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Abstract

Extracting network-based functional relationships within genomic datasets is an important challenge in the computational
analysis of large-scale data. Although many methods, both public and commercial, have been developed, the problem of
identifying networks of interactions that are most relevant to the given input data still remains an open issue. Here, we have
leveraged the method of random walks on graphs as a powerful platform for scoring network components based on
simultaneous assessment of the experimental data as well as local network connectivity. Using this method, NetWalk, we
can calculate distribution of Edge Flux values associated with each interaction in the network, which reflects the relevance
of interactions based on the experimental data. We show that network-based analyses of genomic data are simpler and
more accurate using NetWalk than with some of the currently employed methods. We also present NetWalk analysis of
microarray gene expression data from MCF7 cells exposed to different doses of doxorubicin, which reveals a switch-like
pattern in the p53 regulated network in cell cycle arrest and apoptosis. Our analyses demonstrate the use of NetWalk as a
valuable tool in generating high-confidence hypotheses from high-content genomic data.
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Introduction

An important challenge in the analyses of high throughput

datasets is integration of the data with prior knowledge

interactions of the measured molecules for the retrieval of most

relevant biomolecular networks [1–7]. This approach facilitates

interpretation of the data within the context of known functional

interactions between biological molecules and subsequently leads

to high-confidence hypothesis generation. Typically, this proce-

dure would entail identification of genes with highest or lowest

data values, which is then followed by identification of associated

networks. However, retrieval of most relevant biological networks/

pathways associated with the upper or lower end of the data

distribution is not a trivial task, mainly because members of a

biological pathway do not usually have similar data values (e.g.

gene expression change), which necessitates the use of various

computational algorithms for finding such networks of genes

[1,2,4,5,8–11]. One class of methods for finding relevant networks

utilize optimization procedures for finding highest-scoring subnet-

works/pathways of genes based on the data values of genes [2,8].

Although this approach is likely to result in highly relevant

networks, it is computationally expensive and inefficient, and is

therefore not suitable for routine analyses of functional genomics

data in the lab. The most popular of the existing methods of

extraction of relevant networks from genomic data, however,

usually involve a network building strategy using a pre-defined

focus gene set, which is typically a set of genes with most significant

data values (e.g. most over-expressed genes) [1,7]. The network is

built by ‘‘filling in’’ other nodes from the network either based on

the enrichment of interactions for the focus set (IPA -Ingenuity

Pathway Analysis) [1], or based on the analysis of shortest paths

between the focus genes (MetaCore) [7,12]. Both methods aim at

identifying genes in the network that are most central to

connecting the focus genes to each other. Problems associated

with these methods have been outlined previously [7]. However

perhaps most importantly, the central genes identified by these

methods may have incoherent data values with the focus genes

(e.g. the central genes may have reduced expression while the

focus genes may have increased expression), as data values of

nodes are not accounted for during the network construction

process using the seed gene list. This may result in uninformative

networks that are not representative of the networks most

significantly represented in the genomic data (see Results). In

addition, these methods do not account for genes with more subtle

data values that collectively may be more important than those

with more obvious data values [13]. Although powerful data

analysis methods for finding sets of genes with significant, albeit

subtle, expression changes have been developed (e.g. GSEA [13],

Molecular concept maps[14], GenMAPP[15]), such an approach

has not been incorporated into methods for extracting interaction

networks that are most highlighted by the data.

In order to overcome these problems, we have employed the

method of random walks in graphs for scoring the relevance of
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interactions in the network to the data. The method of random

walks has been well-established for structural analyses of networks,

as it can fully account for local as well as global topological

structure within the network [16,17] and it is very useful for

identifying most important/central nodes [16–18]. Here, instead

of working with a pre-defined set of focus genes, we overlay the

entire data distribution onto the network, and bias the random

walk probabilities based on the data values associated with nodes.

This method, NetWalk, generates a distribution of Edge Flux

values for each interaction in the network, which then can be used

for dynamical network building or further statistical analyses.

Here, we describe the concept of NetWalk, demonstrate its

usefulness in extracting relevant networks compared to Ingenuity

Pathway Analysis, and show the use of NetWalk results in

comparative analyses of highlighted networks between different

conditions.

We tested NetWalk on experimentally derived genomic data

from breast cancer cells treated with different concentrations of

doxorubicin, a clinically used chemotherapeutic agent. Using

NetWalk, we identify several previously unreported network

processes involved in doxorubicin-induced cell death. From these

studies we propose that NetWalk is a valuable network based

analysis tool that integrates biological high throughput data with

prior knowledge networks to define sub-networks of genes that are

modulated in a biologically meaningful way. Use of NetWalk will

greatly facilitate analysis of genomic data.

Methods

Calculating node probabilities using data
Integration of genomic data represented by a vector w with the

network data of interactions between genes (nodes) is performed

by representing each interaction (edge) in the network in the form

of a transition probability based on the data values (e.g. mRNA

expression change, phenotype score from a genetic screen) of

nodes within the immediate neighborhood:

pij~
wj

Sk[Ni
wk

ð1Þ

where pij is the transition probability from node i to node j, wj is the

experimental value for node j, and Ni is the set of immediate

downstream neighbors (undirected edges are considered bidirec-

tional) of node i. If there are no downstream nodes of the node i

(|Ni| = 0), pij is set to pij = 1/|n| for all j [ n [ n, where n is the set

of all nodes in the network. The relevance score of each node in

the network is defined by the probability of its visitation by the

random walker, which is a function of both the local network

connectivity as well the data values of nodes. So at any step k of

this ‘‘random walk’’ process, the probability of a node being visited

by the random walker is

gk
i ~Sj[ngk{1

j pji ð2Þ

where gk
i is the probability of node i at step k, pji is the transition

probability from node j to node i and N is the set of interacting

neighbors of node i. This can be represented in a matrix form

gk~gk{1:P ð3Þ

where gk is the vector of probability values for all nodes in the

network at step k, and P is the transition probability matrix of the

network. Obviously, since a ‘‘walk’’ can only be performed over

adjacent nodes, pij.0 only if nodes i and j directly interact. The

expression above can also be written as

gk~g0:Pk ð4Þ

where Pk is the transition probability matrix raised to the power k,

and g0 is the initial probability distribution over nodes (all 1/|n|).

By the Perron-Frobenius theorem for stochastic matrices, as

k??k?? (infinite random walk), the expression above

converges to

g~g:P ð5Þ

where g is the left eigenvector of P associated with eigenvalue 1

and contains the final visitation probability values of nodes.

The final visitation probabilities of nodes depend on their data

values, data values of their neighbors, as well as the local network

connectivity. In order to further bias the random walk towards the

input data values, we assigned a small probability q that the

random walker will return to its starting node. Therefore, the

expression for random walk with restart is given by

g~g 1{qð ÞPz
1

DnD
q|1T

� �
ð6Þ

where q is a vector of all q of length |n| and 1 is a vector of all 1:

so that the restart probability is uniform among all nodes.

However, we bias the restart probabilities to the data values of

nodes, so that the random walker is more likely to return to its

initial node if the data value of that node is high.

g~g 1{qð ÞPz
1

Sk[nwk

q|wT

� �
ð7Þ

Author Summary

Analysis of high-content genomic data within the context
of known networks of interactions of genes can lead to a
better understanding of the underlying biological pro-
cesses. However, finding the networks of interactions that
are most relevant to the given data is a challenging task.
We present a random walk-based algorithm, NetWalk,
which integrates genomic data with networks of interac-
tions between genes to score the relevance of each
interaction based on both the data values of the genes as
well as their local network connectivity. This results in a
distribution of Edge Flux values, which can be used for
dynamic reconstruction of user-defined networks. Edge
Flux values can be further subjected to statistical analyses
such as clustering, allowing for direct numerical compar-
isons of context-specific networks between different
conditions. To test NetWalk performance, we carried out
microarray gene expression analysis of MCF7 cells subject-
ed to lethal and sublethal doses of a DNA damaging agent.
We compared NetWalk to other network-based analysis
methods and found that NetWalk was superior in
identifying coherently altered sub-networks from the
genomic data. Using NetWalk, we further identified p53-
regulated networks that are differentially involved in cell
cycle arrest and apoptosis, which we experimentally
tested.

Network-Based Data Analyses with NetWalk
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In this way, the probability that the random walker will restart at

another node i is directly proportional on the data value of node i,

thereby even more biasing the process of random walk to the

biological data.

Calculating node probabilities for transcription factors
In the case of transcription factor - target gene interactions,

these were reversed in the network so that the node values of target

genes would contribute to the probabilities of the transcription

factors, rather than the other way around. This is because the data

values of target genes (i.e. mRNA expression change) are more

informative of identifying regulation by transcription factors.

Calculating edge flux values
To find networks of interactions between genes represented in

the data, we scored each interaction in the network by

eij~giPij ð8Þ

where eij is the flux through edge ij and represents the score of

importance of the interaction based on the data.

Controlling for topological bias in the network
The node visitation frequencies in a random walk directly reflect

the relative centralities of nodes in the network, and therefore are

highly biased towards the local network topology. Although

biasing the random walk to data values skews the visitation

frequencies towards the supplied data values, there is still a

significantly high correlation with node connectivity values (Figure

S1), which suggests that the random walk process is highly biased

to the highly connected hubs in the network. Therefore, it is

important to control for topological bias in the network that stems

either from its scale-free nature or the historical bias of highly

studied genes. In order to control for topological biases in the

network, we also calculated background visitation frequencies

gr~gr 1{qð ÞPrz
1

n
q|1T

� �
ð9Þ

which is the same expression as in equation (7), with the exception

that er
�

ij~gr
�

iPr
�

ij . Pr is a transition probability matrix formed

by letting wi = 1 for all i. Since gr is calculated without considering

the data values of genes, it contains all the topological bias in the

network. Therefore, to obtain relative visitation frequencies of

genes (g9), we normalize values in g by those in gr,

g0i~
gi

gr
�

i

ð10Þ

Relative visitation frequency values in g9 have minimal correlation

with node centralities, and have a high correlation with the

supplied gene expression measurements (Figure S2), which

indicates that relative visitation frequencies of nodes are highly

biased towards the data.

Normalization of edge flux values is done by first calculating

er
�

ij~gr
�

iPr
�

ij ð11Þ

where er is the edge score distribution vector calculated by letting

wi = 1 for all i. Then, we normalize the data-biased edge flux

values to er to obtain normalized Edge Flux of interaction ij

EFij

� �
EFij

�

EFij~ log
eij

er
�

ij

0
@

1
A ð12Þ

which gives the final normalized score distribution of edges, which

reflects edge fluxes of nodes relative to what would be expected by

topology alone in the given network.

Data format and missing values
Because of the nature of random walks described above, the

input values must be positive, possibly representing ratio of a test

versus control sample (e.g. ratio of mRNA expression levels of

treated to untreated samples). Missing values in the network are

then assigned a value of 1, which represents a no change case in ratio

values. Accordingly, the values of s are centered around 0, with

higher values meaning higher probability relative to what would

be expected by chance in the given network (i.e. networks of high

data value nodes, e.g. increased gene expression), and lower values

meaning lower visitation probability (i.e. networks with low data

values, e.g. reduced gene expression) (see below).

Effect of data distribution on Edge Flux values
In order to prevent disproportionate skewing of the node

probabilities with extreme outliers in the data, the input data is

normalized so that all w.k0.999 are assigned k0.999, where k0.999 is

the 99.9th percentile value of w. Similarly, all w,k0.001 are

assigned k0.001. With this procedure, the final normalized visitation

frequencies of nodes are highly robust to differences in data

distributions and ranges (see Figure S3).

Network construction
We compiled protein-protein interactions from online databases

HPRD [19] BIND [20], HomoMINT [21], Gene [22] and IntAct

[23]. For directed interactions, we compiled signaling interactions

from KEGG [24], BioCarta (http://pid.nci.nih.gov/) and

TRANSPATH [25], as well as through manual curation of the

undirected interactions based on published literature. Transcrip-

tion factor-target interactions were obtained from ORegAnno [26]

and TRANSFAC [27] databases. This resulted in a network of

10,473 genes connected by ,65,000 interactions.

In network-based analyses of genomic data, the analyses and

therefore resultant hypotheses are limited by the gene coverage of

the network. Therefore, it is crucial that the interaction network

has as much gene coverage as possible. Since our main goal of

network-based analyses is identification of relevant biological

processes, the interactions represented in the network need not be

direct physical interactions. For example, a concordant increase in

the expression of genes involved in glucose metabolism will not be

captured in network-based analyses of direct physical interactions,

as metabolic enzymes within the same pathway rarely engage in

direct physical interactions (with the exception of multifunctional

complexes). Therefore, inclusion of indirect functional interactions

in the network may help identify relevant biological processes that

are not captured by direct interactions (see network plots below).

In order to increase the coverage of our network, we added

functional similarity interactions between genes, where an

interaction means that the genes are involved in similar functional

processes, such as a metabolic pathway (e.g. glycolysis) or a specific

enzymatic reaction (e.g. oxidation/reduction). Functional similar-

ity interactions were constructed using Gene Ontology (GO)

annotations [28] as defined in the Entrez Gene database, and also

metabolic pathway annotations in the KEGG database. Any two

genes sharing a metabolic pathway annotation (but not signaling

Network-Based Data Analyses with NetWalk
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pathways as they are already represented in protein-protein

interactions) from KEGG were assigned an interaction. In the case

of GO annotations, two genes were assigned an interaction if the

overlap of their GO annotations was significant compared to the

rest of the genes:

sij~
D
T

k[N Gk D
n

where sij is the significance of overlap between genes i and j; Gk is

the set of genes that have the GO term k; N is the set of GO terms

common to genes i and j, and n is the total number of genes. If

sij,0.001, genes i and j were assigned an interaction.

Our final network contains 14,506 genes connected by 189,901

interactions. Gene coverage of our network of genes in our

doxorubicin dataset is comparable to that in the Ingenuity

Pathway Analysis (13,329 in our network versus 13,880 in

IPA).

Microarray analyses
MCF7 cells were grown in DMEM (Invitrogen) supplemented

with 10% FBS (Gemini) to near confluency and treated with 1 or

10 mM Doxorubicin (Sigma). Cells were collected at 0, 6, 12 and

24 hours post-treatment. Cell lysis and RNA extraction was done

using Mirvana miRNA isolation kit (Ambion) and amplification

using Illumina TotalPrep RNA amplification kit (Ambion). Equal

amount of RNA from each sample was hybridized to Illumina

HT12 BeadChip (Illumina). All procedures were performed

exactly as described in the respective manuals. The experiments

were repeated in triplicate.

Analyses with IPA
Networks in IPA were generated using Core analysis with

indicated data cutoffs for upregulated genes and using direct

interactions with the cutoff for network size to be 70. Highest

scoring 5 networks were merged and exported as text files.

Network plotting
All network plottings were done using the gplot function in the

sna package for R (http://erzuli.ss.uci.edu/R.stuff/).

Western blotting
Cells were treated as indicated and lysed in a sample lysis buffer

(50 mM Hepes, 150 mM NaCl, 1mM EGTA, 10 mM Sodium

Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCl2, 10%

glycerol, 1% Triton X-100 plus protease inhibitors; aprotinin,

bestatin, leupeptin, E-64, and pepstatin A). Blotting was done

using antibodies against p53 (Cell Signaling), p21 (Cell Signaling)

and Actin (Sigma). The experiment was done in triplicate.

Apoptosis assays
FACS: Cells were treated as indicated and after 24 hours

trypsinized, fixed with 70% ethanol at 220uC for 10 minutes and

resuspended in Propidium Iodide solution. FACS analysis was

performed in the Flow Cytometry core facility of M.D. Anderson

Cancer Center.

Rhodamine 123 assay: Rhodamine 123 staining was performed

as described [29]. Briefly, cells were treated as indicated and after

24 hours, trypsinized, spun down and resuspended in 10 mM

Rhodamine 123 (Invitrogen) in PBS for 30 minutes. Cells were

washed in PBS and analyzed by FACS for Rhodamine 123

intensity (green).

Figure 1. General concept of NetWalk. An imaginary network with artificial experimental data values is shown (e.g. relative gene expression
values) on the left. Node A was assigned a value of 5, nodes G, H, I, J, K and L were assigned 2, and all the other nodes were assigned 1. A transition
probability matrix P was constructed using the input data values and the network, with transition probabilities between adjacent nodes reflecting
their data values (colors in the matrix reflect transition probabilities P(iRj) according to the color key). Final visitation and flux values reflect the level
of coherence between the experimental data of genes and their relative positioning within the network. Note that node colorings in the network on
the right reflect relative visitation probabilities of nodes, and line colors of edges reflect the flux values according to the same color scale.
doi:10.1371/journal.pcbi.1000889.g001

Network-Based Data Analyses with NetWalk
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Results

Generating networks with NetWalk
Identifying common biological roles of genes whose expression

are altered in a microarray experiment is one of the most

frequently used strategies to understand the underlying biological

processes and derive hypotheses [6,13–15,30]. This strategy is also

implicit in NetWalk (Figure 1), as node visitation frequency values

(hence EF values) calculated by NetWalk are based on 1) data

values of nodes, 2) data values of their network neighbors and 3)

the network connectivity among neighbors. Therefore, a node

with a high data value that interacts with other nodes with high

data values in the network will receive the highest node visitation

and EF scores. Similarly, a node with a low data value that

interacts with other nodes with low data values in the network will

receive the lowest node visitation and EF scores.

In order to test the dependency of NetWalk output on the

provided data, we performed deletions of portions of data and

compared the resultant visitation frequencies to those of the

original dataset. Correlation of node visitation frequencies to those

of the full dataset closely followed the input data, suggesting that

NetWalk output is highly dependent on the supplied data (Figure

S4). However, this may also suggest that NetWalk output is mostly

independent of the network connectivity. In order to test the

dependence of NetWalk output on the network connectivity, we

removed parts of the network and performed NetWalk analysis on

the perturbed networks. The resultant node visitation frequencies

correlate relatively poorly with those of the original network

(Figure S5), indicating that the network connectivity substantially

contributes to node visitation frequency values. We also performed

a similar analysis with random deletions and additions of edges,

rather than nodes, in the network, and found a similar dependence

Figure 2. NetWalk analysis of low and high-dose doxorubicin response in MCF7 cells. A) Apoptosis levels in MCF7 cells after 24 hours of
stimulation with indicated doses of doxorubicin as measured by FACS analysis of DNA content (see Methods). B) FACS analysis of viable cells as
indicated by loss of Rhodamine 123 staining(see Methods). C–D) Plots of interactions with lowest(B) and highest (C) EF values in samples treated with
1 mM doxorubicin for 24 hours relative to control. Nodes are colored according to their gene expression change relative to control according to the
color key. Edge coloring reflects type of interaction, PPI: protein-protein interaction, TF-target: gene regulation, FS: functional similarity. The
distribution plot of all EF values is shows at the bottom.
doi:10.1371/journal.pcbi.1000889.g002

Network-Based Data Analyses with NetWalk
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of the NetWalk output on the network connectivity (Figure S7).

These analyses demonstrate that NetWalk output is highly

dependent on both the supplied data as well as the network

information.

To demonstrate the use of NetWalk in the extraction of relevant

networks out of microarray gene expression data, we studied gene

expression profiles of MCF7 cells subjected to sub-lethal and lethal

doses of doxorubicin. We performed microarray gene expression

analysis of MCF7 cells before and after treatment with 1 or 10 mM

doxorubicin for 6, 12 and 24 hours. In these cells, 1 mM

doxorubicin causes a cell cycle arrest in S-phase, while a 10 mM

dose induces cell death (Figure 2A–B). A NetWalk analysis of the

ratio values (treated/untreated) for 1 mM treatment was per-

formed using q = 0.01 (see Methods). The resulting distribution of

edge flux values, and plots of edges with 100 highest and lowest EF

values can be seen in Figure 2C–D. EF values are strictly biased

towards the data, as the high and low-end networks are entirely

composed of genes with, respectively, increased and reduced

expression levels. In the Figure 2D, interactions in the cluster

made of GLS, GLS2, P4HA2, ODC1 and PRODH genes

(arginine and proline metabolism) have the highest EF scores

due to both their high data values and tight interconnections with

each other. Similarly, in the low-score network in Figure 2C,

interactions in the cluster containing NDC80, CENPK, CBX1,

CENPA and SGOL1 (centriole components) have the lowest EF

scores. Nodes with moderate values that are in close proximity to

other high value nodes within a tightly connected neighborhood

will also get high scores, as is seen with TP53 in Figure 2B.

In order to demonstrate that the p53 network extracted by

NetWalk is not an artifact of highly connected subnetworks, we

performed a NetWalk analysis of baseline expression profile of

MCF7 cells relative to other breast cancer cells as reported by

Neve et al [31]. The most significantly upregulated networks in

MCF7 cells relative to the rest of 53 breast cancer cells are those

involved in the Estrogen Receptor signaling (Figure S6), a well-

characterized dominant pathway in the estrogen receptor positive

MCF7 cells. This analysis shows that NetWalk output does indeed

reflect accurate quantification of highly biologically relevant

networks based on the supplied data.

EF scores are highly coherent with data values
Contrary to the seed-based network building methods, NetWalk

works with the whole data distribution and so does not require

assignment of pre-defined cutoffs or focus gene sets. NetWalk

procedure simply translates the gene-centric data values to

corresponding interaction scores based on the coherence of the

gene values with those in the local network neighborhood as well as

the local interaction pattern in the network. Therefore, the results

can be viewed at any user defined cutoff value for flexible generation

of networks with highly coherent node values. The distribution of

input node values and sample networks with different EF cutoffs

shows that the node values within networks are highly coherent

across a wide range of EF score cutoffs, which allows for high-

confidence hypothesis generation about activated and inactivated

network processes in response to DNA damage (Figure 3A–B). In

comparison, the distribution of data values of nodes in the networks

Figure 3. Comparison of coherence of node values in highest scoring networks. A) Boxplots of gene expression change values (1 mM DOX,
24 hours relative to control) of nodes in networks generated by different cutoffs of EF values, or in networks generated by Ingenuity Pathway
Analysis software using different gene expression value cutoffs for the focus gene set (see Methods). B) Heatmaps showing position of genes in the
networks in A in the whole data distribution. Positions of genes in the respective networks are indicated by a white line. C) A network of nodes
generated by Ingenuity Pathway Analysis software with focus gene set using 1.5 as cutoff. Since original network plots in IPA lack node colorings for
intermediate genes (non-focus genes), we extracted all nodes in the IPA-generated network and re-plotted them using our network, where we
colored all nodes by their gene expression change.
doi:10.1371/journal.pcbi.1000889.g003

Network-Based Data Analyses with NetWalk
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generated by Ingenuity Pathway Analysis, which takes a focus gene

list as input to build relevant networks, includes nodes with

incoherent data values (see Figure 3A–C), which reduces confidence

in the relevance of the generated networks to the data. The network

of 124 genes retrieved by IPA using a cutoff of .1.5 (60 focus genes)

contains many genes with reduced expression values (Figure 3C),

which were included in the network by the virtue of their

connectivities but not data values. Consequently, the resulting

network is not entirely representative of upregulated network

processes in response to doxorubicin. Moreover, none of the

networks identified by IPA contain all the genes involved in

arginine-proline metabolism (compare Figures 2D and 3C) or any

genes involved in the nucleotide metabolism that were retrieved by

NetWalk (see cluster in Figure 2D containing RRM2B, AK1,

POLR2A and NME2; compare with Figure 3C), demonstrating

inability of seed-based methods to identify subnetworks with more

subtle yet coherent gene expression values.

Statistical analyses using NetWalk output to elucidate
p53-mediated response to DNA damage

As stated earlier, an important feature of NetWalk is that the result

is not a single or a collection of static networks, but a whole distribution

of numerical edge scores. In addition to their use for dynamical

network construction of different sizes based on the user preference,

these can be further subjected to standard statistical tests for a more

detailed analysis. The heatmap of interactions with highest and lowest

EF scores in each condition in our microarray dataset is shown in

Figure 4A. As opposed to clustering with traditional heatmaps of gene

expression values where cluster membership of genes is exclusive,

here, a gene can appear in several different clusters but all with

different interactions. So, analysis of expression with EF scores enables

studying specific functions (i.e. interactions) of genes rather than their

individual expression values. The heatmap shows that the activation

and/or inactivation of several networks is specific to low- or high-dose

doxorubicin treatment. The cluster K3, for example, is activated in

response to high-dose doxorubicin, while K4 is more specifically

activated in response low-dose doxorubicin. A plot of interactions in

K3 reveals several metabolic pathways specifically activated in the

high-dose treatment, including glycolysis, acetyl coenzyme A synthesis,

arginine/proline metabolism and the mitochondrial electron transport

chain (Figure 4C). There is also a p53-centered subnetwork containing

several previously identified p53 target genes. The plot of interactions

in K4 shows an extensive p53-centered network composed mostly of

cell cycle regulatory proteins (e.g. CDKN1A (p21CIP) and several

Figure 4. Clustering analysis of EF values in each condition. A) Heatmap of highest and lowest EF values in each condition. Clustering was
done using Ward’s method in R. B–C) Networks corresponding to K3 (B) and K4 (C). Node colorings are according to 24h of 1 and 10 mM DOX
treatments, respectively. Edge colorings are as in Figure 2C.
doi:10.1371/journal.pcbi.1000889.g004

Network-Based Data Analyses with NetWalk
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GADD45 genes) (Figure 4B). Interestingly, although p53 appears in

both K3 and K4, its functions seem to be completely different in the

low and high dose treatments. In response to low-dose doxorubicin,

p53 is involved in the activation of cell cycle regulatory proteins, while

under high-dose, it activates other targets, such as TMSB4X.

Moreover, p53-target genes in cell cycle regulation in K3 are

inactivated in high-dose doxorubicin (Figure 5A–B), which we

confirmed by western blotting (Figure 5C), suggesting that p53 may

act as a transcriptional activator of these genes during cell cycle arrest

but as a repressor during apoptosis. This trend suggests not only that

p53 may engage different targets during cell cycle arrest and apoptosis,

but also shows dual behavior of p53 under these conditions. In

addition, this analysis shows that energy and amino acid metabolisms

may play an important role in doxorubicin-induced cell death. Here,

clustering analysis using NetWalk results facilitated comparison of

networks, rather than genes, between different conditions, leading to

the identification of differential activities of p53 under low and high-

dose doxorubicin treatment.

Discussion

NetWalk algorithm
Analyses of high content data within the context of biological

interactions allow for high confidence hypothesis generation about

mechanisms involved in the studied process. While some work has

been done on inferring novel causal interactions out of data [32–

34], the most popular method is integration of data with prior

knowledge on interactions to extract most relevant networks

highlighted by the data. Most of the methods for extracting

relevant networks rely on finding genes in the network that are

most central to connecting the genes of interest identified from the

data. The random walk process in NetWalk also scores most

central genes in the network. However, rather than working on a

small set of focus genes, NetWalk scores centralities of all genes in

the network based on the whole data distribution. This is achieved

by biasing the random walk transition probabilities between genes

to their corresponding data values, which allows for higher

visitation probabilities of nodes with high data values and lower

probabilities of nodes with low data values. Since visitation

probabilities of nodes in a random walk are also dependent on the

visitation probabilities of their network neighbors, nodes with

relatively moderate data values associated with those with higher

values have the potential of high visitation by the random walk.

Therefore, NetWalk scores nodes based on their data values, data

values of their neighbors and local network connectivity.

Unlike most of the existing methods for network extraction,

which typically give a set of networks as outputs [1,9], NetWalk

gives a distribution of EF values that allows for flexibility in

network construction using different EF cutoffs. In addition, EF

scores can be subjected to further statistical tests for comparative

Figure 5. p53-target cell cycle regulatory genes are specifically repressed during apoptosis. A–B) Network plot of interactions in K3 (see
Figure 4) related to cell cycle regulation. Nodes colored according to gene expression changes at 10 (A) or 1 mM (B) doxorubicin treatment. C)
Western blots of p53, p21 (CDKN1A gene product) protein levels over a time course after 1 and 10mM doxorubicin treatment. Actin levels shown as
control.
doi:10.1371/journal.pcbi.1000889.g005
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studies, allowing for network-based comparisons of multiple

conditions.

Another important feature of NetWalk is its computational

efficiency. We implemented a sparse matrix representation and

multiplication, which allows for NetWalk to be run on a standard

PC equipped with 1 gigabytes of memory. In our case (PC with

Intel Xeon Quad processor), NetWalk run of a single dataset in

our network (14,506 nodes and ,190,000 interactions) took about

2–3 seconds.

NetWalk analysis of the experimental data revealed a significant

activation of networks involved in energy metabolism, including

the glycolytic and mitochondrial electron transport chain compo-

nents. At least one member of the electron transport chain,

SCO2A, has been previously shown to be a p53 target [35],

suggesting that some, if not most, of the metabolic genes activated

in response to 10 uM doxorubicin may be p53 target genes. A

specific and extensive activation of the energy metabolism during

p53-mediated apoptosis has not been previously reported, and

therefore it is a novel finding facilitated by NetWalk analysis.

Network analysis of experimental data using NetWalk revealed

dual behavior of p53 under sublethal and lethal doses of DNA

damage. In response to sublethal doses of DNA damaging agents,

p53 activates a cell cycle arrest program centered around CDK

inhibitors p21 (CDKN1A) and GADD45, as well as several pro-

apoptotic genes, such as BAX and APAF1. However under lethal

doses, p53 represses the cell cycle arrest machinery and activates

an entirely different program. Use of NetWalk analysis allows

network based analysis of genomic data as well as high confidence

hypothesis generation and is a valuable tool in post-genomic

anlaysis.

Supporting Information

Figure S1 Correlation of node visitation frequencies with node

connectivities (left) and original data values (right) before

normalization for network topology (see Text). R2 values show

squared Spearman’s rank correlation coefficients.

Found at: doi:10.1371/journal.pcbi.1000889.s001 (0.08 MB PDF)

Figure S2 Same as in Figure S1, but after normalization for

network topological bias (see Text).

Found at: doi:10.1371/journal.pcbi.1000889.s002 (0.09 MB PDF)

Figure S3 Effect of data range on NetWalk output. Original

mRNA expression changes in response to 1uM doxorubicin (ratio)

were log2-transformed (di), and then transformed back by taking

exponential with different expansion factors f, s_i = f^(d_i ) where

s_i is the transformed value of gene i, di is the log2-transformed

original ratio value of gene i and f is the expansion factor.

Distributions of the transformed data with different expansion

factors are shown in A. Numbers above each distribution chart

shows the expansion factor. Expansion factor of 2 corresponds to

the original distribution. B) Correlation of visitation frequencies

corresponding to each transformed dataset with the original

visitation frequency values (i.e. f = 2). C) Correlation of visitation

frequency values for each expansion factor with the supplied

transformed data values. D–E) Highest scoring interactions

calculated using transformed datasets with expansion factor D)

1.25 and E) 5. Note that the two networks are highly similar ,
95% same node composition).

Found at: doi:10.1371/journal.pcbi.1000889.s003 (0.23 MB PDF)

Figure S4 Effect of data deletions on NetWalk output. Portions

of data were deleted and node visitation frequencies were

calculated by NetWalk. Shown are the correlations of each

deletion with the original node visitation frequency values (i.e. 0%

deletion).

Found at: doi:10.1371/journal.pcbi.1000889.s004 (0.03 MB PDF)

Figure S5 Effect of network deletions on NetWalk output. A

network corresponding to 690 nodes (highest scoring interactions

in 1uM doxorubicin dataset) was selected and nodes were deleted

at random. Correlation of resulting node visitation frequency

values with the original unperturbed network of 690 nodes is

shown (black). In addition, corresponding correlations with the

node degrees in each networks are also shown. Note that although

total number of interactions are relatively similar in each deletion,

the NetWalk output changes substantially due to changes in the

local network connectivities.

Found at: doi:10.1371/journal.pcbi.1000889.s005 (0.07 MB PDF)

Figure S6 Highest scoring networks corresponding to estrogen

receptor positive MCF7 cells relative to 58 other breast cancer cell

lines. ESR1 (estrogen receptor gene) is highlighted.

Found at: doi:10.1371/journal.pcbi.1000889.s006 (0.26 MB PDF)

Figure S7 Effect of edge perturbations on NetWalk output. A

random network corresponding to 755 nodes was selected out of

the whole network (3721 interactions). A) Edges were deleted at

random and correlation of the resultant node visitation frequencies

were compared to that of unperturbed network. B) To the network

in A where 50% of all edges were removed, we added random

interactions between random pairs of nodes and compared the

resultant NetWalk output with the initial NetWalk output at 50%

deleted network.

Found at: doi:10.1371/journal.pcbi.1000889.s007 (0.09 MB JPG)
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