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Abstract: The prevalence of obesity and atherosclerosis has substantially increased worldwide
over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids
sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity,
atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive
androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic
targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the
internal relationships between these three lipid metabolic nuclear receptors is necessary to enable
drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and
PPARs-LXRs in atherosclerosis.
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1. Introduction

Obesity is a lipid metabolic disturbance that has been growing across the world for nearly half
a century. It is a global human health concern. In 2016, more than 1.9 billion adults (≥18 years old)
were overweight and, of these, over 650 million were obese. Furthermore, 340 million children and
adolescents (5–18 years old) and 41 million children (≤5 years old) were overweight or obese [1,2].
The body mass index (BMI), defined as a person’s weight in kilograms divided by the square of
their height in meters, is a simple index used to classify overweight and obesity in adults. Obesity is
associated with various metabolic disorders and cardiovascular diseases. A high BMI is considered
to be an indicator of high body fatness that may lead to a high risk of cardiometabolic syndrome
and atherosclerotic vascular disease [3–5]. Atherosclerosis, also known as arteriosclerosis, hardening
of the arteries, is a disease in which fatty plaque deposits build up inside the arteries, narrowing
them, leading to some serious problems, including coronary artery disease, stroke, or even death [6].
Obesity and atherosclerosis are common chronic lipid metabolic disorder diseases. The treatment and
prevention of obesity and atherosclerosis are both major challenges, and studying this problem can
help us live longer, healthier lives.

Nuclear receptors (NRs), a class of ligand-activated transcriptional factors, play significant roles
in metabolic homeostasis. It is well known that there are 48 and 49 NR genes in humans (Homo sapiens)
and mice (Mus musculus), respectively [7,8]. Most of the NRs contain six functional domains, such as
the variable N-terminal regulatory domain (A–B), the conserved DNA-binding domain (DBD) (C),
the variable hinge region (D), the conserved ligand binding domain (LBD) (E), and the variable
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C-terminal domain (F) (Figure 1a) [7,9]. The classical function of NRs is to transcriptionally regulate
the expression of cognate target genes through the recruitment of coactivators or corepressors when
ligands bind to the receptors [10,11] (Figure 1b). To perform the transcriptional activity, NRs either
(1) act as monomers; (2) need to form dimeric complexes (homodimers); or (3) form complexes with
the retinoid X receptor (RXR) (heterodimers) and bind to the DNA in the cell nucleus [9]. Recently,
many studies have indicated the role of some NRs in the regulation of lipid metabolism. It has
been recognized that peroxisome proliferator-activated receptors (PPARs) act as fatty acid sensors,
regulating the multiple pathways involved in lipid and glucose metabolism and overall energy
metabolism [12,13]. Furthermore, the constitutive androstane receptor (CAR), which was initially
characterized as a xenosensor that controls xenobiotic responses, has been recently identified as a
therapeutic target for obesity and its related metabolic disorders [14,15], whereas liver X receptors
(LXRs) are sterol sensors that mainly regulate cholesterol, fatty acid and glucose homeostasis, they can
inhibit atherosclerosis development, but promote lipogenesis in liver [16]. In this review, we briefly
summarize the roles of PPARs, CAR and LXRs and their ligands in the treatment of metabolic diseases,
obesity and atherosclerosis, and discuss the cross-talk of PPARs-CAR and PPARs-LXRs in lipid
metabolism regulation.
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Figure 1. Schematic structure of NRs (nuclear receptors) and model of NR signalling. (a) General
domain structure of NRs; and (b) the mechanism of general NR action. The ligands bind to the LBD
(ligand-binding domain) of NRs in the cytoplasm, and translocate to the nucleus. Then the DBD
(DNA-binding domain) of NRs bind to the XRE (xenobiotic responsive elements) forming dimeric
complexes with RXR and the recruitment of co-activators or co-repressors. Finally, this leads to the
transcription of the target genes. This model is applied to type II NRs, including PPARs, CAR, LXRs,
and others. The colorful words just match the corresponding colorful shape. The dotted arrows mean
different ligands can recruit coactivators or corepressors to form dimers, respectively.

2. The Initial Characterization of PPAR, CAR, and LXR

2.1. Fatty Acids Sensor PPARs

PPARs are molecular sensors of fatty acids and fatty acid derivatives and control energy
homeostasis (carbohydrate, lipid, and protein) [17]. There are three types of PPARs which have
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been identified: PPARα (NR1C1, encoded by PPARA), PPARβ/δ (NR1C2, encoded by PPARD),
and PPARγ (NR1C3, encoded by PPARG). They are all lipid sensors that transcriptionally regulate
diverse aspects in response to nutritional inputs, and serving as effective therapeutic targets for
some types of lipid metabolic syndrome, including obesity, atherosclerosis, dyslipidaemia, type 2
diabetes mellitus (T2DM), and nonalcoholic fatty liver disease (NAFLD) [12,18]. PPARα is highly
active in liver, brown adipose tissue (BAT), kidney, heart, and muscle tissue [19], where it regulates
the adaptive response to prolonged fasting by controlling the process of ketogenesis, fatty acid
transport, fatty acid binding, fatty acid activation and mitochondrial fatty acid β-oxidation [20,21].
Genomic studies have indicated that PPARα, as a master regulator of lipid metabolism, has various
target genes; the classical genes include acyl-CoA oxidase, thiolase, fatty acid transport protein
(FATP), carnitine palmitoyltransferase I (CPT1), and peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) [20,22]. The expression of PPARβ/δ is highest in adipose tissue, skeletal
muscle, macrophages, brain, and skin, but is at low levels in the liver, where it mainly regulates
fatty acid catabolism and the glycolytic-to-oxidative muscle fibre-type switching used in improving
lipid homeostasis [23–26]. PPARα and PPARβ/δ have been shown to block lipid absorption by
upregulating L-type fatty acid binding protein (L-FABP) and cluster of differentiation 36 (CD36) in the
small intestine [27]. PPARγ function has mainly been characterized in adipose tissue, macrophages and
the colon, and it has three forms: PPARγ1, PPARγ2, and PPARγ3 through alternative splicing [28–30].
PPARγ1 and PPARγ3 encode the same protein, and PPARγ3 is a splicing variant of PPARγ1.
PPARγ2 has 28 additional amino acids at the variable N-terminal regulatory domain compared
with PPARγ1 [31]. Furthermore, PPARγ1 has been found in nearly all tissues, except muscle, whereas
PPARγ2 is mostly found in the adipose tissue and intestine, and PPARγ3 is mainly expressed white
adipose tissue, colon, and macrophages [32]. PPARγ was initially known as an inducer during
adipocyte differentiation [33,34], and its most famous role is in regulating lipogenic pathways. Genomic
studies have revealed that PPARγ controls the expression of the early adipogenic differentiation
factors CCAAT-enhancer-binding proteins (C/EBPs) and fatty acid binding protein 4 (FABP4), glucose
homeostasis factors glucose transporter type 4 (GLUT4), and catabolite activator protein (CAP) genes.
Moreover, PPARγ regulates some insulin sensitive adipokines, such as leptin, adiponectin, and tumour
necrosis factor α (TNF-α) [35–37]. PPARγ is also involved in the metabolism of long-chain unsaturated
fatty acid in the intestinal epithelium [38]. Although there are many similarities in lipid and glucose
homeostasis, each of the PPAR isoforms has unique functions in vivo, probably due to their differential
tissue distributions, the distinct ligands, and the inherent differences in biochemical characteristics [39].

Many endogenous agonists of PPARs have been identified, including polyunsaturated fatty acids,
branched chain fatty acids, nitro/oxidized-fatty acids, phospholipids, eicosanoids, prostaglandin,
oleoylethanolamide, carbaprostacyclin, 5HT metabolites, and so on [40–43]. In addition, many natural
and synthetic PPAR ligands have been applied to treat lipid and glucose metabolic syndrome in
pharmaceutical companies, as shown in Table 1. Fibrate drugs (including bezafibrate, clofibrate,
fenofibrate, gemfibrozil, ronifibrate, etc.) are a class of classical PPARα agonists used to treat
hyperlipidaemia and increase high-density lipoprotein cholesterol (HDL-c) in clinical settings.
Moreover, pemafibrate [44] (approved in Japan in July 2017) and LY518674 [45] (phase II) are selective
PPARα modulators used as anti-atherosclerosis agents in clinical trials. PPARβ/δ agonists are currently
not used in clinical applications, but seladelpar (MBX-8025) is currently a promising activator for
improving mixed dyslipidaemia and normalizing alkaline phosphatase levels, and is in phase 2 clinical
development [46]. Additionally, KD-3010 is also a promising PPARβ/δ agonist for the potential
treatment of diabetes and obesity in the phase I clinical trial. It shows the protective and anti-fibrotic
effects in liver injury induced by carbon tetrachloride (CCl4) injection or bile duct ligation (BDL) [47].
Thiazolidinediones (generically marked as pioglitazone, rosiglitazone, and lobeglitazone) are potent
agonists of PPARγ with powerful insulin sensitizing activity which can be used in the treatment of
T2DM. However, they have some undesirable side effects, such as weight gain, osteoporosis, and
congestive heart failure [39,48]. Some failed and non-marked thiazolidinediones include troglitazone



Int. J. Mol. Sci. 2018, 19, 1260 4 of 17

(marked as Rezulin, which was withdrawn due to adverse liver effects), balaglitazone, ciglitazone,
darglitazone, netoglitazone, and rivoglitazone, etc. Recently, several partial agonists of PPARγ have
been reported to keep beneficial antidiabetic characteristics with few side effects. Honokiol is a natural
compound purified from the bark of Magnolia officinalis in traditional Chinese medicine, which has been
identified as a novel non-adipogenic partial PPAPγ ligand. It has an anti-hyperglycemic property but
does not trigger adipogenesis in vitro and in vivo [48]. Amorfrutins, as selective PPARγ modulators,
are also natural products derived from two legumes, Glycyrrhiza foetida and Amorpha fruticose. They
were reported to improve insulin sensitivity and dyslipidemia and protect liver steatosis without
a concomitant increase of body weight gain in diet-induced obese and db/db mice [49,50]. In our
recent study, Danshensu Bingpian Zhi (DBZ) is a synthetic derivative of the natural compounds
Danshensu (tanshinol) and Bingpian (borneol), which are used as “sovereign” and “courier” in the
traditional Chinese medicine formula Fufang Danshen (FFDS). We found that DBZ is a putative PPARγ
partial activator capable of preventing insulin resistance, obesity, and atherosclerosis in mice without
significant unwanted effects [51,52]. Along with improving our understanding of the biological roles
of PPARs, we suggest that further study of the selectively pleiotropic PPAR agonist is a promising
approach for developing further therapies.

Table 1. Different PPAR ligands and their development status regarding the treatment of lipid and
glucose metabolic syndrome.

Ligands Classification Structure Indication Current Stage

Bezafibrate PPARα agonist
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Troglitazone PPARγ agonist 

 

T2D 

Withdrawn 

due to 

hepatotoxicity 

Rosiglitazone PPARγ agonist 
 

T2D 

Withdrawn 

due to risk of 

CV events 

Pioglitazone PPARγ agonist 
 

T2D On the market 

Lobeglitazone PPARα/PPARγ agonist 
 

T2D 
On the market 

in Korea 

Balaglitazone 
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significant unwanted effects [51,52]. Along with improving our understanding of the biological roles 
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activator capable of preventing insulin resistance, obesity, and atherosclerosis in mice without 

significant unwanted effects [51,52]. Along with improving our understanding of the biological roles 

of PPARs, we suggest that further study of the selectively pleiotropic PPAR agonist is a promising 

approach for developing further therapies. 
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LY518674 PPARα agonist 
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Phase II 

KD-3010 PPARβ/δ agonist 
 

Diabetes, obesity, 
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Phase I 

Troglitazone PPARγ agonist 
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due to risk of 

CV events 

Pioglitazone PPARγ agonist 
 

T2D On the market 

Lobeglitazone PPARα/PPARγ agonist 
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PPARγ agonist 

 

T2D 
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Discontinued 
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Phase II 

Discontinued 
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Discontinued
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Darglitazone PPARγ inhibitor 
 

T2D 
Phase I 

Discontinued 

Netoglitazone 

(MCC-555) 
PPARα/PPARγ agonist 

 

T2D 
Phase II 

Discontinued 

Rivoglitazone PPARγ agonist 
 

T2D 
Phase III 

Discontinued 

Honokiol PPARγ agonist 

 

Gingival diseases, anti-

hyperglycemic 

property 

Phase III 

2.2. Xenobiotic Receptor CAR 

CAR is a member of the NR1I3 family of nuclear receptors, initially serves as a xenobiotic nuclear 

receptor, responding to xenobiotics and drug stress [53,54]. Androstenol, and some isomers of 

androstanol, androstanes, have been found to be endogenous antagonists of CAR, and 

dehydroepiandrosterone (DHEA), also an androstane, is an endogenous agonist of CAR. 

Androstanes, despite acting as ligands, are the basis for the naming of this receptor. The name 

“constitutive androstane receptor” refers to the unusual, constitutively-active status of this receptor 

when not occupied by a ligand. CAR is primarily expressed in the liver and small intestine, but is 

also found in the kidney, heart, and brain [55], and we also detected it in the mammary gland, ovary, 

and uterus (our unpublished data). It, often along with the pregnane X receptor (PXR) and vitamin 

D receptor (VDR), regulates the phase I and II xenobiotic metabolizing enzymes (including 

cytochrome P450s, sulfotransferases, glutathione-S-transferases) and other multidrug-resistance 

associated proteins used to both modulate drug metabolism and bilirubin clearance and prevent 

hepatotoxicity [56–58]. More recently, CAR has been reported to regulate both lipid and glucose 

metabolism and has been a potential therapeutic target for several metabolic diseases, such as obesity 

[15,59], atherosclerosis [60,61], NAFLD [62,63], and T2DM [64,65], due to its ability to balance the 

endogenous homeostasis of components, including glucose, steroids, bile acids, bilirubin, and 

thyroid hormone. 

Since CAR has a large hydrophobic LBD pocket, a variety of chemical xenobiotics can activate 

it, such as clinical drugs, insecticides, flavonoids, terpenoids, polyphenols, environmental chemicals, 

and others [66,67]. Interestingly, CAR exhibits arresting species specificity in the ligand binding 

recognition between human and rodent, though both species use the same DNA response element 

sequences to recruit CAR. For example, TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), is a 

potent mouse CAR (mCAR) agonist which only activates mouse, but not human, CAR, whereas 

CITCO (6-(4-chlorophenyl) imidazo [2,1-β] [1,3] thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) 

oxime) is only a human CAR (hCAR) agonist, having no effect on mouse CAR [68,69]. Thus, this 

specificity should be considered when choosing the animal model for studying pharmacologic effects 

or drug screens targeting CAR. Phenobarbital, also known as phenobarb or phenobarbitone, is the 
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2.2. Xenobiotic Receptor CAR

CAR is a member of the NR1I3 family of nuclear receptors, initially serves as a xenobiotic
nuclear receptor, responding to xenobiotics and drug stress [53,54]. Androstenol, and some
isomers of androstanol, androstanes, have been found to be endogenous antagonists of CAR, and
dehydroepiandrosterone (DHEA), also an androstane, is an endogenous agonist of CAR. Androstanes,
despite acting as ligands, are the basis for the naming of this receptor. The name “constitutive
androstane receptor” refers to the unusual, constitutively-active status of this receptor when not
occupied by a ligand. CAR is primarily expressed in the liver and small intestine, but is also found in
the kidney, heart, and brain [55], and we also detected it in the mammary gland, ovary, and uterus
(our unpublished data). It, often along with the pregnane X receptor (PXR) and vitamin D receptor
(VDR), regulates the phase I and II xenobiotic metabolizing enzymes (including cytochrome P450s,
sulfotransferases, glutathione-S-transferases) and other multidrug-resistance associated proteins used
to both modulate drug metabolism and bilirubin clearance and prevent hepatotoxicity [56–58]. More
recently, CAR has been reported to regulate both lipid and glucose metabolism and has been a potential
therapeutic target for several metabolic diseases, such as obesity [15,59], atherosclerosis [60,61],
NAFLD [62,63], and T2DM [64,65], due to its ability to balance the endogenous homeostasis of
components, including glucose, steroids, bile acids, bilirubin, and thyroid hormone.

Since CAR has a large hydrophobic LBD pocket, a variety of chemical xenobiotics can activate
it, such as clinical drugs, insecticides, flavonoids, terpenoids, polyphenols, environmental chemicals,
and others [66,67]. Interestingly, CAR exhibits arresting species specificity in the ligand binding
recognition between human and rodent, though both species use the same DNA response element
sequences to recruit CAR. For example, TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), is a
potent mouse CAR (mCAR) agonist which only activates mouse, but not human, CAR, whereas CITCO
(6-(4-chlorophenyl) imidazo [2,1-β] [1,3] thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime) is
only a human CAR (hCAR) agonist, having no effect on mouse CAR [68,69]. Thus, this specificity
should be considered when choosing the animal model for studying pharmacologic effects or drug
screens targeting CAR. Phenobarbital, also known as phenobarb or phenobarbitone, is the preferred
antiepileptic and sedation medicine used clinically, and it can activate both human and mouse CAR.
Some early studies have shown that phenobarbital can regulate energy mentalism and improve insulin
sensitivity and hepatic lipid homeostasis in ob/ob mice and human patients [70–72]. Activation of
CAR reduced sterol regulatory element-binding protein 1 (SREBP-1) levels by inducing the expression
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of insulin induced gene 1 protein (INSIG-1), a protein blocking the proteolytic activation of SREBPs [73].
In a previous study, we reported that activation of CAR inhibited lipogenesis by suppressing LXR
ligand-responded recruitment of LXR to the LXR response element (LXRE) and the expression of
LXR target genes, whereas activation of LXR inhibited the CAR ligand-induced recruitment of CAR
to Cyp2b10 [74]. Although CAR is a potential therapeutic target for lipid metabolic disease, some
barriers exist for the clinical use of its agonists: there are concerns around hepatic enlargement and
carcinogenesis. CAR also interacts with PPAR and LXR in regulating lipid and glucose homeostasis.
Better understanding of these mechanistic properties might help us overcome these barriers in
the future.

2.3. Oxysterol Sensor LXRs

LXRs are well-known nuclear oxysterol receptors that have two isotypes: LXRα (NR1H3)
and LXRβ (NR1H2). LXRα is highly active in the liver, intestines, kidneys, adipose tissue, lungs,
macrophages, and adrenal glands. LXRβ, also named as a ubiquitous receptor, is expressed in almost
all tissues and organs [75–77]. Both of them may control cholesterol, fatty acid, and glucose metabolism
to protect against atherosclerosis, lipid disorders, diabetes, chronic inflammation, Alzheimer’s disease,
and even cancer [78–81].

In cholesterol and lipid homeostasis, activation of LXR can stimulate reverse cholesterol transport
and reduce the body’s cholesterol overload by inducing the sterol metabolism and transporter network,
including cytochrome P450 family 7 subfamily A member 1 (CYP7A1), ATP-binding cassette sub-family
A member 1 (ABCA1), ABCG1, ABCG5, ABCG8, and apolipoprotein E (ApoE) [82–84]. Furthermore,
LXR activation also results in an increase in lipid synthesis in the liver through inducing the
expression of SREBP-1c, fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), and stearoyl-CoA
desaturase 1 (SCD-1) [85–87]. LXRs, as sterol sensors, have a variety of endogenous activators, most of
which are oxidation products of cholesterol, such as 27-hydroxycholesterol, 22(R)-hydroxycholesterol,
20(S)-hydroxycholesterol, 24(S)-hydroxycholesterol and 24(S), and 25-epoxycholesterol [16,76,88].
Interestingly, these endogenous agonists, unlike natural synthetic LXR activators, do not activate the
SREBP signal pathway [89–91]. Several studies have reported that mice treated with synthetic LXR
activators, including GW3965 and TO901317, show enhanced hepatic and serous triglyceride levels,
and have promoted very low-density lipoprotein (VLDL) secretion [86,92,93]. These shortcomings
limit the use of LXR activators in clinical settings. LXRα is the major sensor of dietary cholesterol.
Mice lacking LXRα cannot induce transcription of the gene encoding cholesterol 7α-hydroxylase
(CYP7A), which is a rate-limiting enzyme in bile acid synthesis. LXRα−/− mice are healthy when fed
with a normal chow (low cholesterol) diet. However, they develop enlarged fatty livers with high
cholesterol levels, and lead to impaired hepatic function when fed a high-cholesterol diet [94]. LXR-623
(WAY-252623) is the first LXRα-partial/LXRβ-full agonist used for the treatment of atherosclerosis in
animal models and has been tested in a phase I clinical trial. However, the trial was terminated due to
adverse effects on the central nervous system [95,96]. Similar synthetic agonists, including CS8080,
BMS-852927 (also named XL-041) have been terminated for undisclosed reasons, and only BMS-779788
(also named XL-652) has proved safe enough to continue with clinical trials [97,98], the detailed
information as shown in Table 2. LXR activators can reduce cholesterol level in blood and liver. They
also improve glucose tolerance in mice by decreasing insulin resistance. Human functional and genetic
analysis showed that the common LXR promoter SNPs rs35463555 and rs17373080 may regulate
sensibility to T2D [99]. We recently reported that DBZ inhibits foam cell formation and protects against
atherosclerosis in ApoE−/− mice through activating LXRs [52,100]. DBZ also activates PPARγ and
prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis in mice [51]. By clarifying
the cross-talk between PPARs and LXRs we may gain a better understanding of their synactic function
in cholesterol and lipid homeostasis.
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Table 2. Different LXR ligands and their development status regarding anti-atherosclerosis.

Ligands Classification Structure Indication Current Stage

LXR-623
(WAY-252623)

LXRα-partial
LXRβ-full agonist
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Atherosclerosis Phase I

3. Cross-Talk of PPARs and CAR Links to Obesity

PPARs and CAR are both essential lipid metabolic nuclear receptors active in controlling obesity
and its related metabolic disorders. PPARs are quite interesting. PPARα and PPARβ/δ are potential
targets to prevent obesity [101–103], by the mechanism as mentioned above in Section 2.1. Contrarily,
PPARγ is a master regulator of adipocyte differentiation both in vivo and in vitro [104]. A lack of
PPARγ results in the inability to develop adipose tissue, as seen in PPARγ knockout mice [105,106].
Thiazolidinediones, as famous PPARγ activators, are a group of anti-diabetic drugs to treat T2MD,
but can lead to serious side effects. Weight gain is an unwanted side effect: activation of PPARγ in
adipose tissue stimulates the expression of genes leading to lipogenesis, including AP2, CD36, SCD-1,
SREBP-1, and others, which promote lipid storage [18]. PPARα, as a key nutritional sensor, regulates
the metabolism of lipids, carbohydrates, and amino acids [107]. It is a potential therapeutic target
for the treatment of obesity, hypertriglyceridemia, NAFLD, and atherogenic dyslipidaemia [108–110].
Oestrogen inhibits the actions of PPARα on obesity and lipid metabolism through its effects on the
PPARα-dependent regulation of target genes [111,112]. CAR, as a therapeutic target for obesity,
was reported about ten years ago. Activation of CAR also increased faecal bile acid excretion and
attenuated atherosclerosis in low-density lipoprotein receptor-deficient (LDLR−/−) and ApoE−/−

mice by increasing reverse cholesterol transport [60,61]. Recently, we reported that activation of CAR
with TCPOBOP inhibited lipogenesis and promoted fibrosis in the mammary gland of adolescent
female mice [113]. The classical CAR agonist TCPOBOP has a robust anti-obesity phenotype in high-fat
diet-induced obese mouse models. Mechanically, activation of CAR improves insulin sensitivity,
inhibits lipogenesis and gluconeogenesis, and increases brown adipose tissue energy expenditure.

The cross-talk between PPARs and CAR in obesity can be achieved through their target gene
PGC-1α. PGC-1α, as a transcriptional coactivator, interacts with nuclear receptor PPAR and controls
energy metabolism through the regulation of mitochondrial biogenesis [114,115]. CAR regulates the
degradation of PGC-1α by recruiting E3 ligase targeting PGC1α and promoting ubiquitination in the
liver [116]. During fasting, the PPARα activator WY14643 induces both CAR and its target gene CYP2B
expression in a PPARα-dependent manner in rat hepatocytes [117,118]. Meanwhile, Guo et al. reported
that synthetic PPARα ligands ciprofibrate, clofibrate, and others drove adenoviral-enhanced green
fluorescent protein-CAR into the hepatocyte nucleus in a PPARα- and PPARβ-independent manner
in mouse liver in vivo. More interestingly, molecular docking assay showed that PPARα activators,
Wy-14643 and ciprofibrate, could fit into the ligand binding pocket of CAR and their binding modes
were similar with that of androstanol, an endogenic CAR inverse agonist. PPARα activators interfered
with coactivator recruitment to the LBD of CAR and suppressed the constitutive transactivation of
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CAR. Mechanistically, the transcription coactivator PPAR-binding protein (PBP) plays a pivotal role in
nuclear translocation of CAR in mouse liver, but not the PPAR-interacting protein (PRIP) [119,120].
These results indicated that activation of PPARα by some ligands induced nuclear translocation of
CAR. β-oxidation is also controlled by both PPARs and CAR. PPARα regulates mitochondrial fatty acid
β-oxidation by inducing the gene expression of CPT1, as previously mentioned. Conversely, the CAR
ligand pentobarbital inhibits mitochondrial CPT1 expression and β-oxidation, resulting in increasing
ketone production in serum [8,121]. However, in BAT, activation of CAR by TCPOBOP significantly
increased expression of PGC-1α and β-oxidation [15]. Hence, the cross-talk between PPAR and CAR
should be separately considered for different tissue types. Above all, the dual functions of PPAR
activators have possible cross-talk with CAR through target gene PGC1α, coactivator recruitment,
and mitochondrial fatty acid β-oxidation in different conditions in energy metabolism.

4. Cross-Talk of PPARS and LXRS in Atherosclerosis

There is a potential cross-talk or interaction between PPARs and LXRs in the prevention
and treatment of atherosclerosis. Most nuclear receptors form heterodimers with RXR, including
PPAR/RXR, LXR/RXR, CAR/RXR, and others. Ide et al. has elegantly reported that LXR-RXR-PPAR
forms a network that regulates fatty acid metabolism and lipid degradation [122]. These compounds
enhance binding to their respective target gene promoters. Unsaturated fatty acids increase the
expression of LXRα, but not the LXRβ in rat liver cells, both in vivo and in vitro. This upregulated
effect of LXRα is associated with the transcriptional rate and binding of PPARα to PPAR response
element (PPRE). Meanwhile, a PPRE is found in the human LXRα flanking region [123]. SREBP-1c,
as a direct target gene regulated by LXR, is crucial in both lipid and sterol biosynthesis. Luciferase
assays have proven that the activation of PPARα and PPARγ reduces LXR-induced SREBP-1c promoter
activity and gel shift assays have demonstrated that PPARs inhibit the binding of LXR/RXR to
LXRE [124]. Thus, PPARs and LXRs play opposite roles in regulating triglyceride synthesis in the liver
and serum. LXRα also inhibits peroxisome proliferator signalling through cross-talk with PPARα [125].
Moreover, Liduo Yue et al. reported that LXRs could bind to PPARs with different binding affinities
in vitro using surface plasmon resonance technology and molecular dynamics simulation [126].

Despite the opposite roles in triglyceride homeostasis, PPARs and LXRs have some common
ground in their anti-atherosclerotic effects. In foam cell macrophages, both PPARα and PPARγ (through
the LXR-dependent ABC pathway) control cholesterol efflux [127,128], and activation of PPARα and
PPARγ both prevent foam cell formation and atherosclerosis development in ApoE−/− and LDLR−/−

mice [129,130]. Activation of LXRα also raises the expression of ABCA1 and ABCG1, which accelerate
the reverse transport of cholesterol and then deposit in the liver [131]. PPAR-LXR-ABCA1 is an
important pathway involved in cholesterol efflux and atherogenesis. In intestine tissue, the activation
of LXR also increases the expression of ABCG5 and ABCG8 which regulate absorption of cholesterol
and protect against atherosclerosis [79,132]. PPARs activation has performed similar acts inhibiting
intestinal cholesterol absorption in rats and mice [133,134]. Taken together, both LXR and PPAR
promote the movement of cholesterol from peripheral cells to the feces, which is referred to as reverse
cholesterol transport (RCT).

Atherosclerosis is a chronic inflammatory disease; inflammation plays an important role in the
pathogenesis and progression of atherosclerosis [135,136]. Recent studies have revealed the mechanism
by which PPARs and LXRs regulate the inflammation process through some inflammatory target genes.
Activation of PPARs and LXR can inhibit lipopolysaccharide- and cytokine-induced pro-inflammatory
gene expression by repressing the toll-like receptor (TLR)-nuclear factor kappa B (NF-κB) signal
pathway [137–139]. PPARα increases the expression of inhibitor of kappa B (IκB) to antagonize the
NF-κB signalling pathway [140]. PPARβ/δ induces transforming growth factor beta (TGF-β) and
inhibits the activation of NF-κB, thus regulating inflammatory processes [141]. Thiazolidinediones
(TZDs) induced PPARγ activation also reduced the expression of inflammatory factors, including
TNF-α and gelatinase B, in the aortic root, thus inhibiting the development of atherosclerosis [142].



Int. J. Mol. Sci. 2018, 19, 1260 9 of 17

All three PPAR isoforms regulate the immune response through different cell-signalling systems.
LXRs repress inflammatory pathways through their transcriptional mechanisms [143,144]. LXRs and
PPARγ control immunity by mediating proinflammatory gene transrepression through parallel small
ubiquitin-like modifier (SUMO) ylation-dependent pathways [145]. PPARs and LXRs have been a
critical interface for inflammation and cholesterol homeostasis. Concurrent activation of LXR and
PPAR may have some beneficial effects. Activation of LXR by TO901317 and PPARα by fenofibrate in
combination improves glucose tolerance, alleviates insulin resistance, and blocks TO901317-induced
hyperlipidaemia, but aggravates hepatic steatosis in high fat diet-induced obese mice [146]. TO901317
and fenofibrate are both potent agonists. Concurrent partial agonists of LXR and PPAR may keep
beneficial characteristics with few side effects. In our recently study, DBZ, as a promising therapeutic
agent for atherogenesis and obesity in the mouse models, inhibits inflammation, macrophage migration,
and foam cell formation, possibly through the partial activation of both PPARγ and LXRs.

5. Conclusions

PPARs, CAR, and LXRs are a part of nuclear hormone receptors that form heterodimers with
RXR to regulate lipid metabolism. Ligand binding results in DNA binding and then triggers target
gene expression. Obesity and atherosclerosis are both chronic lipid metabolic disorders, which were
traditionally regarded as lipid deposition diseases, principally involving triglycerides in adipose tissue
and cholesterol ester in arteries. Although they are distinct conditions, obesity is often associated
with atherosclerosis. Recent findings have revealed the biological roles and mechanisms of these three
NRs in obesity and atherosclerosis. These receptors have been potential therapeutic targets for drug
discovery; further clarification and consideration of the internal relationship between them is necessary.
In this study, we summarized the interaction of PPARs and CAR in lipid metabolism and obesity-related
metabolic syndrome, and the cross-talk between PPARs and LXRs in cholesterol homeostasis and
atherosclerosis (Figure 2). Concurrent activation of these NRs may have some beneficial effects in lipid
metabolic disease. In recently study, we reported that DBZ prevented high fat diet-induced obesity
and related metabolic disorders and attenuated atherosclerosis through concurrent partial activation
of both PPARγ and LXRs. Moreover, it had no apparent side effects.
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Beyond these cross-talks, more NRs, such as PXR, farnesoid X receptor (FXR), aryl hydrocarbon
receptor (AhR), and retinoid-related orphan receptors (RORs), are being investigated. Future studies
should focus on the complex network between these NRs and how that network affects their functions.
We hope that by establishing a better understanding of nuclear receptor cross-talk between metabolic
disorder diseases, we can reveal promising therapeutic targets for future research.
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