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The epidermal growth factor receptor (EGFR) signaling network is activated in most solid tumors,
and small-molecule drugs targeting this network are increasingly available. However, often only
specific combinations of inhibitors are effective. Therefore, the prediction of potent combinatorial
treatments is a major challenge in targeted cancer therapy. In this study, we demonstrate how a
model-based evaluation of signaling data can assist in finding the most suitable treatment
combination. We generated a perturbation data set by monitoring the response of RAS/PI3K
signaling to combined stimulations and inhibitions in a panel of colorectal cancer cell lines, which
we analyzed using mathematical models. We detected that a negative feedback involving EGFR
mediates strong cross talk from ERK to AKT. Consequently, when inhibiting MAPK, AKT activity is
increased in an EGFR-dependent manner. Using the model, we predict that in contrast to single
inhibition, combined inactivation of MEK and EGFR could inactivate both endpoints of RAS, ERK
and AKT. We further could demonstrate that this combination blocked cell growth in BRAF- as well
as KRAS-mutated tumor cells, which we confirmed using a xenograft model.
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Introduction

The signal transduction network downstream of the epidermal
growth factor receptor (EGFR) has received much attention, as
a majority of human cancers shows mutations leading to
hyperactivation of the network (Hanahan and Weinberg,
2011). Based on detailed mechanistic understanding of the
network, a large number of targeted therapies has been
developed (Herbst et al, 2004; Roberts and Der, 2007; Prenen
et al, 2010). However, despite positive treatment responses in
some patients, a large fraction of patients do not benefit even if
molecular markers such as KRAS or BRAF mutation status are
used to stratify patient groups (Karapetis et al, 2008; Walther
et al, 2009; Roth et al, 2010).

One reason for the somewhat disappointing response rate to
these therapies is that they have been developed using the
concept of linear signaling pathways downstream of the
receptor. However, the EGFR signal is propagated through a
complex network (Bublil and Yarden, 2007), involving cross
talks to parallel pathways (Porter and Vaillancourt, 1998) and
strong feedback loops on different levels (Blüthgen and

Legewie, 2008; Legewie et al, 2008; Cirit et al, 2010;
Avraham and Yarden, 2011). Quantitative analysis of these
regulatory principles suggested that strong feedbacks can
neutralize drug treatment (Friday et al, 2008; Cirit et al, 2010;
Sturm et al, 2010; Fritsche-Guenther et al, 2011).

Mathematical modeling of signaling networks can help to
understand the behavior of these complex networks, and can

be used to simulate the effect of drugs in such a network. The

structure of these mathematical models can be directly

deduced from pathway maps (Oda et al, 2005). Detailed

mechanistic models based on Ordinary differential equations

(ODE) have been developed for the EGFR signaling network

(Kholodenko et al, 1999; Schoeberl et al, 2002; Nelander et al,

2008). However, for such detailed models the parameteriza-

tion remains a major challenge. More coarse-grain modeling

approaches, such as logical models or non-mechanistic

statistical models require less data for parameterization

(Kreeger et al, 2009; Morris et al, 2011; Saez-Rodriguez et al,

2011, 2009; Tentner et al, 2012). These approaches allow

qualitative predictions, but typically fail to deal with feedback
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loops or do not provide mechanistic insights. The approach we
chose for this study is termed modular response analysis
(MRA), which resides between the qualitative nature of
Boolean models and detailed mechanistic models. It provides
a framework to calculate the response of a linear approxima-
tion of an ordinary differential equation model to a perturba-
tion (Bruggeman et al, 2002; Kholodenko et al, 2002), and has
been developed to discover and parameterize networks from
systematic perturbation studies (Santos et al, 2007; Stelniec-
Klotz et al, 2012). The parameters of an MRA model are so-
called local response coefficients that quantify how strong a
change in activity of one node directly affects the activity of
another node. These models then allow to quantitatively
analyze feedback regulation, feedforward loops as well as
cross talks, which is of major interest as these network motifs
have major effects on drug sensitivity and network behavior
(Friday et al, 2008; Cirit et al, 2010; Sturm et al, 2010; Fritsche-
Guenther et al, 2011).

In this work, we exposed a panel of colon cancer cell lines to
different stimuli and pharmaceutical inhibitors, and measured
key signaling molecules in a medium-throughput approach.
The data generated by this approach were then used to
parameterize MRA-based mathematical models, which gener-
ated quantitative maps of the wiring between signaling
molecules. We focused our efforts on RAS-mediated signal
transduction pathways, as they are currently in the strategic
focus of targeted therapeutics in solid cancers. We were able to
identify feedbacks and cross talks of therapeutic relevance.
Our model predicted that EGFR-directed therapeutics might be
effective even in tumors carrying a mutation in RAS, if they are
provided in combination with RAF or MEK inhibitors. We
confirmed our predictions by phenotypic assays and a
xenograft model.

Results

A pipeline to model signal transduction networks
in cancer cell line panels

We developed a combined experimental and theoretical
approach to dissect signaling networks in cancer cell lines
to generate predictive mathematical models for their signal
transduction pathways. The workflow of our pipeline
was as follows (Figure 1): we selected a panel of six colon
cancer cells that were genotyped for common oncogenes using
targeted next-generation sequencing. Subsequently, the sig-
naling network in these cell lines was perturbed using small
molecule inhibitors and growth factors, and combinations
thereof. Before and after perturbation, phosphorylation of key
signaling molecules was quantified. This high-dimensional
data set was then used to parameterize mathematical models
of the signaling events. These models were simulated to
predict effects of inhibition and potential combinatorial
treatment.

Network quantification by a systematic
perturbation screen

We first chose six colon cancer cell lines for our systematic
perturbation screen, LIM1215, HCT116, SW403, SW480, HT29

and RKO. We used targeted sequencing of 46 genes to verify
that these cells represent a panel that reflects the genetic
diversity of colon cancer (see Table 1 and Supplementary
Table S1).

To generate a semi-quantitative database for further
mathematical modeling, we decided to measure phosphoryla-
tion of selected signaling molecules for combinatorial pertur-
bations. In line with previous approaches (Nelander et al,
2008; Saez-Rodriguez et al, 2009, 2011; Morris et al, 2011), we
used a pair-wise design of perturbations, where each inhibi-
tion is combined with each stimulus. Specifically, we
stimulated the cells with two growth factors, TGFa and IGF,
activating the EGF receptor and the IGF-receptor, respectively
(shown in red in Figure 2A). The cells have been pre-incubated

Perturbation with
small molecules  
and growth factors 

Multiplexed proteomics
measurement

Semi-quantitative
network model

Targeted next generation
sequencing of 
oncogenes

Simulation and 
experimental verification

Six colorectal cancer
cell lines with diverse 
mutations

Figure 1 General outline of the study. A panel of six colon cancer cell lines was
chosen, and profiled by sequencing selected cancer-related genes. The cells
were then systematically perturbed with four kinase inhibitors and two ligands of
growth receptors, and phosphorylation of key signaling proteins was measured
using the Luminex platform. These data were used for parameterizing a
mathematical model, which was then used to predict combinatorial treatments.
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Table I Mutation spectrum of the cell line panel

Gene symbol LIM1215 HCT116 SW403 SW480 HT29 RKO TCGA patients

ABL1 P309A Y257C _
APC K1462R A1457T/K1462R _
BRAF V600E* V600E* 13
CTNNB1 T41AH _
FGFR3 S400R S400R _
KRAS A146T G13D* G12V*,H G12V*,H 6,8,28
PIK3CA H1047R* H1047R* 4
SMAD4 Q311X*,H _
SMO V404M _
STK11 G58S G58S _
TP53 R273HH R273HH R273H*,H 26

Shown are non-silent mutation results from sequencing of known mutated regions in 46 cancer-related genes. SNPs reported by Cancer Genome Project are marked
with asterisk (*), and H indicates homozygous mutations. The number of patients found in The Cancer Genome Atlas to harbor this particular mutation (in the order of
appearance) is shown under TCGA patients.
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Figure 2 Generation of systematic perturbation data. (A) Perturbations consisted of two ligands (red nodes), and four pharmacological inhibitors (yellow flashes).
These were applied alone and in inhibitor-ligand combinations for the indicated time points. Then eight phosphorylation signals were measured (blue nodes). (B) Log2
fold change of phosphorylation in response to the perturbations for the six indicated cell lines. Displayed response range was limited to ±3.5 (approx. 10-fold). Source
data for this figure is available on the online supplementary information page.
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for 1 h with pharmacological inhibitors against the kinases
MEK, PI3K, IKK or GSK-3a/b (flashes in Figure 2A). As
signaling typically displays a strong transient response
followed by a long-term plateau, we performed time-series
experiments to determine optimal time points for the experi-
ments (see Supplementary Figure S1). We find that peak
transients are within the first 10 min after stimulation, and the
response to TGFa as well as IGF has reached a plateau at 30 min
after stimulation. Thus, we chose the 30-min time point for
further experiments, as the interpretation of MRA requires the
signaling network to be approximately in steady state. We then
used the Luminex proteomics platform to measure the
phosphorylation of eight key signaling proteins (AKTS473,
ERK2T185/Y187, MEK1S217/S221, p70S6KT421/S424, IGF-IRY1131,
GSK-3a/bS21/S9, IkB-aS32/S36, and IRS-1S636/S639) that are within
or in close proximity to the stimulated pathways and the
inhibited kinases (shown in blue in Figure 2A).

The resulting data sets are shown in Figure 2B as log2 fold
changes compared with unperturbed controls. When compar-
ing the six different cell lines, we found strong response
patterns to the perturbation in all cells, with the exception of
RKO cells that show hardly any response and which we
therefore excluded from further analysis.

All other cell lines, while clearly responding to the inhibitors
and stimuli, showed subtle differences in their response
patterns. For example, IRS-1 phosphorylation changed
strongly in HCT116 cells at certain treatments, but was not
altered in SW403 cells. To further infer qualitative and
quantitative differences in the interactions between the
signaling nodes and to predict effects of combinatorial
treatments, we decided to analyze the data using a mathema-
tical model.

A model-based approach to analyze the
perturbation data set

We developed an algorithm that can unambiguously deter-
mine network structure and parameters from the data set
based on MRA. The algorithm extends our previously
developed methodology (Stelniec-Klotz et al, 2012) by
considering multiple perturbations and unobserved nodes.
First, the model estimates the response coefficients and
inhibitor strengths for a literature-based starting network.
Then edges are iteratively removed if they are not supported by
the data (tested by a likelihood ratio test), until no further edge
can be removed (Figure 3A).

One of the major obstacles in comparing the networks
quantitatively between cells was to find a parameterization of
the model that can be uniquely determined from the data. For
example, the individual response coefficients along the path
from EGFR to the activation of AKT cannot be determined
individually, as the only node measured is the phosphoryla-
tion of AKT (Figure 2A). Thus, we had to re-parameterize the
MRA model. Elegant rule-based re-parameterization algo-
rithms (Saez-Rodriguez et al, 2009) could not be applied, as
they fail for more complex scenarios, where paths branch,
feedbacks exist and inhibitors are placed within the path. We
therefore developed an algorithmic approach that replaces
unidentifiable parameters by an identifiable combination of

parameters. These new parameters can then be reliably
estimated from the data set and compared between different
cell lines (see Materials and methods, Supplementary Method 1,
and Supplementary Figure S2).

Model fit requires alteration of the network model

When we applied our modeling procedure to the perturbation
data sets of the five selected cell lines, we obtained fits with
Chi-squared values between 116 and 470 (Figure 3B, dark
bars). Our algorithm then pruned the network and could
remove several links in each cell line without significant
increase in the Chi-squared values (Figure 3B, blue bars),
indicating that these links are not important in mediating the
perturbed signals (see an example for the stepwise reduction
in Supplementary Figure S2).

When we compared the model predictions with the data, we
found that our literature model failed to explain an increase of
MEK and ERK phosphorylation after IGF treatment that was
visible in multiple cells. When checking back with literature,
we found that IGF-1 can lead to activated RAS by triggering the
activation chain via IGF-IR, IRS-1 and Grb-2 (Florini et al,
1996). Hence, we included a link from IGF to RAF, which
improved model performance for all five cell lines significantly
(red bars in Figure 3A).

Additionally, our model could not account for an increase of
phospho-ERK level upon treatment with IKK inhibitor
BMS345541, which was particularly pronounced in HCT116
and SW403. Interestingly, this increase in ERK phosphoryla-
tion did not coincide with an increase in MEK levels, thus the
effect of IKK inhibition on ERK cannot be explained via
upstream components in the pathway. We thus decided to
include this potential new interaction in the model and to
repeat the model selection procedure. The inclusion of a link
from IKK to ERK improved the fit of the model considerably for
HCT116 and SW403 cells (see decrease of Chi-squared value in
Figure 3B orange bars) and showed no improvement for the
other cell lines.

The observed increase in ERK phosphorylation after
treatment with IKK inhibitors may be either due to unspecific
effects of the chosen IKK inhibitor or due to direct or indirect
regulation of ERK by IKK or its downstream kinases. We
therefore decided to characterize this interaction further. We
found that treatment with the IKK inhibitor BMS345541
resulted in an increase of phosphorylation of ERK within 1 h
(Figure 3C, left panel), but treatment with two other IKK
inhibitors had no effect on ERK phosphorylation, although
they also blocked phosphorylation of IkBa with similar
strength at this time point (Figure 3C, right panel). From that
we concluded that the interaction is likely to be a hitherto
unknown side effect of the inhibitor. Interestingly, while
phosphorylation of ERK and its cytoplasmic target p70S6K are
increased in response to BMS345541 (Figure 3D), ERK’s
nuclear activity seems to be decreased, as expression of
typical immediate-early target genes of ERK such as EGR1 and
FOS is strongly reduced (Figure 3E). This suggests that
although ERK phosphorylation is increased, ERK activity
seems to be redirected toward cytoplasmic targets, and
treatment with BMS345541 may result in a repression of
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typical genetic programs stimulated by ERK. In line with this
hypothesis, we found that treatment with moderate concen-
trations of BMS345541 results in impaired proliferation of
HCT116 cells (Supplementary Figure S3). Thus, the modeling
procedure identified an unknown side effect of BMS345541 on
ERK, and consequently we excluded the data of BMS345541
from further analysis.

After these alterations in the network structure, the resulting
model could mimic most of the responses in quantitative
detail. Figure 4A shows the experimental measurement side-
by-side with the corresponding model fit. For each signaling
node, measured phosphorylation is displayed in the upper
row (indicated by filled triangle) and the model simulation in
the lower row (open triangle). By running the procedure on
the data with simulated noise added, we confirm that the
procedure robustly identifies the parameters (Supplementary
Figure S4). In addition, we confirmed by 100 runs of
our algorithm that for each data set the model structure
and parameterization remained identical, irrespective of initial
parameterization.

Model fit uncovers differences in network
structure

The topology of the final models is displayed in Figure 4B.
Edges that our modeling procedure has removed in at least one

cell line are depicted as dashed lines, with color-coded circles

indicating the cell line. One interesting difference in the

topology of the networks resides in the feedback from ERK to

RAF, which has been removed in HT29 cells. This is in line

with previous findings that BRAFV600E mutation disables

MAPK feedback regulation via RAFs (Friday et al, 2008;

Sturm et al, 2010; Fritsche-Guenther et al, 2011). Furthermore,

the topology that connects the output kinases to ERK and AKT
differs. For example, the phosphorylation site measured for

IRS1 is not connected to ERK and AKT in LIM1215, SW480 and

SW403, and only connected to ERK in HT29 cells. Taken

together, the model-fitting procedure allowed to identify

qualitative differences in signal transduction networks in our

cell line panel, some of which can be related to specific

mutations.
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Quantitative differences between signaling
networks

In addition to qualitative differences in the underlying network
topology, we were also interested to study how signaling
networks in these cells differ in quantitative aspects. Thus,
we decided to inspect differences in the parameter sets.
Overall, the models had on an average 15 parameters (between
14 for SW403 and 17 for HCT116). As these parameters
typically correspond to complicated combinations of
response coefficients, the most intuitive way to inspect these
parameter combinations was by recomputing these parameter
combinations such that they correspond to paths in the

network. The values of such parameter combinations are

visualized in Figure 4C. Interestingly, many paths that

correspond to the intracellular logic, such as the response

coefficient from MEK to ERK or from ERK to p70S6K have

comparable values in all cell line models. This suggests that

certain quantitative aspects of signaling are comparable in

these cells, despite their heterogeneous genetic background.

On the other hand, there are also strong differences between

the cells, most of which relate to external perturbations.

For example, TGFa does have a strong effect on MEK

phosphorylation in HT29 cell, but can only weakly activate

MEK in HCT116 cells.
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All cells show negative response coefficients for feedback
regulation from ERK via EGFR back to MEK (orange box in
Figure 4C), with strongest negative values in HT29 cells.

An EGFR-dependent feedback causes cross talk
between MAPK and AKT signaling

An interesting aspect of this ERK-EGFR feedback is that it
connects ERK signaling with AKT activity in an EGFR-
dependent manner, as ERK inhibits the EGF receptor that also
stimulates AKTsignaling. Thus, inhibition in the ERK pathway
can lead to an activation of AKT if ligands for the EGFR
receptors are present. This effect has been previously
described as a mechanism of drug resistance in tumor cells
with BRAF mutation (Prahallad et al, 2012). When we
inspected the response coefficient of the path from ERK to
AKT via EGFR, we found high negative numbers for HT29, the
BRAF-mutated cell line (blue box in Figure 4C). However, the

model fit unveiled that the feedback is present in all cell lines,
and causes strong cross talk from ERK to AKT in all cell lines,
including those harboring different KRAS mutations (blue box
in Figure 4C, Table I).

To confirm the EGFR-dependent cross talk between ERK and
AKT, we performed independent experiments in HT29 and
HCT116 cells, as examples for cells with BRAF and RAS
mutations. Figure 5A shows that AKT phosphorylation is only
slightly increased when a MEK inhibitor is applied alone, and
that AKTcan be only weakly stimulated with TGFa. In line with
the cross talk hypothesis, we found that AKT phosphorylation
was significantly increased (Po0.05) by a factor of 2–3 when
cells were pre-treated with the MEK inhibitor, confirming that
the cross talk operates irrespective of mutations in BRAF or
RAS. We also observed a similar effect when we stimulate with
EGF for 10 min, another ligand of the EGFR (Figure 5A).

We then aimed to investigate whether the negative feedback
directly acts at the level of the EGF receptor, or more generally
desensitizes growth factor receptors, for example by acting on
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Figure 5 ERK–AKT cross talk is mediated by EGFR and independent of RAS or RAF mutation. (A) Increase of AKT phosphorylation in HCT116 (KRAS mutation) and
HT29 (BRAF mutation) cells incubated with MEK inhibitor AZD6244 (0.1 mM) or its solvent control (DMSO) for 1 h before application of TGFa or BSA for 30 min. Effect
can be also produced by 10 min EGF treatment in the presence of AZD6244 (1 mM). (B) Schematic view of the proposed ERK–AKT cross talk via the EGFR feedback
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with combinatorial treatment of AZD6244 (5 mM) and different growth factors (10 min). (D) Response of phospho-ERK and AKT to 10 min EGF treatment for different
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Source data for this figure is available on the online supplementary information page.
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shared adaptor molecules (Dhillon et al, 2007). To disentangle
the network that mediates the feedback, we stimulated cells
with the growth factors HGF, FGF and IGF, which do not signal
via EGFR (Figure 5B). In contrast to EGF, pre-inhibiting either
cell line with AZD6244 had no significant effect on the response
to HGF. Similarly, it had no effect on the response to FGF in
HT29 cells, and only a weak effect in HCT116 cells. When using
IGF as a control that stimulates primarily AKT, pre-treatment
with MEK inhibitors had no effect on AKT phosphorylation.
This suggests that the feedback common to HCT116 and HT29
acts on the EGFR and not on downstream adaptors that are
shared by many growth factor receptors.

We next aimed to define the timescale on which the
feedback operates. We treated HCT116 cells with the MEK
inhibitor for various times and then stimulated the pathway
with EGF for 10 min and measured AKT and ERK phosphor-
ylation (Figure 5D). Interestingly, already with a total
inhibition time of 15 min, we observed an increase of AKT
phosphorylation, which increased further for longer pre-
inhibition times, suggesting that the feedback operates as an
integral feedback. Notably, after about 2 h, also non-EGF-
treated but MEK-inhibited cells show a slight increase of AKT
levels, indicating an EGFR-independent cross talk operating
on a longer timescale. Furthermore, the EGFR-dependent
feedback shows that EGF treatment can partially restore the
pre-inhibitor phospho-ERK level after B4 h of inhibition.

EGFR inhibition prevents AKT activation by MEK
inhibitors irrespective of mutation status

We then used our model to predict combinatorial treatments
that reduce ERK activity without activating AKT. Our initial
model was trained using only two inhibitors directly in the
EGFR pathway, thus we decided to retrain the model for
further inhibitors against EGFR (gefitinib) and RAF
(sorafenib), see Figure 6A blue bars and Supplementary
Figure S5. We then used the model to predict treatments of
inhibitors of RAFor MEK combined with EGFR or PI3K plus the
combination of the latter two (red bars in Figure 6A). For all
these combinatorial perturbations, the model predicted a
reduction in AKTactivity when compared with TGFa treatment
only. Measurement of phospho-AKT confirmed the predic-
tions, except for combinations of MEK/RAF inhibitors and
PI3K inhibitors in HT29 cells (black bars in Figure 6A).

EGFR inhibition together with inhibition in MAPK
signaling prevents growth of tumor cells
irrespective of mutation status

We next asked whether a combination therapy of MAPK
inactivation together with an inhibitor against EGFR also
stops proliferation of tumor cells. To assess this, we
measured cell growth of HCT116 and HT29 cells with those
four inhibitors alone, their vehicle control DSMO, and in
selected combinations. Inhibition of the EGF receptor as well
as inhibition of PI3K alone had no effect on proliferation in
HT29 and HCT116 (Figure 6B), and also combined applica-
tion of both inhibitors did not alter proliferation either. This
is in line with the notion that the oncogenes KRAS and BRAF

drive proliferation in these cells via MAPK signaling and do
not require the EGFR to generate the pro-proliferative signal.
We next investigated how manipulations downstream of
their driver mutations alter proliferation in combination with
PI3K inhibition. To inhibit the MAPK signaling pathway, we
decided to use two different inhibitors in the two cell lines.
Based on the differences in ERK–RAF feedback (Sturm et al,
2010; Fritsche-Guenther et al, 2011), we decided to inhibit
MAPK activity with the RAF inhibitor sorafenib in HCT116
cells and the MEK inhibitor AZD6244 in HT29 cells. This
decision is further supported by the corresponding measure-
ments of the double inhibition in Figure 6A, where those
combinations showed the strongest effects.

Application of sorafenib alone had no effect on growth of our
RAS/PI3K mutant cell line model HCT116, suggesting that
growth may depend on multiple redundant pathways. However,
in combination with a PI3K inhibitor, the cells stop growing,
indicating that MAPK and AKTsignaling redundantly control cell
growth. As our model predicts that a combination of RAF and
EGFR inhibitor prevents AKT activation, we tested the EGFR
inhibitor gefitinib together with sorafenib. In line with the
model, this combinatorial treatment synergistically reduced
growth as strong as the combination with PI3K inhibition.

In BRAF mutant HT29 cells, MEK inhibition blocked growth,
and PI3K inhibition had no effect, confirming that HT29 cells
depend solely on MAPK signaling for growth. The combina-
tion of MEK inhibitor and PI3K inhibitor led to a decrease of the
cell index. Our model predicts that EGFR would also synergize
with MEK inhibition to block AKT activation. In line with this
prediction, EGFR inhibition had no effect when provided
alone, but caused a decrease in cell index when cells were
treated in combination with a MEK inhibitor.

EGFR synergizes with MEK inhibitors in vivo

We sought to substantiate the effects of co-targeting of MEK
and EGFR in the DLD-1 colorectal xenograft model that
harbors both KRASG13D and PIK3CAE545K mutations. DLD-1
tumors were established in nude mice and treated with
erlotinib (dosed at a clinically relevant dose of 50 mg/kg),
GDC-0973 (a potent MEK-1/2 allosteric inhibitor, dosed both at
1 and 5 mg/kg), or the combination of erlotinibþGDC-0973 at
both dose levels. While erlotinib and the lower dose of GDC-
0973 (1 mg/kg) were ineffective as single agents resulting in 1
and 22% tumor growth inhibition (%TGI), respectively, the
combination demonstrated superior combination efficacy over
either single agent alone with 36% TGI (Figure 6C, top panel).
The 5 mg/kg dose of GDC-0973 demonstrated better single-
agent activity with 42% TGI, however again combination with
erlotinib demonstrated superior tumor inhibition to either
drug used alone with 60% TGI (Figure 6C, bottom panel). The
combination of these drugs was well tolerated in mice with
minimal weight loss (Supplementary Figure S6).

Taken together, the results suggest that the EGF receptor is
not required for maintaining the cellular phenotype in cells
with RAS and RAF mutations. However, once MAPK signaling
is blocked, the EGFR increases AKTactivity and thus regains its
key role in the network that was previously lost due to
downstream mutations.
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Discussion

A huge body of detailed mechanistic understanding about

signaling processes has been accumulated within the last

decades (Wang et al, 2002; Oda et al, 2005). Still it remains

challenging to understand how a signaling network reacts

when targeted therapies are applied because of strong cross

talk between pathways and feedback loops (Kim et al, 2007;

Friday et al, 2008; Sturm et al, 2010; Fritsche-Guenther et al,

2011; Kholodenko et al, 2012). In this study, we addressed this

problem by quantifying MAPK/AKT signaling networks in a

panel of colorectal cancer cell lines with differing genetic
background. We developed an experimental/computational
pipeline that compiles mathematical models for individual cell
lines based on systematic perturbation. Our modeling
approach resides between detailed mechanistic models
(Schoeberl et al, 2002) and more coarse-grain logical models
(Saez-Rodriguez et al, 2011, 2009) or even purely statistical
descriptions (Tentner et al, 2012). The complexity of the model
was chosen such that it could be parameterized with the
limited perturbation data set, but allowed to reveal network
features such as feedback loops that simpler representations
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cannot account for. MRA generally requires that the response
of the system to perturbations can be modeled using linear
equations, and the system is close to steady state. Thus, the
modeling procedure can be used to interpret perturbation
screens, but parameters should be interpreted in a phenom-
enological rather than in a precise mechanistic way. Conse-
quently, the procedure is helpful to interpret perturbation data
and generate new hypotheses that can be subsequently tested,
such as in a previous study of transient EGF/NGF signaling
(Santos et al, 2007). In our study, the majority of parameters
could be well estimated from the data. However, if there are
strong uncertainties in the parameters, methods such as
MCMC (Hastings, 1970) or the profile likelihood (Raue et al,
2009) method can be readily applied to model parameters or
structural uncertainties.

When we compared the signaling maps between the cell
lines, we observed that the core signaling network was
quantitatively very similar in all cells, although these cells
were heterogeneous in their genetic constellation. This
suggests that it is instrumental to build generic models of
signaling despite genetic heterogeneity. Nevertheless, certain
quantitative aspects differed strongly between cells, such as
the strength of the response toward stimulation of the EGFR.
We also found qualitative differences between cell lines, such
as the loss of the ERK–RAF feedback in HT29 cells, which can
be traced back to the BRAF V600E mutation (Friday et al, 2008).
Similar studies on larger cell line collectives may unveil further
differences in network wiring due to the underlying mutations.

Despite the diversity of mutations in the EGFR signaling
network, we found a conserved strong feedback from ERK to
EGFR in all five cell lines. At least in HCT116 cells, this
feedback was detectable within 15 min but its strength
increased further on timescales of hours, suggesting that this
feedback operates as an integral feedback, which may have a
role for signaling homeostasis (Yi et al, 2000; Prahallad et al,
2012). Different mechanisms of feedback regulation of the
EGFR are known, which may all contribute. Transcriptional
feedbacks such as MIG-6 (Yoon et al, 2012) or the Sprouty
family (Mason et al, 2006; Halilovic et al, 2010) cannot account
for the fast feedback regulation, but may be involved in later
phases. Adaptors shared between receptors, such as SOS
(Douville and Downward, 1997; Shankaran and Wiley, 2010)
or Gab1 (Yu et al, 2002), are fast enough but most likely not the
main feedback players, as the cross talk was only strong when
EGFR was stimulated, but was not or only weakly present
when HGF, FGF or IGF were applied. Thus, the strongest target
of this feedback is most likely the EGFR itself. Pancreatic
cancer cells exhibited increased phosphorylation of the EGFR
at Y1068, Y1045 and Y845 when MEK was inhibited (Gan et al,
2010). Phosphorylation of T669 by ERK affects EGFR turnover
(Birtwistle et al, 2007). Knockdown of CDC25A, known to be
regulated by ERK (Wang et al, 2002), did also lead to increased
phosphorylation of EGFR at Y1068 (Prahallad et al, 2012),
suggesting that ERK changes CDC25A activity and by this
regulates phosphorylation of EGFR (Wang et al, 2005).

A consequence of this feedback for targeted inhibition is
that it leads to activation of AKT upon inhibition within
MAPK signaling. Such feedback-mediated cross talk has
been noted in many different tumors such as breast cancer
(Mirzoeva et al, 2009; Lu et al, 2011), prostate cancer (Gan

et al, 2010), melanoma (Gopal et al, 2010), gastric cancer (Yoon
et al, 2009) and in colorectal cancer (Prahallad et al, 2012).
Increased phosphorylation of AKT may cause drug resistance,
as AKT activity stimulates survival and migration. Further-
more, AKT shares a complex network of transcription factors
with ERK (Stelniec-Klotz et al, 2012) and both paths converge
on key proteins important for cellular function such as cyclin-
D1 for growth control (Halilovic et al, 2010) and Bad for
apoptotic regulation (She et al, 2005), explaining the need to
switch off both pathways.

Our model allowed devising combinatorial therapies that
block ERK activation and at the same time prevent rise in
AKTactivity. While PI3K inhibitors may be used to block AKT
signaling, EGFR inhibition can also prevent strong AKT
activation, irrespective of whether RAF, RAS or PI3K was
mutated. In line with this prediction, we found approximately
the same synergistic reduction of growth for PI3K/MAPK
combination than for EGFR/MAPK inhibition in vitro in two
cell line models. Therefore, while upregulation of AKT by
MAPK inhibition can be successfully blocked by PI3K or mTOR
inhibition (Balmanno et al, 2009; Mirzoeva et al, 2009;
Aksamitiene et al, 2010) in colorectal cancer models, upstream
inhibition of EGFR may be similarly potent with possibly less
side effects. Using a RAS/PI3K mutant colon cancer xenograft
model, we confirmed that combinatorial therapy with inhibi-
tors against MEK and EGFR is also an efficient therapy in vivo.
This extends previous findings showing that BRAF inhibitors
synergize with EGFR inhibition in a colorectal cancer
xenograft model with BRAF mutation (Prahallad et al, 2012).
For RAS-mutated tumors, so far no targeted therapy is
available (Baines et al, 2011; Ward et al, 2012), and a mutation
in RAS precludes EGFR-directed interventions. Our results
suggest that RAS-mutated tumor cells can be successfully
treated by EGFR inhibitors if provided together with MEK or
RAF inhibitors.

While our model can predict successful combinatorial
treatments, it has limitations. It cannot account for combina-
tions that require sequential application of drugs (Lee et al,
2012), and fails to capture resistance due to tumor–stroma
interactions (Sebens and Schafer, 2012). It is likely that in other
cell types different combinations of drugs may be more
successful, as the role of specific feedbacks can be different in
different cell types, and can even switch between positive and
negative effects depending on receptor expression (Birtwistle
et al, 2007).

Tumor evolution is one of the major causes for eventual
relapse (Iwasa et al, 2006). For example, relapse after long-
term treatment with the anti-EGFR agents Panitumumab in
KRAS wild-type colorectal carcinoma (Amado et al, 2008;
Karapetis et al, 2008) is often caused by selection for mutations
downstream of EGFR (Diaz et al, 2012; Misale et al, 2012). The
combinatorial treatment predicted by our model may thus be
advisable even for EGFR-addicted tumors, as it will counteract
selection for additional mutations in RAS or RAF.

In colon cells, the EGFR receptor is very potent, but
depending on tissue and mutational status, other receptors
may be more important in stimulating the network. For
example, c-Met, that is feedback regulated and signals to both
ERK and AKT, was shown to mediate resistance to BRAF
inhibition in melanoma (Wilson et al, 2012), suggesting c-Met
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as the most effective co-target for this particular situation.
Hence, our results further highlight that downstream muta-
tions such as in RAS and BRAF do not necessarily invalidate
upstream drug treatment if provided in combination with a
suitable downstream inhibitor.

Materials and methods

Model construction and evaluation

The general modeling approach is depicted in Figure 3A. First, we
derived a starting network from the literature. We then developed a
modeling framework that extends our previous algorithm (Stelniec-
Klotz et al, 2012) to estimate a quantitative map of the signaling
network using an approach derived from MRA (Kholodenko, 2000;
Bruggeman et al, 2002; Friday et al, 2008; Cirit et al, 2010; Sturm et al,
2010; Fritsche-Guenther et al, 2011). Briefly, MRA links the log-fold
change after perturbation (called global response coefficient R) to a
matrix corresponding to link strengths (local response matrix r) by
inversion. We adjust the equation linking R and r for two qualitatively
different perturbations (stimulation and inhibition). Stimulations are
modeled as entries in the perturbation vector and inhibitions impair
the signal flow of these stimulations. In addition, we allowed inhibitors
to affect the base level of the signaling of the inhibited node, which is
incorporated in the perturbation vector as stimulus. As the experi-
mental design allowed measuring and perturbing only selected nodes,
many parameters were not identifiable. We developed an algorithm
using Gaussian elimination that reparameterized the model such that
all parameters became identifiable. These new parameters were then
determined by maximizing the likelihood using a Levenberg–
Marquardt optimization algorithm using the best fit of 10 000 random
initializations of parameters. We verified that this initial parameter
scan results in unique parameters, as running the procedure 100 times
on the same data, each time initializing the random number generator
with a different number resulted in identical parameter sets. This
network was then pruned by using a greedy hill climbing approach in
which we removed edges that after model refitting did not significantly
decrease the goodness of fit (Likelihood ratio test, with significance
threshold of 0.05). The implementation of this algorithm was
essentially as described earlier (Stelniec-Klotz et al, 2012) but extended
by the non-identifiability analysis and combinatorial perturbations. To
extend the model for further inhibitors, we performed maximum
likelihood estimates for the novel parameters, while keeping the others
constant. Error bars for predictions were generated by 100 times fitting
the model to data with added noise according to the error model. The
program was written in the programming language Cþþ , and
symbolic matrix operations were conducted with the GiNaC library
version 1.6 (http://www.ginac.de/). An extensive description of the
algorithm and results of a stepwise reduction can be found in
Supplementary Method 1 and Supplementary Figure S2, respectively.

Cells and cell culture

Human colorectal cancer cell lines SW480, SW403, HCT116, RKO and
HT29 were obtained from the ATCC (American Type Culture
Collection, UK). LIM1215 were kindly provided by Professor John
Mariadason (Ludwig Institute for Cancer Research Austin Hospital,
Melbourne), Australia. All cell lines were maintained in DMEM
(Dulbecco’s modified Eagle’s medium, Lonza) supplemented with
10% fetal calf serum, 1% ultraglutamine and 1% penicillin/
streptomycin and incubated in a humidified atmosphere of 5% CO2
in air at 37 1C.

Reagents

The following inhibitors where used in the various assays: MEK
inhibitors AZD6244 (0.1mM unless otherwise specified, Selleck
Chemicals LLC) and GDC-0973 (Genentech), RAF inhibitor sorafenib
(10 mM, LC Laboratories), PI3K inhibitor LY294002 (10 mM, Axxora
Deutschland), EGFR inhibitors gefitinib (10mM, Cayman Chemicals)

and erlotinib (Genentech), GSK3� inhibitor SB216763 (5 mM, Sigma
Aldrich), IKK-a/b inhibitor BMS345541 (25 mM, Sigma Aldrich), and
IKK-� inhibitors PS1145 (10mM, AxonMedChem) and PHA408
(100 nM, AxonMedChem). The solvent control was DMSO (equal mM
to each inhibitor).

We used the following ligands (all Peprotech): TGF-a (0.01mg/ml),
IGF-1 (0.1 mg/ml), EGF (0.025 mg/ml), FGF2 (0.005mg/ml) and HGF
(0.05mg/ml) with 0.01% BSA in PBS as solvent.

Luminex assays

After treatment and incubation, lysates were collected according to
supplier’s protocol and analyzed with the Bio-Plex Protein Array
system (Bio-Rad, Hercules, CA) using beads specific for P-AKT (S473),
P-ERK1/2 (Thr202/Tyr204/Thr185/Tyr187), P-ERK2 (Thr185/
Tyr187), P-GSK3a/� (S21/S6), P-IGF-1R (Tyr1131), P-IRS1 (S636/
S639), P-IKBa (S32/S36), P-MEK1 (S217/S221), and P-p70S6K
(Thr421/S424) according to the manufacturer’s instructions. Briefly,
samples were washed with PBS and lysed with cell lysis buffer
(Bio-Rad). Lysate protein concentration was determined with BCA
(bicinchoninic acid) method. The beads and detection antibodies were
diluted 1:5 or 1:3. For data acquisition, the Bio-Plex Manager software
was used.

RNA isolation and quantitative RT–PCR analysis

RNAwas isolated from HCT116 cells treated with BMS345541 using the
RNeasy-mini-kit (Qiagen) according to the supplier’s protocol. To
obtain cDNA from RNA, the high-capacity cDNA reverse transcription
kit (Applied Biosystems) was used. Synthesis of double-stranded DNA
during the PCR cycles was visualized with TaqMan gene expression
assays FAM-dye labeled (gene of interest: EGR1 (Hs_00152928_m1),
cFos (Hs_00170630_m1)) or VIC-dye labeled for loading control PGK1
(Hs_943178_g1) and TaqMan gene expression master mix (Applied
Biosystems). Quantitative real-time PCR (qrt–PCR) analysis was
performed using a StepOnePlus 96-well format Light-Cycler apparatus
(Applied Biosystems). Experiments were run and analyzed with the
StepOne 2.0 software. The data were analyzed quantitatively by
measuring the threshold cycles (CT). CT values where normalized first
by the CTof the internal control PGK1 (�DCT) and second by the DCT

value of the zero time point (�DD CT), which are interpreted as log2
fold changes.

Immunoblotting

Protein extracts of cells were prepared as described for Bioplex
analysis. Blotting procedure and materials were as previously
described (Fritsche-Guenther et al, 2011; Stelniec-Klotz et al, 2012).
The following primary antibodies were used: rabbit anti-human
P-p70S6 (Thr389, Cell Signaling Technology, 1:500) or mouse anti-
human GAPDH (Ambion, 1:12 500). Membranes were scanned using
Li-COR Odyssey. The signals were quantified using Odyssey software.

Tumor and body weight measurements

The DLD-1 colorectal tumor cell line was inoculated subcutaneously
on the flank of female athymic nude (nu/nu) mice (Harlan
Laboratories) and tumors were allowed to establish to a size of
125–250 mm3. Animals were grouped out into six treatment groups
(n¼ 10 per group) based upon tumor volume and treatment was
initiated with vehicles (MCT (methylcelluloseþ 0.2% Tween 80) and
15% HBCD (15% hydroxypropyl-beta-cyclodextrin)), erlotinib
(50 mg/kg, daily oral gavage formulated in 15% hydroxypropyl-beta-
cyclodextrin), GDC-0973 (1 or 5 mg/kg, daily oral gavage formulated
in MCT), or the combination of erlotinibþGDC-0973 at both doses.
Tumor volumes were determined using digital calipers (Fred V. Fowler
Company, Inc.) using the formula (L�W�W)/2. %TGI was
calculated as the percentage of the area under the fitted curve (AUC)
for the respective dose group per day in relation to the vehicle, such
that %TGI¼ 100�1—(AUCtreatment/day)/(AUCvehicle/day). Curve
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fitting was applied to log2-transformed individual tumour volume data
using a linear mixed-effects model using the R package nlme, version
3.1–97 in R v2.12.0. Body weights and gross observations on animal
welfare were also recorded throughout the study. All experimental
procedures conformed to the guiding principles of the American
Physiology Society and were approved by Genentech’s Institutional
Animal Care and Use Committee.

Proliferation assay

For proliferation studies in real time, the XCelligence RTCA SP
instrument was used. HCT116 and HT29 cells were plated 24 h before
treatment with inhibitors or controls. Over the time of measurement,
the system records the cell index (ci), which reflects the cell
attachment to the electrodes and is proportional to the number of
cells. Each treatment was measured at least in triplicates. As the initial
cell number is variable and growth of the cell population is
exponential, averaging the growth curves is not reasonable. Instead,
we calculated the logarithmised and normalized cell index log2(ci(t)/
ci(t of inhibitor application)) and took the average of these values.

Sequencing and detection of single-nucleotide
variations (SNVs)

We performed targeted sequencing by the Ion AmpliSeq Cancer Panel
1.0 and the Ion PGM sequencer covering 13.7-kb-coding sequence
from 46 cancer-relevant genes (Supplementary Table ST2) and 739
COSMIC-annotated SNP positions. Genomic DNA was extracted from
pelleted CRC cell lines. The extracted DNA was quantified and the
quality estimated by the Qubit 2.0 Fluorometer (Qubit dsDNA HS
Assay Kit, Life Technologies) and Bioanalyzer 2100 (High Sensitivity
DNA Kit, Agilent). The amplicon library was prepared according to the
manufacturer’s protocols using 12–30 ng of DNA and loaded on an Ion
314 Chip (Life Technologies) to yield at least 10 Mb. To increase the
efficiency, we spun the chip for 2 min before and after turning around
the chip by 1801 for each loading. IonTorrent Suite, Version 2.1 Variant
Caller (Life Technologies) was used for variant calling, with positions
with minor allele frequencies below 10% were defined homozygotic.
SNVs were filtered as described in supplement.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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