak associations with AMI prior to full adjustment. Results from Step 3
bootstrap model averaging are shown in Table 3. The measure of effect size based on median
p-value weakened after bootstrapping for most of the variables (26 of 37) in Table 3. More
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importantly, 9 of 37 variables no longer had p-value�0.05 after bootstrapping; illustrating the
importance of controlling for model uncertainty. The frequency that a variable had p-value
�0.05 from the 1,000 model replications for each of the 37 variables is reported in the last col-
umn of Table 3. The lowest frequency was 87 which, although statistically significant, is not at
all suggestive of a robust finding.

We further identified those variables with positive associations and a bootstrap frequency
over 700 as the most robust findings of the study (summarized in Fig 2). From these positive
robust associations we observed: (1) only 1-day lag NO2 concentrations (6-, 12- or 24-hour
average), but not those of CO, NO, O3 or PM2.5, were associated with an elevated risk of AMI
hospitalization; (2) evidence was suggested for an effect of elevated risk of hospitalization for
NSTEMI, but not for STEMI from increased NO2 concentrations; and (3) subgroups suscepti-
ble to increased NO2 concentrations included elders (age�65) and elders with hypertension.
The most robust association (bootstrap frequency 935) was for an IQR increase of 34.2 μg/m3

in the 6-hour average NO2 concentrations 1-day before that elevated risk of AMI hospitaliza-
tion 9.2% (95% CI 3.9% to 14.8%).

Effects of the five measures of NO2 (with 1-day lag) in the four subgroups defined by age
categories (agecat1 and 2) and AMI type (STEMI and NSTEMI) are compared in Fig 3 for OR
results estimated from bootstrapping (Step 3). NO2 concentration increases were mainly asso-
ciated with NSTEMI, instead of STEMI; and elders (age�65) were suggested be more suscepti-
ble to increased NO2 concentration. Effects of the five measures of NO2 (with 1-day lag) in the
four subgroups defined by age and hypertension conditions—with (HTN) or without
(NO-HTN)–are also compared in Fig 4 for OR results estimated from bootstrapping. Fig 4 fur-
ther supports that NO2 concentration increases were associated with hypertension for elders
(age�65).

Fig 1. Seasonal trends of monthly average frequency of AMI hospitalizations andmonthly average
concentrations of air pollutants (April 1999 –March 2010).Monthly frequency of AMI hospitalizations (1
unit = 100) were the average number of events by month. Monthly average concentration levels of CO (1
unit = 1 mg/m3), NO (1 unit = 10 μg/m3), NO2 (1 unit = 10 μg/m3), O3 (1 unit = 10 μg/m3), or PM2.5 (1
unit = 10 μg /m3) were averaged by month in which the daily mean concentrations linked to the event days.

doi:10.1371/journal.pone.0132769.g001
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Table 2. Step 2 multivariate analysis with full adjustment results (p-value�0.05).

Cohort Subgroup Variable Lag (day) Estimate StdErr p-value OR Lower CL Upper CL

MAIN Whole NO2_AVE12 1 0.0521 0.0173 0.0025 1.054 1.018 1.090

MAIN Whole NO2_AVE6 1 0.0480 0.0176 0.0063 1.049 1.014 1.086

MAIN Diabetes O3_MIN 1 0.0347 0.0171 0.0430 1.035 1.001 1.071

MAIN HTN NO2_AVE 1 0.0793 0.0246 0.0013 1.083 1.032 1.136

MAIN HTN NO2_AVE12 1 0.0718 0.0241 0.0029 1.074 1.025 1.126

MAIN HTN NO2_AVE6 1 0.0743 0.0242 0.0022 1.077 1.027 1.129

MAIN Dysrhy PM25_AVE 0 -0.0466 0.0174 0.0076 0.954 0.922 0.988

MAIN Dysrhy PM25_AVE12 0 -0.0423 0.0168 0.0119 0.959 0.928 0.991

MAIN Dysrhy PM25_MAX 0 -0.0343 0.0152 0.0242 0.966 0.938 0.996

MALE Dysrhy PM25_AVE 0 -0.0590 0.0215 0.0061 0.943 0.904 0.983

MALE Dysrhy PM25_AVE12 0 -0.0570 0.0209 0.0063 0.945 0.907 0.984

FEMALE Whole CO_AVE6 1 0.0226 0.0100 0.0237 1.023 1.003 1.043

FEMALE Whole NO_MAX 4 -0.0546 0.0200 0.0064 0.947 0.910 0.985

FEMALE NSTEMI CO_AVE6 1 0.0311 0.0143 0.0301 1.032 1.003 1.061

FEMALE HTN NO2_AVE 1 0.1007 0.0401 0.0122 1.106 1.022 1.196

FEMALE HTN NO2_AVE6 1 0.1120 0.0398 0.0049 1.118 1.035 1.209

FEMALE Dysrhy NO2_AVE6 5 -0.1590 0.0519 0.0022 0.853 0.770 0.944

FEMALE PIHD O3_MAX 0 -0.0751 0.0336 0.0254 0.928 0.869 0.991

AGECAT1 NSTEMI O3_AVE12 5 -0.0763 0.0282 0.0069 0.927 0.877 0.979

AGECAT1 Diabetes NO_AVE6 5 -0.0459 0.0216 0.0339 0.955 0.916 0.997

AGECAT2 Whole NO2_AVE 1 0.0678 0.0255 0.0079 1.070 1.018 1.125

AGECAT2 Whole NO2_AVE12 1 0.0724 0.0260 0.0053 1.075 1.022 1.131

AGECAT2 Whole NO2_AVE6 1 0.0871 0.0254 0.0006 1.091 1.038 1.147

AGECAT2 NSTEMI CO_AVE12 1 -0.0607 0.0224 0.0066 0.941 0.901 0.983

AGECAT2 NSTEMI CO_AVE6 1 -0.0542 0.0236 0.0217 0.947 0.904 0.992

AGECAT2 NSTEMI NO_AVE 1 0.0340 0.0165 0.0398 1.035 1.002 1.069

AGECAT2 NSTEMI NO_AVE12 1 0.0326 0.0155 0.0350 1.033 1.002 1.065

AGECAT2 NSTEMI NO_AVE6 1 0.0301 0.0145 0.0375 1.031 1.002 1.060

AGECAT2 NSTEMI NO2_AVE 1 0.1028 0.0343 0.0027 1.108 1.036 1.185

AGECAT2 NSTEMI NO2_AVE12 1 0.1118 0.0338 0.0009 1.118 1.047 1.195

AGECAT2 NSTEMI NO2_AVE6 1 0.1257 0.0342 0.0002 1.134 1.060 1.212

AGECAT2 NSTEMI NO2_MIN 3 0.0507 0.0191 0.0079 1.052 1.013 1.092

AGECAT2 Diabetes NO_MAX 2 0.0520 0.0166 0.0018 1.053 1.020 1.088

AGECAT2 HTN NO2_AVE 1 0.1117 0.0329 0.0007 1.118 1.048 1.193

AGECAT2 HTN NO2_AVE12 1 0.0946 0.0302 0.0017 1.099 1.036 1.166

AGECAT2 HTN NO2_AVE6 1 0.1152 0.0326 0.0004 1.122 1.053 1.196

AGECAT2 HTN NO2_MAX 1 0.0427 0.0196 0.0295 1.044 1.004 1.084

Note: AGECAT1 = age <65; AGECAT2 = age �65. NSTEMI = Non-ST Segment Elevation Myocardial Infarction; Dysrhy = Dysrhythmia;

HTN = Hypertension; AVE = 24-hour average; Ave6 = 6-hour average, AVE12 = 12-hour average, MAX = maximum 1-hour; MIN = minimum 1-hour. Data

were calculated for an inter-quartile range increase of CO_AVE (0.35 mg/m3), CO_AVE12 (0.35 mg/m3), CO_AVE6 (0.40 mg/m3), CO_MIN (0.12 mg/m3),

CO_MAX (0.81 mg/m3), NO_AVE (23.8 μg/m3), NO_AVE12 (25.2 μg/m3), NO_AVE6 (30.8 μg/m3), NO_MIN (2.5 μg/m3), NO_MAX (85 μg/m3), NO2_AVE

(28.2 μg/m3), NO2_AVE12 (30.1 μg/m3), NO2_AVE6 (34.2 μg/m3), NO2_MIN (16.9 μg/m3), NO2_MAX (39.5 μg/m3), O3_AVE (30 μg/m3), O3_AVE12

(37.7 μg/m3), O3_AVE6 (37.7 μg/m3), O3_MIN (14 μg/m3), O3_MAX (36 μg/m3), PM25_AVE (7.7 μg/m3), PM25_AVE12 (8.5 μg/m3), PM25_AVE6

(8.8 μg/m3), PM25_MIN (3.1 μg/m3), PM25_MAX (17 μg/m3).

doi:10.1371/journal.pone.0132769.t002
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Table 3. Step 3 Bootstrap model averaging results.

Median of 1,000 bootstrap estimatesa

Cohort Subgroup Variable Lag (day) Coefficient StdErr p-value OR Lower CL Upper CL Frequencyb

MAIN Whole NO2_Ave12 1 0.0499 0.0174 0.0043 1.051 1.016 1.087 769

MAIN Whole NO2_Ave6 1 0.0487 0.0178 0.0075 1.050 1.013 1.087 710

MAIN Diabetes O3_MIN 1 0.0297 0.0166 0.0797 1.030 1.000 1.065 435

MAIN HTN NO2_Ave 1 0.0782 0.0252 0.0016 1.081 1.029 1.134 889

MAIN HTN NO2_AVE12 1 0.0771 0.0250 0.0017 1.080 1.029 1.133 856

MAIN HTN NO2_Ave6 1 0.0747 0.0251 0.0030 1.078 1.026 1.132 836

MAIN Dysrhy PM25_Ave 0 -0.0447 0.0186 0.0161 0.956 0.922 0.992 681

MAIN Dysrhy PM25_Ave12 0 -0.0423 0.0182 0.0195 0.959 0.925 0.993 672

MAIN Dysrhy PM25_Max 0 -0.0348 0.0164 0.0336 0.966 0.935 0.997 568

MALE Dysrhy PM25_Ave 0 -0.0577 0.0232 0.0133 0.944 0.902 0.988 716

MALE Dysrhy PM25_Ave12 0 -0.0606 0.0233 0.0081 0.941 0.899 0.984 756

FEMALE Whole CO_Ave6 1 0.0000 0.0000 1.0000 1.000 1.000 1.000 277

FEMALE Whole NO_Max 4 -0.0614 0.0204 0.0023 0.940 0.904 0.978 789

FEMALE NSTEMI CO_AVE6 1 0.0000 0.0000 1.0000 1.000 1.000 1.000 139

FEMALE HTN NO2_AVE 1 0.0963 0.0395 0.0180 1.101 1.017 1.189 619

FEMALE HTN NO2_Ave6 1 0.1099 0.0407 0.0088 1.116 1.028 1.210 688

FEMALE Dysrhy NO2_Ave6 5 -0.0785 0.0505 0.2369 0.925 0.819 1.000 305

FEMALE PIHD O3_MAX 0 0.0000 0.0000 1.0000 1.000 1.000 1.000 87

AGECAT1 NSTEMI O3_Ave12 5 -0.0578 0.0285 0.0605 0.944 0.889 1.000 484

AGECAT1 Diabetes NO_Ave6 5 -0.0461 0.0221 0.0513 0.955 0.911 1.000 497

AGECAT2 Whole NO2_Ave 1 0.0717 0.0253 0.0035 1.074 1.024 1.127 823

AGECAT2 Whole NO2_Ave12 1 0.0724 0.0250 0.0035 1.075 1.024 1.130 801

AGECAT2 Whole NO2_Ave6 1 0.0885 0.0257 0.0006 1.092 1.039 1.148 935

AGECAT2 NSTEMI CO_Ave12 1 -0.0596 0.0217 0.0056 0.942 0.903 0.983 855

AGECAT2 NSTEMI CO_Ave6 1 -0.0527 0.0227 0.0178 0.949 0.907 0.991 663

AGECAT2 NSTEMI NO_Ave 1 0.0338 0.0172 0.0549 1.034 1.000 1.071 489

AGECAT2 NSTEMI NO_Ave12 1 0.0314 0.0161 0.0566 1.032 1.000 1.066 478

AGECAT2 NSTEMI NO_Ave6 1 0.0327 0.0148 0.0300 1.033 1.003 1.065 585

AGECAT2 NSTEMI NO2_Ave 1 0.1084 0.0351 0.0017 1.114 1.041 1.194 904

AGECAT2 NSTEMI NO2_Ave12 1 0.1107 0.0349 0.0016 1.117 1.042 1.196 867

AGECAT2 NSTEMI NO2_Ave6 1 0.1172 0.0350 0.0008 1.124 1.050 1.205 920

AGECAT2 NSTEMI NO2_Min 3 0.0529 0.0238 0.0250 1.054 1.007 1.105 615

AGECAT2 Diabetes NO_Max 2 0.0653 0.0247 0.0126 1.067 1.014 1.124 646

AGECAT2 HTN NO2_Ave 1 0.1079 0.0317 0.0005 1.114 1.047 1.185 921

AGECAT2 HTN NO2_AVE12 1 0.1049 0.0324 0.0008 1.111 1.044 1.184 884

AGECAT2 HTN NO2_Ave6 1 0.1082 0.0320 0.0005 1.114 1.049 1.186 902

AGECAT2 HTN NO2_Max 1 0.0691 0.0261 0.0098 1.072 1.017 1.128 691

Note: AGECAT1 = age <65; AGECAT2 = age �65. NSTEMI = Non-ST Segment Elevation Myocardial Infarction; HTN = Hypertension;

Dysrhy = Dysrhythmia; AVE = 24-hour average; AVE6 = 6-hour average, AVE12 = 12-hour average, MAX = maximum 1-hour; MIN = minimum 1-hour.

Data were calculated for an inter-quartile range increase of CO_AVE (0.35 mg/m3), CO_AVE12 (0.35 mg/m3), CO_AVE6 (0.40 mg/m3), CO_MIN (0.12

mg/m3), CO_MAX (0.81 mg/m3), NO_AVE (23.8 μg/m3), NO_AVE12 (25.2 μg/m3), NO_AVE6 (30.8 μg/m3), NO_MIN (2.5 μg/m3), NO_MAX (85 μg/m3),

NO2_AVE (28.2 μg/m3), NO2_AVE12 (30.1 μg/m3), NO2_AVE6 (34.2 μg/m3), NO2_MIN (16.9 μg/m3), NO2_MAX (39.5 μg/m3), O3_AVE (30 μg/m3),

O3_AVE12 (37.7 μg/m3), O3_AVE6 (37.7 μg/m3), O3_MIN (14 μg/m3), O3_MAX (36 μg/m3), PM25_AVE (7.7 μg/m3), PM25_AVE12 (8.5 μg/m3),

PM25_AVE6 (8.8 μg/m3), PM25_MIN (3.1 μg/m3), PM25_MAX (17 μg/m3).
a Median value from 1,000 model replications.
b Number of times that a variable was significant (p-value �0.05) from 1,000 model replications.

doi:10.1371/journal.pone.0132769.t003
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The largest air pollutant dataset used in our analysis was for NO2 (from 51 stations).
Because of this, NO2 can be considered as a proxy air pollutant to assess spatial variation in
exposure to the ambient air pollutant mixture. Our most robust air pollutant associations with
AMI were for NO2 and this may be because NO2 is the most representative air pollutant for
exposure assessment. To better understand whether our findings were sensitive to the size of
the cohort, we undertook further analysis using two smaller distance categories to identify
patients hospitalized that were living within 5 km and within 10 km of the closest effective air
monitoring station and then compared results to our original analysis that used patients hospi-
talized that were living within 15 km of the closest effective air monitoring station. Specifically,
using the same data we linked patients living within 5 km (and 10 km) of the closest effective

Fig 2. Adverse associations between air pollutants and AMI hospitalizations with frequency over 700 of 1,000 bootstrap replications.
AGECAT2 = age�65; NSTEMI = Non-ST Segment Elevation Myocardial Infarction; HTN = Hypertension. OR estimates calculated by bootstrap model
averaging of 1,000 replications for an inter-quintile range increase of NO2_AVE (28.2 μg/m3), NO2_AVE12 (30.1 μg/m3), NO2_AVE6 (34.2 μg/m3). Freq
represents frequency that a variable had p-value�0.05 from 1,000 model replications.

doi:10.1371/journal.pone.0132769.g002
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air monitoring station to air pollution data and then performed our three-step procedure for
each distance category cohort.

The 5-km distance category had the smallest cohort size (13,071 hospitalization records),
while the 10-km distance category included another 9,127 records (total 22,198) (see Table C
in S1 File) compared to the original of 25,894 hospitalization records for all patients within a
15-km distance of the closest effective air monitoring station (Table 1). Bootstrap model aver-
aging results for cohorts in the 5-km and 10-km distance categories (see Table D in S1 File)
indicated that sample size influenced our findings. The smallest cohort within 5 km (13,071
hospitalization records) suggested positive associations with O3 and an elevated risk of AMI
hospitalizations for bootstrap frequencies over 700; whereas these associations were lost for the

Fig 3. Comparison of 1-day lag NO2 concentration effects in subgroups defined by age and type of AMI. AGECAT1 = age <65; AGECAT2 = age�65;
STEMI = ST Segment Elevation Myocardial Infarction; NSTEMI = Non-ST Segment Elevation Myocardial Infarction. OR estimates calculated by bootstrap
model averaging of 1000 replications for an inter-quintile range increase of NO2_AVE (28.2 μg/m3), NO2_AVE12 (30.1 μg/m3), NO2_AVE6 (34.2 μg/m3),
NO2_MIN (16.9 μg/m3), NO2_MAX (39.5 μg/m3). Freq represents frequency that a variable had p-value�0.05 from 1,000 model replications.

doi:10.1371/journal.pone.0132769.g003
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larger sample sizes within 10 km and 15 km (22,198 and 25,894 hospitalization records, respec-
tively). In addition, the only variable suggesting positive associations for bootstrap frequencies
over 700 for the within 10-km samples (Table D in S1 File) was NO2 –similar to what was
found in the original analysis (Table 3). Whereas there was a large increment in sample size
going from patients living within 5 km to patients living within 10 km of an effective air moni-
toring station (70% increase), there was only a small increment in sample size going from
patients living within 10 km to our original cohort (<17% increase). Thus a similar finding of
positive associations with NO2 for bootstrap frequencies over 700 for patients living within
10 km compared to our original analysis was expected.

Fig 4. Comparison of 1-day lag NO2 concentration effects in subgroups defined by age and hypertension condition. AGECAT1 = age <65;
AGECAT2 = age�65; HTN = Hypertension. NO-HTN = No Hypertension. OR estimates calculated by bootstrap model averaging of 1,000 replications for an
inter-quintile range increase of NO2_AVE (28.2 μg/m3), NO2_AVE12 (30.1 μg/m3), NO2_AVE6 (34.2 μg/m3), NO2_MIN (16.9 μg/m3), NO2_MAX (39.5 μg/
m3). Freq represents frequency that a variable had p-value�0.05 from 1,000 model replications.

doi:10.1371/journal.pone.0132769.g004
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Discussion
The most robust results in our study, after controlling for adjustment uncertainty and model
uncertainty, suggest that only NO2 –but not the other air pollutant investigated including CO,
NO, O3 or PM2.5 –was associated with elevated risk of NSTEMI hospitalization. These findings
are consistent with a recent observational study of a very large sample of 452,343 MI cases [1]
and several other studies [11, 17–19, 22]. The suggested finding of NSTEMI, not STEMI, asso-
ciated with increasing NO2 concentrations is contrary with findings of others [3] in which it
was reported that ambient fine particulate air matter (PM2.5) triggers STEMI, but not
NSTEMI.

Our findings also suggest that elders (age�65) with hypertension are more susceptible.
Despite numerous studies indicating elders to be more susceptible to increased air pollution
[3,6,11,13,19,20,22,29], only one study [3] indicated people with hypertension could be more
susceptible to increased particle concentrations. To the best of our knowledge, we have not
seen finding like ours in literature about elders with hypertension being at increased risk to
NO2 pollution. Because studies of air pollution effects on MI in people with hypertension are
unusual, it is hard to compare our results with previous research. It is also unclear what mecha-
nisms of action may be behind this suggested effect. Finally, our study did not see evidence that
people age<65 years or those with pre-existing diabetes/dysrhythmia/prehistory of heart dis-
ease were susceptible to increased pollution.

We caution readers about preliminary findings suggesting associations of NO2 with elevated
risk of NSTEMI hospitalization and AMI hospitalizations of elders (age�65) with hyperten-
sion. This was only an exploratory study and the emphasis was on application of a methodol-
ogy to address adjustment and model uncertainty. There is clearly a need to replicate these
preliminary findings using other approaches and/or different datasets in order to corroborate
the suggested associations with NO2.

The general lack of a robust air pollution effect on risk of AMI (especially STEMI) in our
analysis is not unexpected. Although a recent systematic review reported that most air pollut-
ants were associated with increased short-term risk for MI [31], a previous review [49] indi-
cated that less than half of the identified studies found clear evidence of raised MI risk from air
pollutant exposure. Also, the fully adjusted associations in our analysis may be very different
from those estimated with limited adjustment. For example, eight studies reported in Table A
in S1 File associated increasing PM2.5 concentrations with increased risk for MI [3–
5,7,15,18,19,23]; whereas in our analysis—which included full adjustment and model averaging
—the effects of PM2.5 were negative (Table 3). We fully agree with recommendations of others
[33,37] about the importance of focusing on estimating health effects that are properly adjusted
for all confounding factors. We also highlight the need to consider controlling for model uncer-
tainty as we found that 9 of 37 fully-adjusted associations lost statistical significance after boot-
strapping in our analysis.

Our exploratory study had a number of strengths that address important limitations in the
investigation of subtle air pollution-acute health effect associations. We used large air pollutant
and meteorological datasets consisting of multiple locations and 11 years of AMI hospitaliza-
tion records collected throughout Alberta. We only considered patients living 15 km or less to
the closest effective air pollution monitoring station in Alberta. Most importantly, confounding
from lack of adjustment and model uncertainty were examined by using fully adjusted models
and bootstrap model averaging, and only the most robust findings were considered important.
This was an ecological study with the exposure variables (air pollutants and meteorological var-
iables) measured at central locations, and thus they do not represent actual exposures for AMI
patients. Although each of the multivariate models was adjusted with possible air pollutant and
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meteorological confounders, because of data limitations we did not consider other potentially
important time-varying factors such as SO2, special events (e.g., alcohol consumption, physical
activity) or special drug usage just prior to the onset of AMI. Because SO2 may be an important
criteria air pollutant in urban areas, further study of potential associations between air pollut-
ants, including SO2, and AMI hospital admission is suggested.

Conclusions
Estimating health effects that are properly adjusted for all possible confounding factors and
accounting for model uncertainty are important for making interpretations of air pollution–
health effect associations. The most robust statistical associations in our analysis were sug-
gested for increasing 6-, 12- or 24-hour average concentrations of NO2 with 1-day lag and hos-
pitalization for NSTEMI in Alberta. In addition, elderly people with hypertension were
suggested to be at increased risk. As this was only an exploratory study there is a need to repli-
cate these findings with other methodologies and datasets.
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