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A B S T R A C T   

The aim of the present study was to screen novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from 
Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and evaluate the potential antidiabetic targets and 
involved signaling pathways using in silico approaches. In silico digestion of MiAMP2 with pepsin, trypsin and 
chymotrypsin was performed with ExPASy PeptideCutter and the generated peptides were subjected to BIOPEP- 
UWM, iDrug, INNOVAGEN and Autodock Vina for further analyses. Six novel peptides EQVR, EQVK, AESE, 
EEDNK, EECK, and EVEE were predicted to possess good DPP-IV inhibitory potentials, water solubility, and 
absorption, distribution, metabolism, excretion, and toxicity properties. Molecular dynamic simulation and 
molecular docking displayed that AESE was the most potent DPP-IV inhibitory peptide and can bind with the 
active sites of DPP-IV through hydrogen bonding and van der Waals forces. The potential antidiabetic targets of 
AESE were retrieved from SwissTargetPrediction and GeneCards databases. Protein-protein interaction analysis 
identified BIRC2, CASP3, MMP7 and BIRC3 to be the hub targets. Moreover, the KEGG pathway enrichment 
analysis showed that AESE prevented diabetes through the apoptosis and TNF signaling pathways. These results 
will provide new insights into utilization of MiAMP2 as functional food ingredients for the prevention and 
treatment of diabetes.   

1. Introduction 

Diabetes mellitus (DM) is a metabolic disorder characterized by 
chronic hyperglycemia, which may cause serious damage to entire body 
tissues such as the nerves, blood vessels, eyes, kidneys and heart (Boz-
bulut & Sanlier, 2019). According to the International Diabetes Feder-
ation (IDF), 1 in 11 people are living with diabetes around the world and 
type 2 diabetes mellitus (T2DM) accounts for almost 90% of all diabetes 
cases (International Diabetes Federation, 2019). Dipeptidyl peptidase IV 
(DPP-IV) is a key regulator of insulin-stimulating hormones, 
glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like 
peptide (GLP-1), thus considered being a promising target for T2DM 
therapy (Singh et al., 2011). Inhibition of DPP IV leads to enhanced 

endogenous GLP-1 and GIP activity, which ultimately improves β-cell 
function and lowers the blood glucose levels, glucagon secretion and 
hepatic glucose production (Stemmer et al., 2020). Different DPP-IV 
inhibitors such as gliptins, sitagliptin and vildagliptin are currently 
used clinically as T2DM drugs (Patel & Ghate, 2014). However, the 
frequent use of these drugs can cause side effects. Therefore, it is very 
important to develop food derived components to increase quality of life 
for diabetic individuals. 

Bioactive peptides have been widely reported to exhibit DPP-IV 
inhibitory activity (Han et al., 2021). Some of these DPP-IV inhibitory 
peptides were derived from various foods including milk (Lacroix and 
Li-Chan, 2014), rice (Hatanaka et al., 2012), salmon (Li-Chan et al., 
2012), eggs (Zhao et al., 2020) and meats (Gallego et al., 2014). 
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Macadamia integrifolia and Macadamia tetraphylla trees are members of 
the family Proteaceae that occurs naturally in subtropical Australia 
rainforests. In recent years, the planting area of macadamia in China is 
about 160,000 ha, mainly centered in Yunnan and Guangxi provinces 
(Tu et al., 2021). Macadamia nuts are popular snack foods, and are rich 
in fat (~75%) and protein (~8%) (Gwaltney-Brant, 2013). A novel 
antimicrobial protein (MiAMP2) being a part of 7S globulin was 
considered to be the most abundant protein in macadamia nuts (Rost 
et al., 2020). However, to our knowledge, DPP-IV inhibitory peptides 
identified from MiAMP2 have not been reported. 

In silico approaches (e.g., BIOPEP-UWM and ExPASy PeptideCutter) 
have been successfully applied to predict the release of bioactive pep-
tides from known protein sequences (Pearman et al., 2020). Molecular 
docking and molecular dynamics (MD) simulation can be further 
employed to screen and optimize the peptide structures, and predict the 
interactions between molecules (Zheng et al., 2021). Moreover, network 
pharmacology has become a powerful tool to reveal the mechanisms 
underlying the action of bioactive components, as well as identify the 
potential signaling pathways (Lin et al., 2020). The application of in 
silico and network pharmacology analyses will reduce the time and cost 
for screening bioactive peptides and disclosing their possible mechanism 
of action. Therefore, the objectives of this study were to: (i) discover 
DPP-IV inhibitory peptides from in silico digest of MiAMP2 via virtual 
screening; (ii) investigate the interaction between peptide and DPP-IV 
using molecular docking and MD simulation; (iii) predict the potential 
signaling pathways involved in the regulation of diabetes by the most 
potent DPP-IV inhibitory peptide using network pharmacology analysis. 

2. Materials and methods 

2.1. In silico digestion of MiAMP2 

The amino acid sequences of macadamia nut protein MiAMP2 
(AMP21, AMP22 and AMP23) were obtained from the UniProtKB 
database (https://www.uniprot.org/) with accession numbers of 
Q9SPL3, Q9SPL4, and Q9SPL5, respectively. Three representative 
gastrointestinal proteases of pepsin (EC 3.4.23.1), trypsin (EC 3.4.21.4), 
and chymotrypsin (EC 3.4.21.1) were chosen for the simulation of 
proteolysis (Sensoy, 2021). In silico digestion of MiAMP2 was carried out 
using the programs ExPASy PeptideCutter (https://web.expasy. 
org/peptide_cutter/). 

2.2. Virtual screening of DPP-IV inhibitory peptides 

The 3D crystal structure of human DPP-IV (PDB ID: 5J3J) was ob-
tained from Protein Data Bank (https://www.rcsb.org/), and the un-
necessary ligands and water molecules were removed. The peptides with 
2–5 amino acids in length generated using ExPASy PeptideCutter were 
selected for further study. The selected peptides were compared with 
known DPP-IV inhibitory peptides in BIOPEP-UWM database (http:// 
www.uwm.edu.pl/biochemia/index.php/en/biopep) and their amino 
acid sequences were afterwards converted into Simplified Molecular 
Input Line Entry Specification (SMILES) strings (Tu et al., 2018). Then, 
Openbabel 3.1.1 software was applied to convert a number of SMILES 
strings into 3D molecular structures. The 3D structures of peptides were 
optimized using the MMFF94 force field (O’Boyle et al., 2011). Auto-
dock Vina was used to dock peptides and DPP-IV (Trott & Olson, 2010). 
In brief, the polar hydrogen atoms and Gastieger charges were added to 
peptides and DPP-IV using AutoDock Tools software (ADT, version 
1.5.6). GetBox plugin (https://github.com/MengwuXiao/Getbox-PyM 
OL-Plugin) was used to design the docking box (x: 18.0, y: 3.2, z: 
53.3) in order to cover all amino acid residues in the active sites of 
DPP-IV (S1, S2 and S3 pockets) (Kim et al., 2018). The semi-flexible 
docking was performed, and saxagliptin (a DPP-IV inhibitor) was used 
as positive control. 

2.3. ADMET and physicochemical property prediction of DPP-IV 
inhibitory peptides 

According to the results of virtual screening, peptides with affinity 
greater than or equal to that of saxagliptin were considered as potential 
DPP-IV inhibitory peptides. In silico ADMET properties including ab-
sorption, distribution, metabolism, excretion, and toxicity of the 
selected peptides were estimated by iDrug (https://drug.ai.tencent. 
com/cn), and their physicochemical properties (e.g., isoelectric point 
and solubility) were computed by INNOVAGEN (https://pepcalc.com/). 

2.4. Molecular dynamic (MD) simulations 

MD simulations were carried out according to our previous methods 
with slight modifications (Pan et al., 2021). In brief, MD simulations 
were performed for 50 ns using the GROMACS 19.5 package (https:// 
manual.gromacs.org/) with Amber ff99SB-ILDN force field and TIP3P 
explicit water model for DPP-IV with or without peptides. The AMBER 
ff99SB-ILDN force field was used to describe the topology and charge of 
peptides (Lindorff-Larsen et al., 2010). Subsequently, counter ions were 
added to neutralize the unbalanced charge of the system. Energy mini-
mization (1000.0 kJ/mol/nm) was performed using the steepest descent 
method. After minimization, the system was subjected to NVT equili-
bration (0.5 ns, 310.15 K) and NPT equilibration (1.0 ns, 1.0 bar) 
(Berendsen et al., 1984; Parrinello, & Rahman, 1981). All the systems 
were simulated by MD for 50 ns. Unless special explanation, all other 
parameters are consistent with the methods of our previous study (Pan 
et al., 2021). The GROMACS package (version 19.5) was used to analyze 
the MD trajectories. The free energy landscape was obtained by means of 
covariance matrix construction and principal component analysis (PCA) 
to clearly observe the relationship between Gibbs free energy and 
structure stability (Chen et al., 2020; Stein et al., 2006). The 
DPP-IV-peptide complex with the lowest Gibbs free energy was selected 
for further analysis of interaction between DPP-IV and peptide. 

2.5. Screening for potential targets of the selected peptide and diabetes 

Potential targets of the selected peptide were evaluated using Swis-
sTargetPrediction (http://www.swisstargetprediction.ch) (Daina et al., 
2019). The SMILES file of the selected peptide was imported into 
SwissTargetPrediction website, and the attribute was set to “Homo sa-
piens” for target prediction of the selected peptide. Data on the 
diabetes-associated gene targets were collected from Genecards data-
base (https://www.genecards.org/) with “diabetes” as the key word. 
Draw Venn Diagram (http://bioinformatics.psb.ugent.be/webtoo 
ls/Venn/) was used to map the potential targets of the selected pep-
tide to the disease targets of diabetes. 

2.6. Protein-protein interaction (PPI) network 

Search Tool for the Retrieval of Interacting Genes (STRING, 
http://string-db.org) online database was used to construct the PPI 
network. The organism was set to “Homo sapiens”, and the minimum 
required interaction scores was set to “highest confidence” (> 0.9). The 
PPI network was then visualized using Cytoscape (Version 3.8.0) and the 
Molecular Complex Detection (MCODE) plugin was used to find clusters 
of highly interconnected regions in the PPI network, the parameters 
were as follows: degree cutoff ≥ 2, node score cutoff ≥ 0.2, K-core ≥ 4, 
and max depth = 100. Hub genes were screened from the PPI network 
using the cytoHubba plugin based on 5 topological analysis algorithms 
(MCC, Degree, BottleNeck, Closeness, and Betweenness) (Chin et al., 
2014). 

2.7. GO and KEGG pathway enrichment analyses 

Metascape (http://metascape.org/) is a web-based portal designed 
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to provide a comprehensive gene list annotation and analysis resource 
for experimental biologists. It makes use of Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (Zhou 
et al., 2019). The targets of anti-diabetes action of the selected peptide 
were inputted to the Metascape platform with “Homo sapien” as the 
organism and P value cutoff of 0.01. GO annotation analysis and KEGG 
pathway enrichment analysis on the targets were performed and the 
results were saved and sorted by the number of targets involved in each 
entry to screen top biological processes and pathways. Bar graph and 
bubble chart were plotted by an online platform http://www.bioi 
nformatics.com.cn, for analysis and visualization of the GO and KEGG 
analysis results. 

3. Results 

3.1. In silico digestion of MiAMP2 

In silico digestion of MiAMP2 with pepsin, trypsin and chymotrypsin 
was carried out in our study. As shown in Table S1, a total of 86 peptides 
composed of 2–5 amino acid residues were released after in silico 
digestion of MiAMP2. The BIOPEP-UWM database has recently become 
a popular tool for studying bioactive peptides, especially those derived 
from foods and being constituents of diets that prevent development of 
chronic diseases. It deposits 4199 bioactive peptide sequences related to 
different biological functions, of which 421 peptides with 2–5 amino 
acid residues exhibited DPP-IV inhibitory activities (Minkiewicz et al., 
2019). Compared with the DPP-IV inhibitory peptides deposited in 
BIOPEP-UWM database, QY, NY, EY, DR, EK, VL and VG were previously 
reported as effective DPP-IV inhibitory peptides (Table S1), indicating 
the potential of MiAMP2 as a resource for the generation of DPP-IV 
inhibitory peptides. 

3.2. Screening of candidate DPP-IV inhibitory peptides 

As an important target for the treatment of T2DM, DPP-IV can 
degrade incretins including GLP-1 and GIP and cause disorder of blood 
glucose regulation (Lan et al., 2015). Inhibition of DPP-IV activity leads 
to increased levels of plasma GLP-1 and insulin, and thereby lowers 
blood glucose levels. The activity of DPP-IV is closely related to its three 
active sites, namely S1 (Tyr547, Ser630, Tyr631, Val656, Trp659, 

Tyr662, Tyr666, Asn710, Val711 and His740), S2 (Glu205, Glu206, 
Tyr662) and S3 (Ser209, Arg358 and Phe357) pockets (Pan et al., 2020). 
Therefore, S1, S2 and S3 pockets were selected as docking targets to 
screen DPP-IV inhibitory peptides preliminarily. The molecular docking 
results showed that a total of 53 small peptides had strong DPP-IV 
binding affinity, which were found to be lower than or equal to that of 
the positive control saxagliptin (− 7.2 kcal/mol) (Table S1). These pep-
tides were comprised of 13 pentapeptides, 22 tetrapeptides, 12 tripep-
tides and 6 dipeptides, among which four dipeptides QY (− 7.9 
kcal/mol), NY (− 7.7 kcal/mol), EY (− 7.7 kcal/mol) and DR (− 7.2 
kcal/mol) were previously reported as DPP-IV inhibitory peptides (Lan 
et al., 2015). Notably, the physicochemical properties and absorption of 
bioactive peptides are also believed to have an important impact on 
their bioactivities. Therefore, the above 53 candidate DPP-IV inhibitory 
peptides were conducted for further screening through ADMET and 
solubility prediction. The computational analysis showed that six pep-
tides including EQVR, EQVK, AESE, EEDNK, EECK, and EVEE were 
predicted to possess high water solubility and good ADMET character-
istics (Table 1), e.g., good Caco-2 permeability (>10− 6 cm/s) and high 
human intestinal absorption (HIA) (Probability > 0.5). Moreover, these 
six peptides were predicted to be non-toxic and have low CYP450 
inhibitory probability (< 0.5) (Table 1). Furthermore, molecular dock-
ing was conducted to verify the binding between these six peptides and 
DPP-IV. Fig. 1 shows that all of EQVR, EQVK, AESE, EEDNK, EECK, and 
EVEE bound into the active sites (S1, S2 and S3 pockets) of DPP-IV, 
which was consistent with that of saxagliptin, demonstrating that all 
these candidate peptides can regulate DPP-IV activity through inter-
molecular interactions. 

3.3. Molecular dynamic (MD) simulation study 

MD simulation is an effective technique based on Newton’s equation 
of motion and is commonly used to study the intermolecular interactions 
at atomic level and the structural dynamic behavior of macromolecules 
(Chen et al., 2019). In order to investigate the binding stability of these 
candidate peptides with DPP-IV, MD simulation was carried out for 
further study. The results are shown in Fig. 2. Root mean square devi-
ation (RMSD) is used to measure the difference in conformation for each 
frame in a MD trajectory with a reference structure (Pan et al., 2020). 
Fig. 2A shows the changes in RMSD values of DPP-IV backbone in the 

Table 1 
Predicted key ADMET parameters for six peptides selected from in silico digestion of Macadamia integrifolia antimicrobial protein 2 (MiAMP2).  

Peptide EQVR EQVK AESE EEDNK EECK EVEE 

Structural formula 

Chemical formula C21H38N8O8 C21H38N6O8 C16H26N4O10 C24H39N7O13 C19H33N5O9S C20H32N4O11 

Molecular weight 530.58 502.57 434.40 633.61 507.57 504.49 
PI 6.86 6.85 0.85 3.69 4.15 0.76 
Water solubility Good Good Good Good Good Good 
Ames toxicity probability 0.054 0.037 0.034 0.045 0.431 0.035 
Hek293 toxicity 

probability 
0.024 0.025 0.018 0.021 0.03 0.021 

Hepatic toxicity 
probability 

0.376 0.413 0.419 0.437 0.465 0.431 

Caco-2 permeability 1.816 1.394 1.170 1.370 1.448 2.228 
HIA probability 0.994 0.993 0.982 0.515 0.915 0.994 
CYP1A2 0.300 0.314 0.205 0.213 0.419 0.208 
CYP2C19 0.338 0.338 0.268 0.168 0.493 0.169 
CYP2C9 0.271 0.294 0.144 0.113 0.448 0.094 
CYP2D6 0.341 0.216 0.173 0.098 0.319 0.104 
CYP3A4 0.185 0.184 0.08 0.115 0.194 0.112 
Affinity (kcal/mol) − 8 − 7.6 − 7.5 − 7.4 − 7.3 − 7.2 

ADMET, absorption, distribution, metabolism, elimination and toxicity. 
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absence and presence of peptides during the 50 ns MD simulation. For 
the binary complexes DPP-IV-EQVR and DPP-IV-EECK, the RMSD values 
of DPP-IV backbone fluctuated greatly within first 25 ns of MD simu-
lation and then reached equilibrium (25–50 ns). By contrast, after 
binding with AESE, EQVK, EVEE or EEDNK, the RMSD values of DPP-IV 
backbone kept stable at values lower than 0.25 nm, indicating that 
DPP-IV backbone remained stable during the whole MD simulation. In 
order to better study the binding stability of these peptides in the active 
sites during the 50 ns MD simulation, their RMSD values were also 
evaluated. As shown in Fig. 2B, AESE showed the best stability of all six 
candidate peptides with its RMSD value fluctuated gently around a low 
level (< 0.2 nm) throughout the 50 ns MD simulation, which was helpful 
for the stabilization of DPP-IV-AESE complex. However, the RMSD 
values of the other five peptides (EECK, EQVK, EQVR, EVEE and 
EEDNK) showed drastic fluctuations, indicating that the bindings of 
these peptides and DPP-IV active sites were not stable enough. Addi-
tionally, the results of solvent accessible surface area (SASA) and radius 
of gyration (Rg) demonstrated that the bindings of these six peptides to 
DPP-IV had no influence on structure compactness of DPP-IV (Fig. 2C 
and D). 

Root mean square fluctuation (RMSF) reveals the fluctuation of 
certain residues during simulation process around its average position, 
which can be used to assess the dynamics stability of system (Ni et al., 
2020). Fig. 2E represents the RMSF values of DPP-IV before and after 
binding with AESE during the 50 ns MD simulation. After binding with 
AESE, the fluctuations of most key amino acid residues in the active sites 
of DPP-IV increased obviously. Compared with the initial structure of 
DPP-IV, higher fluctuations were observed in the active residues of S1 
pocket including Phe357, Arg358, Ser630, Tyr631, Val656, Trp659, 
Tyr662, Tyr666, Asn710, Val711 and His740. Our results suggested that 
the N-terminal amino acid (Ala) of AESE had strong hydrophobicity, 
which may play an important role in the binding of AESE and the active 
sites of DPP-IV. 

3.4. Interaction between AESE and DPP-IV 

In order to further clarify the interaction between AESE and DPP-IV, 
the covariance matrix was established using the Cα coordinates from MD 
trajectory of DPP-IV-AESE to calculate the eigenvalues and eigenvectors. 
The trajectories were projected onto the first two eigenvectors to 
construct the free energy landscape (Chen et al., 2020). From the free 
energy landscape (Fig. 3A), two stable binding structures (energy ba-
sins) can be extracted. As shown in Fig. 3B, there was no significant 
difference between these two structures of DPP-IV-AESE and the RMSD 
value between these two structures calculated by PyMOL was 0.132 nm. 
This result was consistent with that of MD simulation (Fig. 2) and further 
proved the good stability of DPP-IV-AESE complex. Fig. 3C and D shows 
2D interaction diagram of AESE and DPP-IV in the complex with the 
lowest Gibbs free energy. AESE formed van der Waals forces with the 
active residues Tyr547, Ser630, Tyr666 and Phe357 in S1 pocket, while 
formed a hydrogen bond and a van der Waals force with Glu205 and 
Glu206 in S2 pocket, respectively. Additionally, the carboxyl groups of 
glutamic acid residues in AESE interacted with Arg125 and Arg560 of 
DPP-IV through salt bridges (Fig. 3C). Hydrophobic interactions were 
also found between AESE and aromatic amino acid residues Phe357 (S2 
pocket), Tyr547 and Tyr666 (S1 pocket) in DPP-IV (Fig. 3D), which was 
consistent with the RMSF analysis, suggesting that hydrophobic in-
teractions in the S1 pocket are crucial for DPP-IV inhibitory peptides and 
the interaction at the S2 pocket may improve affinity (Araki et al., 2020; 
Nongonierma et al., 2014). Based on these computational methods, 
tetrapeptide AESE was thought to have the possibility to become an 
effective inhibitor for DPP-IV. 

3.5. Potential targets of AESE against diabetes and PPI network analysis 

Target prediction of AESE was carried out using Swis-
sTargetPrediction and a total of 100 putative targets were identified. 
After sorting from GeneCards database, 14950 diabetes-related targets 
were obtained. Then, the 100 putative targets of AESE were mapped to 
14950 diabetes-related targets using Draw Venn diagram, and 82 
intersection targets were filtered as the potential targets of AESE in the 
treatment of diabetes (Fig. 4A). 

PPI network plays a vital role to widely understand molecular 
function activities. The 82 intersection targets obtained above were 
further analyzed using the STRING database to construct a PPI network, 
which contains 58 nodes (without disconnected node) and 115 edges 
(Fig. 4B). Our results showed that the average number of neighbors 
(average neighborhood connectivity) was 4.75, and 33 target genes had 
higher neighborhood connectivity than the average level. Further clus-
ter analysis of the complex network was done using the MCODE plugin 
in Cytoscape software to generate the highly connected sub-network 
(Fig. 4C). The results showed that 4 significant clusters were selected 
from PPI network. The scores of these 4 clusters were 7, 5, 4 and 4, 
respectively. Cluster 1 had 7 nodes with 21 edges; Cluster 2 had 5 nodes 
with 10 edges; and both Cluster 3 and Cluster 4 owned 4 nodes with 6 
edges. These sub-networks focused on genes involved in IL-17 signaling 
pathway, relaxin signaling pathway, neuroactive ligand-receptor inter-
action, proteasome, apoptosis, and apoptosis-multiple species pathways. 
According to their scores calculated using five topological algorithms 
(MCC, Degree, BottleNeck, Closeness, and Betweenness), the genes were 
ranked and the top 10 genes were filtered as hub genes (Table 2). A Venn 
diagram was constructed to identify common hub genes (Fig. 4D). BIRC2 
and CASP3 were overlapped according to five algorithms, and MMP7 
and BIRC3 were overlapped according to four algorithms. 

3.6. GO analysis and KEGG enrichment analysis of target genes 

To further explore the various mechanisms of the protective action of 
AESE against diabetes, GO annotation and KEGG enrichment analyses of 
the 82 predicted targets were performed using the Metascape database. 

Fig. 1. Molecular docking results of dipeptidyl peptidase IV (DPP-IV) with six 
peptides selected from in silico digestion of Macadamia integrifolia antimicrobial 
protein 2 (MiAMP2). 
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The threshold value P < 0.01 was set to screen out the front GO anno-
tation results and KEGG pathway. GO analysis was typically focused on 
three aspects: biological process (BP), molecular function (MF) and cell 
composition (CC). The top 10 enriched BP, MF and CC terms are shown 
in Fig. 5A. The BP results suggested that these targets participated in 
collagen catabolic process, positive regulation of defense response, 
peptide hormone processing, cellular response to abiotic stimulus, his-
tone H3 deacetylation, etc. The CC results indicated that these targets 
were mainly involved in extracellular matrix, membrane raft, tran-
scriptional repressor complex, lytic vacuole, proteasome core complex, 
etc. For MF, these targets were mainly associated with endopeptidase 
activity, metallopeptidase activity, aspartic-type endopeptidase activity, 

NAD-dependent histone deacetylase activity, exopeptidase activity, etc. 
Furthermore, the KEGG enrichment analysis demonstrated that these 
targets were significantly enriched in multiple pathways including 
apoptosis, TNF signaling pathway, Alzheimer disease, renin-angiotensin 
system, and transcriptional misregulation in cancer (Fig. 5B). Above all, 
the apoptosis pathway was found to be the most enriched pathway, and 
AESE against diabetes by acting on multiple targets which participate in 
various processes in this pathway. 

4. Discussion 

Currently, numerous of natural and synthetic peptides were found to 

Fig. 2. Molecular dynamics (MD) simulation of dipeptidyl peptidase IV (DPP-IV) in the presence or absence of six candidate peptides. (A) Root mean square de-
viation (RMSD) of DPP-IV backbone; (B) RMSD of six candidate peptides; (C) Solvent accessible surface area (SASA) of DPP-IV; (D) Radius of gyration (Rg) of DPP-IV; 
(E) Root mean square fluctuation (RMSF) of DPP-IV. 
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Fig. 3. The binding free energy landscapes and interactions of dipeptidyl peptidase IV (DPP-IV) with AESE. (A) Free energy landscapes of DPP-IV-AESE; (B) The 
lowest energy conformation of DPP-IV-AESE; (C) 2D Interactions of DPP-IV and AESE. 

Fig. 4. Protein-protein interaction (PPI) network analysis and hub gene selection (A) Venn diagram of AESE and diabetes targets; (B) PPI network with 58 nodes and 
115 edges; (C) Four Clusters with scores of 7, 5, 4 and 4, respectively; (D) Venn diagram of gene sets ranking top 10 based on five topological analysis algorithms in 
cytoHubba plugin. 
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possess excellent antidiabetic effect. These peptides are potentially 
useful in preventing or managing T2DM by targeting on various en-
zymes such as α-amylase, α-glucosidase and DPP-IV (Marya et al., 2018; 
Sharifuddin et al., 2015; Yap & Gan, 2020). The inhibition of α-amylase 
and α-glucosidase hinders carbohydrate breakdown and subsequent 
intestinal glucose absorption, whereas the inhibition of DPP-IV enhances 
insulin secretion and suppresses glucagon release, finally leading to the 
reduction of blood glucose level (Yap & Gan, 2020). The inhibition of 
DPP-IV represents a new strategy for T2DM treatment, and a variety of 
dietary proteins have been identified as a source of DPP-IV inhibitory 
peptides. However, the DPP-IV inhibitory effect of peptides derived from 
MiAMP2 and the involved mechanism of action has not yet been clari-
fied. With the advancement of in silico technologies, methodologies such 
as molecular docking, MD simulation and network pharmacology can 
help improve our existing understanding of pharmacological mecha-
nism of action of bioactive peptides derived from MiAMP2 for the 
treatment of diabetes. 

The results of the in silico analysis suggested that MiAMP2 was a good 
source of DPP-IV inhibitory peptides, by treating with the main 
gastrointestinal proteases. Six peptides EQVR, EQVK, AESE, EEDNK, 
EECK, and EVEE were screened as potential DPP-IV inhibitory peptides. 
Amongst, AESE was predicted to be the most potent DPP-IV inhibitory 
peptide through MD simulation analysis. Numerous small peptides with 
DPP-IV inhibitory activities have been reported in the literature. How-
ever, the relationship between structural/compositional parameters and 
their DPP-IV inhibitory activity is still not quite clear. Nongonierma, 
Mooney, Shields, & FitzGerald (2014) found that most DPP-IV inhibitory 
peptides possess a hydrophobic or aromatic amino acids (Ala, Val, Ile, 
Leu, Met, Phe, Tyr or Trp) at their N-terminal region. Engel et al. (2003) 
reported that peptides interacted with the active sites of DPP-IV from 
their N-terminal side. Therefore, our findings suggested that the Ala at 

N-terminal was crucial for the DPP-IV inhibitory ability of AESE. The 
active sites of DPP-IV are consisted of a hydrophobic S1 pocket and a 
charged S2 pocket (Engel et al., 2003; Juillerat-Jeanneret, 2014). 
DPP-IV inhibitory peptides were observed to form hydrophobic in-
teractions, hydrogen bonding and van der Waals forces with catalytic 
residues (e.g., Tyr631, Val656, Trp659, Tyr662, Tyr666 and Val711) at 
hydrophobic S1 pocket, and Glu205, Glu206 or Arg125 at the S2 pocket 
of DPP-IV (Wang et al., 2020). Our results also showed the existence of 
hydrogen bonding and van der Waals forces between tetrapeptide AESE 
and the active sites of DPP-IV through the residues Arg125, Glu205, 
Glu206, Phe357, Tyr547, Ser630 and Tyr666. Additionally, it is known 
that DPP-IV preferentially acts on substrates bearing Pro or other small 
uncharged residues such as Ser and Ala at their penultimate amino acid 
position (Lacroix & Li-Chan, 2016), which further verified the effec-
tiveness of AESE in the inhibition of DPP-IV. 

According to the results of molecular docking and MD simulation, 
AESE was finally selected for network pharmacology analysis to disclose 
the potential signaling pathway by which it protects against diabetes. A 
total of 82 putative antidiabetic targets of AESE were selected by 
analyzing the intersection between the diabetes-associated targets and 
the predicted AESE targets. From the PPI network, four hub genes 
(BIRC2, CASP3, MMP7 and BIRC3) were identified according to the five 
topological algorithms (MCC, Degree, BottleNeck, Closeness, and 
Betweenness). Module analysis was also performed to confirm the sig-
nificance of these four identified hub genes. Interestingly, two target 
genes CASP3 and MMP7 showed higher degrees in the cluster network. 
Previous studies have reported that CASP3 and MMP7 are closely related 
to β-cell apoptosis, renal disease and diastolic dysfunction in diabetes 
(Liadis et al., 2005; Zeidán-Chuliá et al., 2018). Researchers reported 
that high concentrations of glucose induced mitochondrial dysfunction 
and triggered Fas expression and β-cell apoptosis (Hodgin et al., 2013; 
Maedler et al., 2001). Caspase-3 (CASP3) is an essential factor for 
Fas-mediated cell death (Suzuki et al., 2000; Zheng et al., 1998). In our 
study, the regulation of CASP3 by AESE can inhibit Fas-induced 
apoptosis and induce β-cell proliferation. Elevated levels of matrix 
metalloproteinase-7 (MMP7) have been observed in serum samples of 
T2DM subjects (Zeidán-Chuliá et al., 2018). MMP7 (also known as 
matrilysin) is capable of degrading multiple extracellular matrix (ECM) 
proteins such as laminin, fibronectin, elastin, proteoglycans and type IV 
collagen. MMP-7 participates in the processing of ECM proteins during 
the repair and remodeling of tissues, as well as in wound healing 
(Malemud, 2017; Yunt et al., 2019) and is correlated with diabetic 
complications. Thus, alteration of MMP7 expression may represent an 
important mechanism for AESE mediated alleviation of diabetic 
complications. 

The KEGG pathway enrichment results revealed that apoptosis and 

Table 2 
Top 10 hub genes ranked in cytoHubba for the potential targets of AESE against 
diabetes.  

Catalog Rank methods in cytoHubba 

MCC Degree BottleNeck Closeness Betweenness 

Gene symbol 
top 10 

MMP7 CASP3 CASP3 CASP3 CASP3 
MMP9 BIRC3 ELANE PRKCD PRKCD 
MMP1 BIRC2 PRKCD BIRC3 ELANE 
MMP13 CASP8 MAPK8 BIRC2 MAPK8 
MMP3 MMP9 F2 CASP8 SIRT1 
MMP10 MMP7 SIRT1 ELANE LCK 
MMP2 MMP1 MMP7 MAPK8 CTSD 
BIRC3 FPR2 LCK CASP7 BIRC3 
BIRC2 MMP13 HDAC2 LCK BIRC2 
CASP3 CASP7 BIRC2 XIAP MMP7  

Fig. 5. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the antidiabetic targets of AESE. (A) GO 
annotation; (B) KEGG pathway enrichment. 
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TNF signaling pathway were more enriched compared with the other 
classic signaling pathways. Apoptosis plays a critical role in the normal 
physiology of the pancreas and the pathogenesis of diabetes (Urusova, 
Farilla, Hui, D’Amico, & Perfetti, 2004). GLP-1 has been shown to have 
anti-apoptotic property (Quoyer et al., 2010) and has the ability to 
promote the survival of pancreatic β-cell when challenged with various 
apoptotic stimulators (Li et al., 2005; Yusta et al., 2006). DPP-IV 
inhibitory peptide AESE derived from MiAMP2 can prolong the degra-
dation of GLP-1 by DPP-IV, thus resulting in the inhibition of β-cell 
apoptosis. Similarly, DPP-IV inhibitors were also demonstrated to 
possess anti-apoptotic activity to alleviate diabetes-associated cell/tis-
sue damages (Liu et al., 2017; Zhang et al., 2018). The tumor necrosis 
factor (TNF) signaling pathway plays an important role in various 
physiological and pathological processes, such as cell proliferation, 
differentiation, apoptosis, modulation of immune responses and induc-
tion of inflammation (Vanamee & Faustman, 2018). TNF is a multi-
functional proinflammatory cytokine involved in the regulation of lipid 
metabolism, coagulation, insulin resistance, and endothelial function 
(Herrmann et al., 1998; Mohallem & Aryal, 2020). A possible explana-
tion for our observation is that AESE reduced insulin resistance and 
inflammatory response by lowering the expression of TNF. Six key 
antidiabetic targets of AESE (CASP3, CASP7, CASP8, XIAP, MMP3 and 
MMP9) were involved in the above two signaling pathways. Moreover, 
the KEGG pathway enrichment results corroborate the GO enrichment 
results, wherein the antidiabetic targets of AESE involved in multiple 
biological processes. 

5. Conclusions 

This study demonstrated that MiAMP2 is a good source for DPP-IV 
inhibitory peptides. Tetrapeptide AESE obtained from in silico diges-
tion of MiAMP2 by pepsin, trypsin and chymotrypsin was supposed to be 
no-toxic and the most potent DPP-IV inhibitory peptide. It was found 
able to bind with the residues Arg125, Glu205, Glu206, Phe357, Tyr547, 
Ser630 and Tyr666 at the active sites of DPP-IV through hydrogen 
bonding and van der Waals forces. Network pharmacology-based anal-
ysis showed that AESE can interact with four hub targets BIRC2, CASP3, 
MMP7 and BIRC3, and ameliorate diabetes via the regulation of 
apoptosis and TNF signaling pathways. However, in vivo and in vitro 
experiments should be carried out to validate our findings in order to 
explore its use in functional foods for the prevention and treatment of 
diabetes. 
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