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A B S T R A C T

Octalithium tin (IV) oxide (Li8SnO6) is an important electrode material considered for lithium ion batteries (LIBs)
because of its high lithium content. We employed atomistic simulations to examine the intrinsic defects, diffusion
of Li-ions together with their migration energies and solution of potential dopants in Li8SnO6. The most ther-
modynamically favourable intrinsic defect is the Li Frenkel which increases the concentration of Li vacancies
needed for the vacancy mediated diffusion of Li-ions in Li8SnO6. The calculated activation energy of migration of
Li-ions (0.21eV) shows that the Li-ion conductivity in this material can be very fast. Promising isovalent dopants
on the Li and Sn sites are Na and Ti, respectively. Doping of Ga on the Sn site can facilitate the formation of Li
interstitials as well as oxygen vacancies in Li8SnO6. While the concentration of Li interstitials can enhance the
capacity of this material, oxygen vacancies together with Li interstitials can lead to the loss of Li2O in Li8SnO6.
1. Introduction

LIBs have the potential to improve energy efficiency and reduce the
toxic pollutants releasing from burning fosile fuels [1, 2, 3, 4, 5]. The
properties of the electrode or electrolyte material have a major impact on
battery performance. Considerable research acticvity has been performed
to identify suitable electrode materials, both experimentally and theo-
retically [6, 7, 8, 9, 10]. Recently, cobalt nickel sulfide nanoneedle arrays
[11], titanium nitride nanoparticles-sulphur composites [12] and two
dimensional hexagonal CoMoO4 nanosheets have been considered as
electrode materials [13]. Nanoporous electrode materials have also been
recently synthesized to enhance the electrochemical performance [14,
15]. The search for novel electrode materials is still relevant in order to
produce materials that are low cost, high abundance and non-toxic.

Sn-based oxides are promising materials in the development anode for
LIBs due to their high capacity together with electrochemical performance
arising from the reduction of capacity fading in comparison with pure tin
[16, 17, 18, 19, 20, 21]. Previous experimental and theoretical studies
examined the capacity, cycling stability and electrochemical performance
and defect properties including diffusion and dopants in Li2SnO3 [22, 23,
24]. “Li-rich” Li8SnO6 is another Sn-based oxide material has attracted
ad0636@coventry.ac.uk (N. Kug

31 May 2021; Accepted 29 June
is an open access article under t
considerable attention for its use as an electrode material owing to its high
Li-ion content; leading to the release of more than one lithium per formula
unit theoretically [25]. However, the experimental extraction of the exact
number of Li-ions is not available. The loss of Li2O can be facilitated by the
introduction of lithium and oxygen vacancies in the lattice. The main
drawback of forming Li2O is capacity loss together with reduction in
Coulombic efficiency [26]. Luo et al. [27], performed density functional
theory (DFT) simulations to show that the oxygen redox yields a high
voltage plateau of over 4.0 V (vs Li/Liþ). Furthermore, Li-ion diffuses fast in
this material with an activation energy of 0.43 eV. In the literature, there are
no more experiemental or theoretical studies available on the electro-
chemical performance, defects, diffusion pathways and dopants properties
in Li8SnO6. Computer modelling techniques can be used to understand the
fundamental properties of Li8SnO6 and optimise its performance via an
appropriate doping mechanism. In previous studies, a variety of materials
including energy materials have been modelled using classical and DFT
simulations [28, 29, 30, 31, 32, 33]. The discovery of novel electrode or
electrolyte materials together with better understanding of electrochemical
properties is a main progress from the computational modelling. However,
there is a great challenge to model solid electrolyte-electrode interfaces and
disordered or amorphous phases of molecular materials [34].
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Figure 1. Crystal structure of trigonal Li8SnO6.

Table 2. Calculated and experimental lattice parameters of trigonal Li8SnO6.

Calculated Experiment [25] |Δ|(%)

a ¼ b (Å) 5.47 5.46 0.08

c (Å) 15.08 15.28 1.29

α ¼ β (�) 90.00 90.00 0.00

γ (�) 120.00 120.00 0.00

V (Å)3 390.14 394.58 1.13

Table 3. Reaction energies calculated for Schottky, Frenkel and anti-site defects.

Defect process equation Reaction
energy (eV)

Reaction
energy (eV)/defect

Li Frenkel 1 2.16 1.08

Sn Frenkel 2 10.70 5.35

O Frenkel 3 6.80 3.40

Schottky 4 27.98 1.87

Li2O Schottky 5 4.16 2.08

SnO2 Schottky 6 12.66 4.22

Li/Sn anti-site (isolated) 7 9.00 4.50

Li/Sn anti-site (cluster) 8 2.94 1.47

Binding energy 9 ‒3.03
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In this study, simulations based on pair-wise potentials are used to
study of intrinsic defects, Li-ion diffusion pathways and doping of iso-
valent cations [Naþ, Kþ and Rbþ on the Li site and Si4þ, Ge4þ, Ti4þ, Zr4þ

and Ce4þ on the Sn site] and aliovalent cations [Al3þ, Ga3þ, In3þ, Sc3þ,
Y3þ, Gd3þ and La3þ on the Sn site].

2. Computational methods

Classical simulation as established in the GULP (General Utility Lattice
Program) code [35] were employed to calculate the defect energetics,
construct Li-ionmigration pathways togetherwithmigration energies and
identify favourable dopants on both Li andSn sites. Long-rangeCoulombic
interactions were used to model the attraction between the oppositively
charged ions. Short-range interactions were modelled using repulsion as
described by Pauli and attraction as formulated by van der Waals. The
short range interactions were described by Buckingham potentials. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was employed to
perform full geometry optimisation [36]. The forces on the atoms were
less than 0.001 eV/Å. The Mott-Littleton method [37] enabled to model
point defects and migrating ions. In this method, two regions are defined.
The ions in the inner region are relaxed explicitly and ions in the outer
region are optimised using approximate quasi-continuum methods. The
Li-ion diffusion was calculated considering two nearest neighbour Li va-
cancies as initial and final configurations. The activation energy of Li ion
migration is the local maximum energy along the diffusion path. In the
current model, ions have their full charge at dilute limit and defect en-
ergies are overestimated. However, it is expected that the trend will be
Table 1. Buckingham potential parameters used in the classical simulations of Li8SnO
parameters reproducing the experimental data. The values of Y and K are shell charg

Interaction A/eV ρ/Å

Liþ–O2� 632.1018 0.2906

Sn4þ ‒ O2� 1414.32 0.3479

O2
–O2� 22764.30 0.1490

2

consistent [38]. In this study, isobaric parameters were utilised to calcu-
late formation and migration energies. In previous theoretical work,
thermodynamical relations between isobaric parameters and defect en-
ergies have been well discussed [39].

3. Results and discussion

3.1. Crystal structure of Li8SnO6

Figure 1 shows the crystal structure of trigonal Li8SnO6 (space group
R3) [25]. Lattice parameters determinedby neutron diffraction refinement
are a¼ b¼ 5.461Å, c¼ 15.278Å, α¼ β¼ 90� and γ¼ 120� [25]. There are
two non-equivalent Li sites present in the lattice. The first Li forms LiO4
tetrahedrons whereas the second Li has a coordination of six with adjacent
O atoms. The Sn4þ ions are coordinated by six O2‒ ions forming SnO6
octahedrons. Both octahedral and tetrahedral units are interlinked by
sharing their corners and edges. To check the quality of the Buckingham
potentials (see Table 1) [40, 41, 42], a full geometry optimisation was
carried out and calculated lattice parameters were compared with the
values reported in the experiment. There is an excellent agreement be-
tween the calculated and experimental structural parameters showing the
quality of the potentials used in this study (refer to Table 2).
3.2. Intrinsic defects

Point defects are important as they can dominate diffusion of ions and
alter the behaviour of a material. First, we calculated point defect (va-
cancies and interstitials) energies and then combined them together with
appropriate lattice energies to calculate Schottky and Frenkel defect
energies. Anti-site defects were also considered in two different forms
(isolated and cluster). In the isolated form cation impurities were
6 [40-42]. Two-body [Φij (rij) ¼ Aij exp (�rij/ρij) — Cij/rij6] where A, ρ and C are
es and spring constants respectively.

C/eV⋅Å6 Y/e K/eV⋅Å�2

0.000 1.000 99999

13.66 1.000 99999

27.627 ‒2.75823 30.211



Figure 2. Long range lithium ion diffusion pathways (A–F). Individual Li local
hops are represented with different colours.

Table 4. Calculated Li–Li separations and activation energies for the Li-ion
migration between two adjacent Li sites (refer to Figure 2). Symbols Td and Oh

represent Li-ions occupying tetrahedral and octahedral sites.

Migration path Direction Li–Li separation (Å) Activation energy (eV)

A Td↔Td 2.29 0.21

B Td↔Td 2.35 0.20

C Td↔Oh 2.44 0.59

D Td↔Oh 2.59 0.64

E Td↔Td 2.76 0.60

F Oh↔Oh 3.18 1.06

Table 5. Long range Li ion diffusion paths with corresponding overall activation
energies (refer to Figures 2 and 3).

Long range path Over all activation energy (eV)

A↔B↔A↔B 0.21

B↔A↔E↔A 0.60

B↔A↔D↔D 0.64

A↔A↔D↔C 0.64

F↔F↔F↔F 1.06
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considered separately and the same defects were modelled close to each
other in the cluster form. The following equations (Eqs. (1), (2), (3), (4),
(5), (6), (7), and (8)) describe the defect reactions using Kr€oger-Vink
notation [43].

Li Frenkel : LiXLi → V
0
Li þ Li�i (1)

Sn Frenkel : SnX
Sn →V

0000
Sn þ Sn����

i (2)
Figure 3. Energy profile diagrams for the lo

3

O Frenkel : OX
O →V��

O þ O00
i (3)
Schottky : 8LiXLi þ SnX
Sn þ 6 OX

O → 8 V
0
Li þ V

0000
Sn þ 6 V��

O þ Li8SnO6 (4)

Li2O Schottky : LiXLi þ OX
O → 2V

0
Li þ V��

O þ Li2O (5)

SnO2 Schottky : SnX
Sn þ 2 OX

O → V
0000
Sn þ 2V��

O þ SnO2 (6)

Li
�
Sn antisite ðisolatedÞ : LiXLi þ SnX

Sn → Li
000
Sn þ Sn���

Li (7)

Sn
�
Li antisite ðclusterÞ : LiXLi þ SnX

Sn → fLi000Sn : Sn���
Li g

X
(8)

Binding energy ðBEÞ : Ecluster � Eisolated (9)

Table 3 reports the defect reaction energies. The Li Frenkel (equation
1) is calculated to be the lowest defect energy processwith a defect energy of
1.08 eV/defect. Li vacancies needed for the vacancy mediated Li-ion
migration will be facilitated by this process. In a previous simulation
study [24], the Li-Frenkel was reported to themost favourable defect energy
process in Li2SnO3. The Li–Sn anti-site defect cluster (equation 8) energy is
the second most favourable defect with a defect energy of 1.47 eV/defect
suggesting that a small percentage of cation mixing (Li

000
Sn and Sn���

Li ) will be
present. Anti-site defects have been shown to be important in the ion
diffusion of a material [44]. The preference of anti-site defect cluster is due
to the exoergic binding of isolated defects (‒3.03 eV) (equation 9). There is
no experimental report about Li–Sn anti-site defect in Li8SnO6 though Li–Sn
cation mixing is reported experimentally for Li2SnO3 [22]. Schottky and
Li2O Schottky defect energies are calculated to be ~2 eV meaning that
Li8SnO6 may have high ionic diffusion. In particular, Li2O Schottky defect
energy of 2.08 eV indicates that the loss of Li2O is facilitated by the
cal Li hops (A–F) as shown in Figure 2.



Table 6. Interatomic potential parameters used for dopants in the atomistic simulations of Li8SnO6.

Interaction A (eV) ρ (Å) C (eV⋅Å6) Y (e) K (eV⋅Å�2)

Naþ–O2� 1497.830598 0.287483 0.000 1.000 99999

Kþ
–O2� 1000.3 0.36198 10.569 1.000 99999

Rbþ–O2� 1010.80 0.3793 0.00 1.000 99999

Al3þ - O2� 1725.20 0.28971 0.000 3.000 99999

Ga3þ - O2� 2901.12 0.2742 0.000 1.000 99999

Sc3þ - O2� 1575.85 0.3211 0.000 3.000 99999

In3þ - O2� 1495.65 0.3327 4.33 3.000 99999

Y3þ - O2� 1766.40 0.33849 19.43 3.000 99999

Gd3þ - O2� 1885.75 0.3399 20.34 3.000 99999

La3þ - O2� 2088.79 0.3460 23.25 3.000 99999

Si4þ - O2� 283.910 0.320520 10.660 4.000 99999

Ge4þ - O2� 1497.3996 0.325646 16.00 4.000 99999

Ti4þ - O2� 5111.7 0.2625 0.00 ‒0.10 314.0

Zr4þ - O2� 985.869 0.3760 0.00 1.35 169.617

Ce4þ - O2� 1986.83 0.3511 20.40 7.70 291.75
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Li-Frenkel. As we discussed earlier, the loss of Li2O may degrade the battery
performance. However, the O Frenkel energy is 3.40 eV per defect. The loss
of Li2O can be facilitated further by facilitating the O Frenkel process. High
defect reaction energies are noted for the other Schottky and Frenkel defect
processes implying that they are not observed at room temperature.
Particularly, the Sn Frenkel energy is 5.35 eV/defect showing that this
process will only occur at high temperatures. The high defect energy is due
to the highly charge defects (V 0000

Sn and Sn����
i Þ involved in this process.

3.3. Diffusion of Li ions

Intrinsic Li-ion migration pathways and their migration energies were
next calculated. In general, there is a challenge to determine ion diffusion
pathways experimentally. Classical simulation techniques enabled us to
construct possible Li-ion diffusion paths and their activation energies.
The current simulation technique has been previously used to validate
the experimental ion diffusion pathways and predict the possible path-
ways for materials where it is difficult to determine them experimentally
[40, 45, 46, 47].

Six possible Li local hops (A-F) were identified (refer to Figure 2).
Table 4 reports the activation energies calculated for local Li hops
together with hop distances. Figure 3 shows the migration barrier for the
local Li hops. Local Li hops exhibit a range of activation energies of
migration from 0.20 eV to 1.06 eV. In a previous DFT simulation study
[27], it has been reported that hopping distances are in the range be-
tween 0.43 eV and 1.40 eV. Furthermore, the lowest activation energy of
Figure 4. Calculated solution energies of M2O (M ¼ Na, K and Rb) with respect
to the Mþ ionic radius in Li8SnO6.
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migration is found between two tetrahedral Li sites in agreement with the
current simulation though there is an energy difference of 0.23 eV. The
difference in the activation energy of migration is due to the calculations
employed using different methodologies. In particular, current method-
ology treated Li as Liþ ion during the migration between two adjacent
sites. In order to identify long range diffusion paths, local hops were
linked in different ways. Five possible pathways were identified. In the
first long range pathway (A→B→A→B), Li ion migrates along the ab
plane in a zig-zag pattern with an overall activation energy of 0.21 eV
(refer to Table 5). The second path (B→A→E→A) also exhibits a zig-zag
pattern in the ab plane with an overall activation energy of 0.60 eV. As
local hop D is included in the third and fourth pathways, overall acti-
vation energies are slightly high (0.64eV). The fifth pathway consists of
only local hops F and exhibits a high activation energy of 1.06 eV. A
previous theoretical study predicted that the activation energy for the
long range Li-ion migration in Li2SnO3 is 0.61 eV [24]. The diffusion of
Li-ion in Li8SnO6 is predicted to be faster than that in Li2SnO3.
3.4. Solution of dopants

As material performance can be partly dominated by dopants, we
considered a range of monovalent, trivalent and tetravalent cation dop-
ants occupying the Li and Sn sites in Li8SnO6. The current methodology
enabled to test a variety of dopants and identify potential dopants that
should be considered experimentally. Aliovalent dopant process needed
Figure 5. Calculated solution energies of MO2 (M ¼ Si, Ge, Ti, Zr and Ce) with
respect to the M4þ ionic radius in Li8SnO6.



Figure 6. Calculated solution energies of M2O3 (M ¼ Al, Ga, In, Sc, Y, Gd and La) with respect to the M3þ ionic radius introducing (a) Li interstitials and (b) O
vacancies in Li8SnO6.
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appropriate charge compensating mechanism. In all cases, appropriate
lattice energies were included in the defect reaction equations. Pair-wise
potentials used for the dopants are tabulated in the supplementary in-
formation (refer to Table 6).

3.4.1. Isovalent dopants
Monovalent and tetravalent dopants were first considered on the Li

and Sn sites respectively. The Li site was replaced by monovalent dopants
(M¼Na, K and Rb) and the reaction process is explained by the following
equation (equation 10).

M2O þ2 LiXLi → 2MX
Li þ Li2O (10)

Solution energies are reported in Figure 4. The promising dopant is
the Na with the solution energy of 0.68 eV. The endoergic solution en-
ergy is due to the fact that the ionic radius of Naþ (0.99 Å) is larger than
that of Liþ (0.54 Å). Solution energy increases with the increase of ionic
radius. There is a significant increase in the solution energy for the Kþ by
~3 eV compared to that calculated for the Naþ. The highest solution
energy of 5.32 eV is calculated for Rbþ implying that doping of Rb on the
Li site is not a favourable process.

Tetravalent dopants (M ¼ Si4þ, Ge4þ, Ti4þ, Zr4þ and Ce4þ) were then
considered on the Sn site. The following reaction equation describes the
doping process (equation 11).

MO2 þ SnX
Sn → MX

Sn þ SnO2 (11)

Exoergic solution energies are calculated for the Ti4þ and Ge4þ,
meaning that they are worth trying experimentally. Promising dopant is
found to be the Ti with a solution energy of ‒0.29 eV (refer to Figure 5).
The solution energy calculated for the Ge4þ is higher only by 0.09 eV.
The Si exhibits a positive solution energy of 1.39 eV. This can be partly
owing to the ionic radius mismatch between Sn4þ (0.55 Å) and Si4þ (0.26
Å). Doping of Zr4þ is endothermic only by 0.13 eV. The Ce4þ exhibits the
most positive solution enthalpy of 2.09 eV. This is because of the larger
ionic radius of Ce4þ (0.87 Å) than that of Sn4þ.

3.4.2. Aliovalent dopants
Trivalent cation dopants including p-block, transition and lanthanide

elements (M¼ Al3þ, Ga3þ, Sc3þ, In3þ, Y3þ, Gd3þ and La3þ) on the Sn site
can introduce lithium interstitials or oxygen vacancies. Additional
lithium ions in Li8SnO6 can increase its capacity. The following defect
reaction equation was used to calculate solution energies (equation 12).

M2O3 þ2 SnX
Sn þ Li2O → 2 M�

Sn þ 2 Li�i þ 2 SnO2 (12)

The lowest solution energy (3.28 eV) is calculated for Ga (refer to
Figure 6a). The solution energy calculated for Sc is only higher by 0.07 eV
compared that calculated for Ga. Solution energy calculated for Al is 3.64
eV. This is partly due to the ionic radius and charge mismatch between
Al3þ (0.39 Å) and Sn4þ (0.55 Å). A slight increase in the solution energy
is observed for Sc3þ. Solution energies are quite high for other dopants
5

due to their ionic radii deviating from the ionic radius of Liþ. The largest
solution energy is calculated for La3þ with a solution energy of 5.00 eV.

The oxygen vacancy formation can be explained by the following
reaction equation (equation 13).

M2O3 þ2SnX
Sn þ Li2O → 2 M�

Sn þ 2V
0
O þ 2SnO2 (13)

The concentration of oxygen vacancies can facilitate the loss of Li2O
in this material. The same trend is observed as in the first mechanism
(refer to Figure 6b). However, the solution energies are slightly lower
than those calculated for the first mechanism indicating that the forma-
tion of oxygen vacancies is easier than that of lithium interstitials upon
doping of tetravalent cations on the Sn site in Li8SnO6.

4. Conclusions

Classical simulations were employed to examine the intrinsic defect,
diffusion and dopant properties of Li8SnO6. The Li Frenkel is the most
favourable intrinsic defect ensuring the formation of Li vacancies needed
for the vacancy mediated Li-ion diffusion. The Li-ion migration in this
material is fast with a low activation energy of 0.21 eV. Promising iso-
valent dopants on the Li and Sn sites were Na and Ti respectively.
Trivalent dopants were considered on the Sn site to introduce the Li in-
terstitials in order to increase the capacity of this material. Doping with
Ga is found to be the efficient strategy for this process. As the same Ga
doping process can increase the concentration of oxygen vacancies, it is
anticipated that Li2O is also favoured by the doping of Ga on the Sn site.
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