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Can Surgeons Identify ACL Femoral Ridges ®
Landmark and Optimal Tunnel Position? A 3D Model
Study

Carl Laverdiere, B.Eng., Drew Schupbach, M.D., Justin Schupbach, M.D.,
Eric Harvey, B.Sc., Mathieu Boily, M.D., Mark Burman, M.D., and Paul A. Martineau, M.D.

Purpose: To examine the ability of surgeons to identify the osseous landmarks associated with the femoral anterior
cruciate ligament (ACL) footprint and locate optimal tunnel placement on 3-dimensional (3D) printed models compared
with intraoperative placement. Methods: Twelve sports fellowship-trained orthopaedic surgeons were asked to identify a
femoral landmark and an ACL footprint on 10 different 3D printed knees. The 3D models were made based on 20 real
patients with different anatomical morphology who later received ACL reconstructive surgery using independent drilling.
ImageJ software was used to quantify the measurements, which were then analyzed using descriptive statistics.
Results: Overall, none of the surgeons were able to consistently identify the junction of the bony ridges. The mean error
per participant ranged from 2.81 to 7.34 mm in the proximal direction (P = 3.30e-05) and from 2.42 to 8.05 mm in the
posterior direction (P =4.88e-12). None of the surgeons were able to appropriately identity the center of the femoral
footprint on the anatomic 3D models. The difference between the center of the footprint surgeons identified on the 3D
model and the tunnel graft location in surgery was significantly different (P = .0046). On average, the magnitude of the
error when the surgeons performed the actual surgery was 3.72 £ 2.43 mm, whereas on the 3D models it was 5.82 + 1.97
mm. Conclusions: Experienced sports fellowship-trained orthopaedic surgeons were unable to correctly identify the
junction of the intercondylar and bifurcate ridges and the native ACL footprint on 3D models. Operatively placed tunnels
were more accurate implying that looking either through a scope or soft-tissue landmarks play a significant role in sur-
geons ACL footprint localization. Clinical Relevance: The graft position for ACL reconstruction plays an important role
on the kinematics of the knee. This paper shows that soft tissue landmarks are needed to provide reliable reference points
for reconstruction.

he success of anterior cruciate ligament (ACL)
reconstruction is multifactorial, depending on the
type of graft, fixation technique, sex, and degenerative
changes. The graft position also plays an important role
on the kinematics of the knee.' Cadaveric studies have
shown femoral tunnel placement in the anatomic
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footprint of the ACL results in knee kinematics closest
to the intact knee.” As reported by the MARS study,
femoral tunnel malposition was rated as the most
common technical failure by 80% of the surgeons.’Of
the 2 tunnel sites, variations in the femoral tunnel have
a much larger effect on stability than tibial tunnel var-
iations.” Hutchinson et al.” defined the intercondylar
ridge or “residents ridge” as the landmark defining the
most anterior border of the ACL femoral insertion. This
was supplemented by the description of an osseous
ridge between the anteromedial and posterolateral
bundle’s femoral insertion termed the bifurcate ridge.®
The intersection of the bifurcate ridge and the inter-
condylar ridge define the osseous landmarks of the
femoral insertion. However well-defined the osseous
landmarks are in the literature, visibility during
arthroscopic surgery and anatomical variability have
necessitated refining of localization techniques and
utilization of soft-tissue landmarks.””” No matter how
well described a landmark or technique is in the
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Table 1. Technical Specification of 3D Printer

Filament type PLA
Filament diameter 1.75 mm
Extruder temperature 200°C

Build plate temperature 60°C

Nozzle diameter 0.40 mm
Resolution (primary layer height) 0.1 mm

Top solid layer 8

Outer perimeter shells 3

Infill 15%, rectilinear pattern

literature, the ability of the surgeon to identify the
landmark intraoperatively will always be a variable.
The purpose of this study is to examine the ability of
surgeons to identify the osseous landmarks associated
with the femoral ACL footprint and locate optimal
tunnel placement on 3-dimensional (3D) printed
models compared with intraoperative placement. We
hypothesized that the points for graft placement the
surgeons identify on 3D osseous model will be as
accurate as those identified intraoperatively.

Sagittal

C. LAVERDIERE ET AL.

Material and Methods

Study Protocol

Institutional review board approval (MUHC refer-
ence #2019-5322) was obtained before the onset of
this study. Based on history and physical examina-
tion, patients that were suspected to have an acute
ACL tear were recruited by our research coordinator.
Patients with previous knee pathology including
previous surgery, previous ligamentous injury, in-
flammatory arthropathy, or osteoarthritis and pa-
tients with a suspected multiligamentous knee injury
were excluded from the study. Twenty patients (6
females, 14 males) were recruited with an average
age of 33.7 £ 11.33 years. The median age was 32
years. As part of the normal preoperative work-up, a
conventional 2-dimensional (2D) magnetic reso-
nance imaging (MRI) was performed to confirm the
diagnosis of an acute ACL tear. Afterwards, a 3D MRI
scan was performed on the injured knee to acquire
high-resolution images. Those patients then

Fig 1. Visualization of the
femoral footprint using 3-
dimensional magnetic resonance
imaging on the lateral femoral
condyle.
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Fig 2. Identification of the inter-
section of the ridges and location
of the center of the femoral foot-
print. Each model was positioned
in the same orientation such that
it represents a knee at 90° in
flexion. The ruler was used as a
gauge for measurements, which
were  subsequently  analyzed
through the ImageJ software via a
digital caliper.

underwent ACL reconstruction performed by 2 sports
fellowship trained surgeon at our institution. Those 2
surgeons also participated in the model portion of the
study but were blinded to the models. The surgical
technique consisted of independent drilling with
flexible or rigid reamers. A postoperative 3D MRI
scan was acquired to evaluate the position of the
graft. Distal femur models were then printed that
duplicated the native anatomy to test other fellow
surgeons.

The imaging protocol for this study was a previously
validated isotropic 3D MRI protocol.'"'* Both 2D and
3D MRIs were performed using the same 1.5T Twin-
Speed Excite high-definition MRI scanner (GE Medical
Systems). In the scanner, the knees were positioned in
near full extension, and an 8-channel high-definition
surface coil was applied. Regarding the 3D MRI, an
oblique-coronal proton density sequence along the
plane of the ACL with slice gaps of 0.6 mm.'”"" The
mean scanning times for all 3 image acquisitions (2D
MRI scan of injured knee and 3D MRI of bilateral
knees) was 45 minutes.

3D Models Generation

The 3D MRI Digital Imaging and Communications in
Medicine scans were imported in 3D slicer soft-
ware.'”"'” This software enables segmentation of the
Digital Imaging and Communications in Medicine scans
to create a 3D model that mimics the native anatomy.
Models were then printed using QidiTechl dual
extruder 3D printer (QIDI TECH, Ruian, China).
Technical information on the parameters use used can
be found in Table 1. Using a previously validated
reference point,'® the apex of the deep cartilage was
identified on the 3D MRI for all subjects by a senior
musculoskeletal radiologist. That same point was then
marked on the 3D models to serve as a reference point
for the measurements.
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The use of 3D MRI allows for multiplanar recon-
struction of the knee and does not limit to a single
predefined viewing plane like standard 2D MRI. Thus, it
is possible to observe the ACL along its course in the
coronal-oblique plan. Multiplanar reconstructions and
measurements were performed on a PACS workstation
with embedded multiplanar software (InteleViewer;
Intelerad Medical Systems). The boundaries of the
native ACL of the uninjured knee and postoperative
ACL graft were visualized with coronal-oblique and
sagittal-oblique scans (Fig 1). Using the center of the
footprints pre- and postoperatively, coordinates were
defined in relation with the apex of the deep cartilage
and recorded on all 3D MRI scans.

Ridge and Femoral Footprint Analysis

With a pin, 12 sports fellowship-trained orthopaedic
surgeons were asked to identify the intersection be-
tween the intercondylar ridge and the bifurcate ridge
on the 3D models (Fig 2). Afterwards, the surgeons
were asked to identify the most anatomic femoral
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Fig 3. Error distribution of identified intersection of the
intercondylar and bifurcate ridges by surgeons on 3D models.
Each color represents a different person, with the (0,0) point
representing the intersection of the ridges on the MRI of the
native knees. A negative value indicates a graft that is prox-
imal and posterior.
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Table 2. Intersection of the Intercondylar Ridge and Bifurcate Identified by Surgeon and Radiologist on 3D Femoral Model vs

Native
Mean Error of Ridge Position P Value
Proximal-Distal Axis (mm) Anteroposterior Axis' (mm) Proximal-Distal Axis" Anteroposterior Axis'

Surgeon 1 -4.38+2.75 -8.05£2.56 2.19e-07 1.47e-14
Surgeon 2 -6.18+£2.91 -3.08+2.44 2.38e-08 5.20e-05
Surgeon 3 -2.81£2.54 -2.64+£3.15 5.89¢e-04 0.0022
Surgeon 4 -7.34+£2.79 -6.39+2.68 1.62e-10 1.44e-11
Surgeon 5 -3.10£3.00 -7.83£3.04 1.35e-04 1.49e-14
Surgeon 6 -5.03+£3.20 -2.4243.15 2.71e-08 0.0011
Surgeon 7 -5.66£2.29 -3.15£2.78 3.16e-11 7.42e-05
Surgeon 8 -4.08+2.68 -3.68+2.47 6.90e-06 1.87e-06
Surgeon 9 -3.99+2.66 -1.88+£2.94 4.12e-05 0.0101
Surgeon 10 -5.39+2.76 -2.6243.02 3.44e-08 3.0le-04
Surgeon 11 -4.41+2.54 -6.17£3.54 6.39e-07 5.74e-11
Surgeon 12 -4.95+2.94 -4.37£3.36 1.37e-07 2.49e-07

*A positive value is defined as a graft that is purely distal relative to the native ACL.
A positive value is defined as a graft that is purely anterior relative to the native ACL.

tunnel location on the same models (Fig 2). Measure-
ments of those position were done with respect to the
apex of the deep cartilage identified on the models. The
measurements were performed by 2 separate observers
to corroborate the measurements. Both observers were
blinded to the measurements of the other observer.
Because the 3D models were generated from MR],
reference measurements were performed on the MRI
itself by a senior musculoskeletal radiologist. The center
of the native femoral footprint was identified following
a previously validated methodology.'' The intersection
of the intercondylar and bifurcate ridges was also
identified on MRI. The measurements performed on
the MRI were used as the reference points.

Statistical Analysis
The number of patients required was predetermined
using a power analysis to detect an error distance of 1.0

Boxplot Ridges

mm, considering the average graft width is 8.0 mm. The
root-mean-square difference of ACL between contra-
lateral knees were found to be 1.2 mm by Scanlan
et al.'” Moreover, the mean error reported by Han
et al.'"’ comparing measurements from 3D MRI to
dissected specimens was 1.5 mm. Thus, to obtain a
standard error of less than 1.0 mmm, a minimum of 18
patients were needed ((3 mm + 1.2 mm)/1.0 mm)?.
Descriptive statistics and the Student ¢ test were used
to describe and compare the position identified by the
surgeons on the 3D model relative the native struc-
tures. A Kruskal-Wallis 1-way analysis of variance were
then used to compare the error distances between the
12 surgeons based on the results of a Shapiro-Wilk test.
All statistical analysis was done using Matlab software
suite (MATLAB R2018a, The Mathworks, Natick, MA).
A P value of less than .05 was deemed statistically sig-
nificant. The Intraclass correlation coefficient was used
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Error Distribution Native ACL vs Tunnel position on 3D Models
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to assess the agreement between both observers as
defined by McGraw et al.”’ Two independent observers
performed the measurement. An intraclass coefficient
of 0.955 in the distal-proximal axis and 0.961 in the
anteroposterior axis shows excellent inter-rater agree-
ment. The post hoc analysis yielded a power of 0.987.

Results

A total of 12 sports fellowship-trained orthopaedic
surgeons were recruited in this study. The surgeons
were asked to identify the intersection of the inter-
condylar and bifurcate ridges on the anatomical 3D
model. The error distribution of the points is shown in
Fig 3. Overall, none of the surgeons were able to
consistently identify the junction of the ridges (P < .05;
Table 2), as the mean error per participant ranged from
2.81 to 7.34 mm in the proximal direction (P = 3.30e-
05) and from 2.42 to 8.05 mm in the posterior direction
(P = 4.88e-12). Comparing error distances among the

Distal to Proximal [mm]

12 surgeons demonstrated significant differences using
the Kruskal-Willis 1-way analysis of variance
(P = 2.31e-07) with a box plot (Fig 4).

Surgeons were then asked to identify the optimal
location for an anatomic ACL femoral tunnel. The
overall error distribution is shown in Fig 5. Again, none
of the surgeons were able to appropriately identify the
center of the femoral footprint on the anatomic 3D
models (P < .05; Table 3). Only surgeon 9 and surgeon
12 were able to replicate the anatomic location in the
anteroposterior axis, with a P value of .0985 and .6624,
respectively. The mean error ranged from 1.32 to 5.95
mm in the proximal direction (P = 6.17e-08) and from
4.33 to -0.32 mm in the posterior direction (P = 6.43e-
06). Comparing the error difference among all surgeons
using an analysis of variance demonstrated a significant
difference (P = .019) with a box plot (Fig 6).

The variation of the error from where the surgeons
thought the footprint was on the 3D model compared

Table 3. Surgeon ACL Tunnel Placement vs Native ACL Footprint on 3D Femoral Model

Mean Error of Reconstructed Graft

P Value

Proximal-Distal Axis (mm)

Anteroposterior Axis' (mm)

Proximal-Distal Axis" Anteroposterior Axis'

Surgeon 1 -2.41+2.44 -3.87+2.54 0.0036 1.21e-06
Surgeon 2 -4.3642.50 -1.77+2.59 1.20e-06 0.0164
Surgeon 3 -4.20£2.16 -3.5243.27 4.74¢-07 4.63¢-05
Surgeon 4 -5.691+2.49 -3.00+2.46 1.22e-07 5.03e-05
Surgeon 5 -1.324+2.70 -4.33+2.95 0.0909 1.16e-07
Surgeon 6 -5.261+2.56 -1.35+3.17 4.91e-08 0.0469
Surgeon 7 -4.11£2.18 -1.85+2.82 3.12e-07 0.0144
Surgeon 8 -4.3942.15 -1.88+2.67 6.24e-07 0.0083
Surgeon 9 -2.11£2.80 -1.284+2.96 0.0243 0.0985
Surgeon 10 -4.094+2.09 -4.43+3.07 7.63e-07 6.06e-08
Surgeon 11 -4.6612.02 -3.36+3.21 3.53e-07 1.33e-05
Surgeon 12 -5.954+2.37 0.32+3.47 5.92e-10 0.6624

*A positive value is defined as a graft that is purely distal relative to the native ACL.
A positive value is defined as a graft that is purely anterior relative to the native ACL.
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with the surgically placed femoral tunnel is shown in
Fig 7. Using an analysis of variance, from model to
model, the error was significantly different for the
femoral tunnel (P = 2.41le-19; Fig 7) and for the
intersection of the ridges (P = 8.66e-17; Fig 8). This
implies that some models yielded more accurate results
than others. The overlay on Fig 7 represents the error
performed by the surgeons performing the actual sur-
gery. The difference between the center of the footprint
surgeons identified on the 3D model and the tunnel
graft location in surgery was significantly different
(P = .0046). On average, the magnitude of the error
when the surgeons performed the actual surgery was
3.72 £ 2.43 mm, whereas on the 3D models, it was
5.82 £ 1.97 mm.

Discussion

The improved accuracy of intraoperative placement
versus placement on the 3D model observed in this
study supports that idea that soft tissues are used
intraoperatively to aid surgeons in anatomic placement.
Often, an ACL stump is present and may influence
tunnel placement in anatomic reconstruction. Newer
techniques using soft-tissue landmarks have been
studied and validated such as measuring from the
proximal articular cartilage.”’ This method was further
supported by recent reconstruction studies of the lateral
femoral condyle, which showed it to be as reliable as
the lateral intercondylar ridge.”’ Much research has
been done on osseous landmarks of the ACL footprint,
but our study calls into question how accurately

Effect of 3D Models on Femoral Tunnel Error Boxplot
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Effect of 3D Model on Ridge Error Boxplot
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surgeons can identify the ridges. The surgeons consis-
tently placed the femoral tunnels posterior and prox-
imal to the femoral footprint on the 3D models.
However, the actual tunnel placement measured on
postoperative MRI was closer to the center of the
footprint than the tunnel placement on the bony 3D
models. This could be due to surgeons reverting to us-
ing posterior landmarks on the 3D models in the
absence of soft-tissue landmarks. Therefore, the bony
ridges may not be a consistent landmark in the absence
of surrounding soft-tissue context.

A previous study performed using the same protocol
was performed on 13 senior residents from 3 different
Canadian orthopaedic residency programs. Interest-
ingly, the error distribution was similar because most of
the misses in both groups were in the proximal and
posterior quadrant. All surgeons participating in the
present study have done a sport fellowship training.
This suggest that the soft tissues may have a greater
importance than expected in locating the optimal
position for femoral tunnel placement. Another piece of
the answer may lie in the use of the scope and in-
struments in surgery may give a relative sense of the
optimal position of the ACL graft.

Limitations

A few limitations exist that must be considered when
interpreting the data of this study. The process for
evaluating surgeons’ ability to properly identify the
intersection of femoral ridges and native ACL graft
placement had possible drawbacks. The 3D printed
models used only consisted of the bony landmarks with
no connective tissue, cartilage, or ACL remnants to help
with intraarticular orientation. It did not evaluate the
ability of the surgeon to identify the ridges using a
scope, which is the clinically relevant procedure.

Furthermore, the models were attached to an apparatus
which did not allow knee movement to observe the
joint from various aspects, which has been shown to
impact graft positioning.””

Conclusion

Experienced sports fellowship-trained orthopaedic
surgeons were unable to correctly identify the junction
of the intercondylar and bifurcate ridges and the native
ACL footprint on 3D models. Operatively placed tun-
nels were more accurate implying that looking either
through a scope or soft-tissue landmarks play a signif-
icant role in surgeons ACL footprint localization.
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