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    The discovery that antigen-encoding DNA plas-
mids could stimulate humoral and cellular im-
mune responses represents a pivotal milestone 
in vaccine research ( 1 – 3 ). This discovery enabled 
the development of one of the most promising 
vaccination strategies against HIV, the so called 
 “ prime-boost ”  strategy in which the immune 
response is primed with a plasmid DNA (pDNA) 
and subsequently boosted with a viral vector 
such as modifi ed vaccinia virus Ankara (MVA) 
or adenovirus expressing the relevant antigens 
( 4 – 7 ). Studies in nonhuman primates (NHPs) 
suggest that such prime-boost strategies typically 
induce antigen-specifi c CTL responses and re-
sult in a lowering of the viral load upon challenge, 

although they do not clear the infection ( 8 – 10 ). 
In humans, although DNA vaccines have been 
shown to induce immune responses against sev-
eral pathogens (such as malaria, hepatitis B, and 
HIV), a major limitation is their poor protec-
tive immunogenicity despite the high doses of 
DNA used ( 7, 11–13 ). Therefore, strategies to 
optimize the immunogenicity of DNA vaccines 
are clearly needed. 

 Recent advances in our understanding of 
the immune system suggest that the innate 
immune system, particularly DCs and pattern 
recognition receptors such as Toll-like recep-
tors (TLRs), plays a critical role in initiating 
adaptive immune responses and in modulat-
ing their strength and quality. Thus, there is 
presently much interest in understanding the 
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 DNA vaccines offer promising strategies for immunization against infections. However, 

their clinical use requires improvements in immunogenicity. We explored the effi cacy of 

Toll-like receptor (TLR) ligands (TLR-Ls) on augmenting the immunogenicity of a DNA 

prime – modifi ed vaccinia virus Ankara (MVA) boost vaccine against SIV. Rhesus macaques 

were injected with Fms-like tyrosine kinase 3 (Flt3) – ligand (FL) to expand dendritic cells 

(DCs) and were primed with a DNA vaccine encoding immunodefi ciency virus antigens 

mixed with ligands for TLR9 or TLR7/8. Subsequently, the animals were boosted with DNA 

and twice with recombinant MVA expressing the same antigens. TLR9-L (CpG DNA) medi-

ated activation of DCs in vivo and enhanced the magnitude of antigen-specifi c CD8 �  

interferon (IFN)  �  �  T cells and polyfunctional CD8 �  T cells producing IFN- � , tumor necrosis 

factor  � , and interleukin 2. Although this trial was designed primarily as an immunogenic-

ity study, we challenged the animals with pathogenic SIVmac 251  and observed a reduction in 

peak viremia and cumulative viral loads in the TLR9-L plus FL-adjuvanted group relative to 

the unvaccinated group; however, the study design precluded comparisons between the 

adjuvanted groups and the group vaccinated with DNA/MVA alone. Viral loads were 

inversely correlated with the magnitude and quality of the immune response. Thus, the 

immunogenicity of DNA vaccines can be augmented with TLR9-L plus FL. 
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  RESULTS  

 Experimental protocol 

 The experimental groups and immunization and analyses 
schedule are shown in  Table I  and Fig. S1 (available at http://
www.jem.org/cgi/content/full/jem.20071211/DC1).  There 
were fi ve cohorts with fi ve animals per cohort. Group 1 was 
vaccinated with the prime-boost approach described previ-
ously (i.e., with pDNA expressing the SIV antigens Gag and 
Pol, as well as HIV89.6 antigens Env, Nef, Vpr, and Vpu) 
( 10 ) as a multiprotein vaccine without adjuvants. The other 
three groups of monkeys (groups 2 – 4) received daily subcu-
taneous injections of FL for 14 d (from days 1 to 14), and on 
day 15 were injected intradermally (i.d.) with pDNA alone 
(group 2), pDNA mixed with TLR9-L (group 3), or pDNA 
mixed with TLR7/8-L (group 4). In week 11, all animals in 
groups 1 – 4 received a secondary immunization with pDNA 
alone. Then, in weeks 36 and 58, the animals were boosted 
with rMVA expressing the Gag (SIV), Pol (SIV), and Env 
(HIV) genes. Group 5 was not vaccinated and did not receive 
any FL treatment. The time points at which immunological 
analyses were performed are indicated in Fig. S1. 

 Administration of FL results in a profound enhancement 

in the numbers of blood CD11c �  DCs and monocytes 

 DC expansion and activation in the blood was evaluated by 
fl ow cytometry ( Fig. 1 A ).  Three subsets of APCs in the blood 
were identifi ed, as previously described ( 30, 31, 33, 34 ). In brief, 
lineage-positive cells were excluded using a cocktail of anti-
bodies directed against B cells, T cells, and monocytes, and the 
lineage-negative, HLA-DR �  cells were evaluated for the ex-
pression of CD11c �  and CD123 � . CD11c �  myeloid DCs were 
defi ned as CD11c � HLA-DR � Lin  �   cells, and CD11c  �   plasma-
cytoid DC (pDC) precursors were defi ned as CD11c  −  CD123 � 
HLA-DR � Lin  �   cells. Monocytes were defi ned as CD14 � 
HLA-DR �  cells within an entire PBMC population ( Fig. 1 A ). 
Administration of FL markedly increased the numbers of HLA-
DR � Lin  �   cells from 0.51% at the start of the treatment to 19.9% 
(39-fold increase) at the completion of FL injection (day 14). 
This increase was primarily caused by a 51.8-fold expansion 
of CD11c �  DCs (from 0.2  �  0.12% at day 0 to 9.45  �  6.99% 

nature of the innate immune parameters that qualitatively 
govern diff erent types of adaptive immune responses, as well 
as in exploiting these in the development of novel vaccines 
against global pandemics and chronic infections such as HIV 
( 14 ). In this context, given the critical roles played by DCs 
and TLRs in adaptive immunity, they represent promis-
ing targets for boosting vaccine immunogenicity ( 15, 16 ). 
Numerous previous studies have demonstrated the effi  cacy 
of using TLR ligands (TLR-Ls) in augmenting both cel-
lular and humoral immune responses to protein antigens or 
DNA-encoded antigens in mice ( 17 – 20 ). Furthermore, re-
cent studies using NHPs have demonstrated that a TLR7/
8-L formulated or covalently linked to recombinant Gag re-
sults in an enhancement in the magnitude and  “ quality ”  of 
the T cell response ( 21, 22 ). Importantly, TLR-Ls are begin-
ning to be used as vaccine adjuvants in humans. For exam-
ple, monophosphoryl lipid A, an agonist of TLR4, is being 
developed by GlaxoSmithKline for use as a vaccine adjuvant 
and was recently licensed in Europe as a component of an 
improved vaccine for hepatitis B (Fendrix) ( 23 ). The TLR9-L 
CpG DNA has been administered with the hepatitis B vac-
cine Engerix-B and was shown to enhance the frequency 
of seroconversion as well as the magnitude of the antibody 
response ( 24, 25 ). However, in the case of DNA vaccines, 
despite several experiments demonstrating the induction of 
strong immunity in mice ( 1 ), translation into NHPs or hu-
mans has been disappointing. 

 We performed a preclinical vaccine study in rhesus ma-
caques to test the hypothesis that activated DCs would elicit 
robust levels of antiviral immunity in prime-boost vaccina-
tion against HIV. To this end, we have harnessed the ability 
of Fms-like tyrosine kinase 3 (Flt3) – ligand (FL) to enhance 
DC numbers in vivo ( 26 – 31 ) and specifi c ligands for TLR9 
(CpG DNA type B) ( 19, 32 ) and TLR7/8 (3M compound 
003) to induce DC activation in a rhesus model. Our data 
suggest that adjuvanting a DNA vaccine with a single injec-
tion of CpG DNA at the time of priming results in a pro-
nounced enhancement of the magnitude of the antigen-specifi c 
CD8 �  T cell response and translates into improved control of 
viral loads after challenge with SIV. 

  Table I.    Experimental protocol 

Days Weeks/injections

Group  n 1 – 14  

 FL treatment  a  

2 (day 15)  

 Vaccine prime

11  

 Vaccine boost

36  

 Viral boost I

58  

 Viral boost II

77  

 SIV challenge

1 5  − pDNA pDNA rMVA rMVA �

2 5 � pDNA pDNA rMVA rMVA �

3 5 � pDNA+TLR9-L pDNA rMVA rMVA �

4 5 � pDNA+TLR7/8-L pDNA rMVA rMVA �

5 5  −  −  −  −  − �

Each experimental group consisted of fi ve animals. Groups 2, 3, and 4 were treated by daily injections of FL protein for 14 days. At day 15, groups 1 – 4 were injected with 

pDNA encoding for HIV/SIV proteins in PBS only (groups 1 and 2), or formulated with TLR9-L (group 3) or TLR7/8-L (group 4). Furthermore, vaccination groups were injected 

with naked pDNA vaccine without TLR-Ls at week 11 and were boosted with rMVA expressing HIV/SIV antigens at weeks 36 and 58. Group 5 remained untreated until 

challenge. All animals were challenged intrarectally with a SIVmac 251  virus at week 77 of the experiment.

  a  Daily injections for 14 consecutive days.
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 TLR9-L and TLR7/8-L induce activation 

of FL-expanded DCs and monocytes in vivo 

 We next evaluated whether injection of TLR9-L or TLR7/
8-L resulted in the activation of APCs in vivo. Animals were 
injected i.d. with TLR9-L or TLR7/8-L mixed with pDNA 
on day 15 ( Table I ) and 1 d later (on day 16;  Fig. 1 C , red line), 
and the activation of DCs was evaluated by the up-regulation 

at day 14;  Fig. 1 B ). A 4.8-fold increase in the frequency of 
monocytes (HLA-DR � CD14 � ) was also noted (from 3.9  �  
2.63% at day 0 to 10.74  �  7.43% at day 14). In contrast, FL 
increased the numbers of pDC precursors only 2.5-fold (from 
0.041  �  0.025% to 0.094  �  0.075%). These observations are 
consistent with previous studies ( 30, 31, 33 ) and demonstrate 
that FL is a very potent DC growth factor in vivo. 

 Figure 1.   Expansion and activation of APCs in vivo. (A) Gating strategy for APC populations in FL-treated animals. Total PBMCs were isolated using stan-

dard procedures, and the mononuclear fractions were analyzed by fl ow cytometry to assess the frequencies of various APCs in the blood. Total DC population 

subsets were defi ned by a lack of lineage marker expression (CD3  �  CD14  �  CD20  �  ) and expression of HLA-DR. CD11c �  DCs were defi ned as CD11c � HLADR � Lin  �  , 

and pDCs were defi ned as CD123 ��  HLA-DR � CD11c  �  Lin  �  . Monocytes were defi ned as HLA-DR � CD14 �  within the entire PBMC population. (B) Animals were 

injected subcutaneously with 100  � g/kg FL daily from days 0 to 14. The frequencies of specifi c APC subsets in the blood at the indicated time points are shown. 

Numbers in squares represent the mean fold increase between days 0 and 14. Error bars represent SD. Mean frequencies of specifi c APC subsets at days 0 and 14 

were compared by a nonparametric Mann-Whitney test ( n  � 5). P  �  0.05 was considered statistically signifi cant (*). (C) Activation of CD11c �  DCs and mono-

cytes was assessed by staining for CD80 and CD86 surface markers at days 14 (1 d before vaccination; black line) and 16 (1 d after vaccination; red line). Shading 

represents the isotype. (D) Mean fl uorescent intensity (MFI) of CD80 and CD86 expression was measured on activated CD11c �  DCs and monocytes (four out of 

fi ve animals are presented in group 4 [blue diamonds]) caused by problems with PBMC isolation. Error bars represent the mean frequencies  �  SEM. Mean MFIs 

were compared by a nonparametric Mann-Whitney test ( n  � 4 or 5). P  �  0.05 was considered statistically signifi cant. FSC, forward scatter; SSC, side scatter.   
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signifi cantly enhanced ( Fig. 2 A ). Interestingly, FL � TLR7/
8-L did not enhance the magnitude of the response despite 
potent activation of DCs and monocytes ( Fig. 2 A ). Consis-
tent with these results, there was also a signifi cant enhance-
ment of the Gag and Env-specifi c IFN- �  – secreting cells, as 
measured by ELISPOT, in the animals that received FL � 
TLR9-L relative to group 1 (for the Gag-specifi c response, a 
mean of 1,500 spots per 10 6  PBMCs, with one animal show-
ing 3,700 spots per 10 6  PBMCs;  Fig. 2 B ). Furthermore, even 
after the fi rst MVA boost, there was a nearly eightfold en-
hancement in the frequency of IFN- �  �  CD8 �  T cells per 
total CD8 �  T cells in the group that received FL + TLR9-L 
(0.8%) relative to group 1 (0.1%;  Fig. 2 C ), and there was a 
large augmentation in the Env-specifi c CD8 �  T cell response 
in group 3 (FL � TLR9-L) relative to group 1 or 2 ( Fig. 2 C ). 
The FL � TLR7/8-L group showed no major increase in the 
magnitude of the response ( Fig. 2 C ). 

 In addition to the magnitude, the quality of a T cell re-
sponse is thought to correlate with protection ( 36, 37 ). One 
measure of T cell quality is based on the frequency of poly-
functional antigen-specifi c T cells that simultaneously pro-
duce IFN- � , TNF- 	 , and IL-2 ( 38, 39 ). We thus evaluated 
the frequencies of such cells by ICC staining at weeks 1 or 
10 after the second MVA boost. There was a very marked 
increase in the frequency of polyfunctional CD8 �  T cells that 
simultaneously produced IFN- � , TNF- 	 , and IL-2 in the FL � 
TLR9-L group relative to group 1 ( Fig. 2 D ). At the peak 
of the response (1 wk after second MVA), the frequencies 
of polyfunctional CD8 �  T cells in the FL � TLR9-L group 
(group 3) were higher than in groups 1 and 2, and this was 
also apparent 9 wk later ( Fig. 2 D ). However, relative to 
the total antigen-specifi c T cell responses, even the unadju-
vanted control group 1 monkeys exhibited a strikingly high 
representation of polyfunctional cells (up to 36% of the an-
tigen-specifi c cytokine-producing T cells; Fig. S3, available 
at http://www.jem.org/cgi/content/full/jem.20071211/DC1). 
Furthermore, the majority of IFN- �  – producing cells produced 
at least one other cytokine (Fig. S3). However, no enhance-
ment of the relative representation of polyfunctional CD4 �  
or CD8 �  T cells was noted in group 2, 3, or 4 compared with 
group 1 (Fig. S3). 

 An important caveat to this experiment was the unequal 
distribution of Mamu-A*01 animals in each group. Animals 
in groups 2, 3, 4, and 5 contained, respectively, 3, 4, 3, and 2 
animals typed positive for the Mamu-A*01 allele with PCR 
analyses. Group 1 did not contain Mamu-A*01 – positive 
 animals. Animals that express Mamu-A*01 have been shown 
to be particularly effi  cient at controlling SIV replication ( 40, 41 ). 
However, recent experiments ( 42 ) and our own results (un-
published data) suggest that this may not be the case. Never-
theless, it was important to determine the extent to which the 
diff erences in the immune responses could be attributable to 
Mamu-A*01. Therefore, we initially analyzed the magnitude 
of the Gag-specifi c IFN- �  �  CD8 �  T cell response only in 
Mamu-A*01 �  animals. As indicated in  Fig. 2 E , the Gag-
specifi c IFN- �  �  CD8 �  T cell responses were enhanced in 

of the co-stimulatory molecules CD80 and CD86 relative to 
the peak of APC expansion at day 14 ( Fig. 1 C , black line). 
The expression of CD80 was substantially up-regulated on 
both CD11c �  DCs and monocytes in animals that received 
the pDNA plus TLR7/8-L or TLR9-L (red line) in compar-
ison with the group that received the pDNA alone ( Fig. 1, 
C and D ). CD86 expression on CD11c �  DCs was considerably 
enhanced by TLR7/8-L, but not by TLR9-L, and was not 
up-regulated on monocytes by either ( Fig. 1, C and D ). The 
reasons for the diff erential induction of co-stimulatory mole-
cules on the distinct APC subsets by TLR9-L versus TLR7/8 
are at present unclear. Furthermore, because TLR9 is re-
ported not to be expressed by CD11c �  DCs or monocytes 
( 35 ), their observed activation in vivo is likely to have been 
caused indirectly by proinfl ammatory cytokines rather than 
by direct TLR9-L – mediated stimulation of these cells. In 
this context, pDCs that express TLR9 and TLR7 ( 35 ) were 
diminished in numbers 1 d after the injection of TLR9-L 
or TLR7/8-L (unpublished data), likely refl ecting the rapid 
migration of these cells into secondary lymphoid organs 
in response to stimulation with the TLR-Ls. Furthermore, 
induction of CD80 and CD86 on the remaining blood pDCs 
was not enhanced by injection of TLR9-L or TLR7/8-L. 

 A single injection of TLR9-L into FL-treated animals at the 

time of initial DNA priming markedly enhances the 

magnitude of polyfunctional, antigen-specifi c CD8 �  T cells 

after the MVA boost 

 Antigen-specifi c CD8 �  and CD4 �  T cell responses were 
evaluated using intracellular cytokine (ICC) staining and 
ELISPOT 2 wk after each immunization with the DNA vac-
cine (i.e., weeks 4 and 13) or 1 wk after each boost with 
MVA (i.e., weeks 37 and 59; Fig. S1). For SIV Gag stimula-
tion, one pool of overlapping peptides spanning the entire 
Gag protein was used to assess the frequencies of Gag-specifi c 
CD8 �  T cells. To measure Env-specifi c T cell responses, 
the pool of peptides encompassing the full-length HIV Env 
protein was used in both ICC and ELISPOT assays. After 
the fi rst or second DNA vaccination, the magnitudes of 
the antigen-specifi c CD8 �  or CD4 �  T cell responses were 
below the threshold of detection in all groups ( Fig. 2 C ; and 
not depicted).  

 The monkeys were boosted with 10 8  PFU rMVA 25 wk 
after the second DNA vaccination (week 36) and a second 
time on week 58 ( Table I ). Immune responses were mea-
sured 1 wk after each MVA boost by ICC and ELISPOT. 
CD3 � CD8 �  and CD3 � CD4 �  T cells were analyzed for 
IFN- � , TNF- 	 , and IL-2 intracellular staining, as shown in 
Fig. S2 (available at http://www.jem.org/cgi/content/full/
jem.20071211/DC1). Robust responses could be detected, 
particularly after the second MVA boost ( Fig. 2 ). The magni-
tude of the Gag-specifi c CD8 �  T cell response in the TLR9-
L – injected group was considerably enhanced after the second 
MVA boost (with a mean frequency of 1.5% Gag-specifi c 
CD8 �  IFN- �  �  T cells) relative to group 1 ( Fig. 2 A ). The 
frequency of Env-specifi c CD8 �  IFN- �  �  T cells was also 
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 Figure 2.   A single injection of TLR9-L into FL-treated animals at the time of initial DNA priming markedly enhances the magnitude of poly-

functional, antigen-specifi c CD8 �  T cells after the MVA boost. Total PMBCs were stimulated with a pool of overlapping peptides spanning SIV Gag or 

HIV Env proteins at week 1 after a second rMVA boost vaccination. IFN- �  – producing T cells were detected by intracellular staining (A) or ELISPOT (B). Each 

symbol represents an individual animal in the experimental group; bars represent the mean frequencies  �  SEM ( n  � 5). (C) Kinetics of Gag- (top) and Env- 

(bottom) specifi c IFN- �  – producing CD8 �  T cells. Animals in each group were vaccinated as described in  Table I  and Fig. S1, and PBMCs were stimulated as 

described. Each line represents the mean of all individuals in the group  �  SD ( n  � 5). (D) Frequencies of multicytokine IFN- �  – , TNF- 	  – , and IL-2 – producing 

Gag-specifi c T cells after the second rMVA boost vaccination. Total PMBCs at weeks 1 (left) and 10 (right) after the second rMVA boost vaccination were stim-

ulated with a pool of overlapping Gag peptides and stained for intracellular IFN- � , TNF- 	 , and IL-2. Percentages of cells simultaneously producing all three 

cytokines of total Gag-specifi c CD8 �  T cells are shown. Error bars represent the mean frequencies  �  SEM. All vaccinated groups were compared with group 1 

by a nonparametric Mann-Whitney test. P  �  0.05 was considered statistically signifi cant ( n  � 5). (E) Frequencies of IFN- �  – producing Gag-specifi c CD8 �  T 

cells at week 1 after a second rMVA boost vaccination in Mamu-A*01 – positive animals from groups 2, 3, and 4. Each symbol represents an individual animal 

in the experimental group. Error bars represent the mean frequencies  �  SEM ( n  � 3 or 4). N.A., not available.   
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group 3, relative to group 2 or 4, suggesting that the en-
hanced immune response induced by FL + TLR9-L was not 
simply caused by the unequal distribution of Mamu-A*01 
animals. Also, specifi c CD8 �  T cell responses against HIV 
Env protein, which does not demonstrate Mamu-A*01 – spe-
cifi c epitope dependence, were enhanced only in group 3, 
treated with FL and TLR9-L ( Fig. 2 C ). Collectively, these 
data suggest that a single injection of TLR9-L at the time 
of DNA priming results in profound increases in the mag-
nitude of polyfunctional antigen-specifi c T cells after the 
MVA boost. 

 Studies of specifi c cellular responses and infection control 

in the vaccinated groups after SIV challenge 

 The robust immune responses stimulated by CpG DNA 
raised the question of whether there was an enhanced con-
trol of virus upon challenge with SIV. Although the present 
experiment was not designed as a challenge study (in terms 
of the limited numbers of animals per group and the unequal 
distribution of Mamu-A*01 �  animals), given the robust 
immune responses observed by adjuvanting with CpG DNA, 
we attempted to test the protective efficacy of the adju-
vanted vaccine against a high dose mucosal challenge with 
SIV. The animals were thus challenged with a high dose 
(10 animal infectious doses per animal) of the highly patho-
genic SIVmac 251 , delivered atraumatically via the rectal route, 
19 wk after the fi nal MVA boost. Importantly, this protocol 
relied solely on protective responses directed to Gag and Pol 
antigens, because given the relative lack of cross-reactivity 
between SIV and the HIV Env or Nef used in the present 
vaccine ( 10 ), no contribution from these antigens was ex-
pected. 2 wk after the challenge and coincident with the 
peak viremia, there was a signifi cant enhancement in the 
frequency of Gag-specifi c IFN- �  �  CD8 �  T cells (mean of 
7.8%, with two animals  
 10%) in the group that received 
FL + TLR9-L relative to group 1 ( Fig. 3 A ).  In addition, 
there was a noticeable but statistically insignifi cant increase 
in such cells in the FL-alone group 2 or the FL � TLR7/
8-L group 4 ( Fig. 3 A ). At week 10 or 24 after challenge, 
the magnitude of the Gag-specifi c IFN- �  �  CD8 �  T cell 
response had reached a plateau at  � 1.7% for groups 2, 3, 
and 4 compared with a mean of 0.7% for group 1 ( Fig. 3 A ). 
There was also a noticeable, although statistically insignifi -
cant, enhancement in the frequencies of Gag-specifi c CD4 �  
T cells, particularly at week 24 ( Fig. 3 A ). The responses 
after challenge at both early (week 2) and late (week 24) 
time points correlated well with the magnitude of the Gag-
specifi c CD8 �  T cell responses noted after the second MVA 
boost ( Fig. 3 B , left and right, respectively). This suggested a 
direct link between the magnitudes of the vaccine-induced 
T cell response and expansion of antigen-specifi c T cells after 
viral challenge. 

 Furthermore, at weeks 2, 10, and 24 after challenge, 
there was an increase in the frequencies of polyfunctional, 
Gag-specifi c CD8 �  (not depicted) and CD4 �  T cells ( Fig. 
3 C ). The relative representation of polyfunctional cells within 

the Gag-specifi c CD8 �  T cell compartment was not altered 
by adjuvants (unpublished data). However, the relative rep-
resentation of polyfunctional cells within the Gag-specifi c 
CD4 �  T cell compartment was enhanced at weeks 10 and 
24 in groups 2, 3, and 4 relative to group 1 (Fig. S4, available 
at http://www.jem.org/cgi/content/full/jem.20071211/DC1). 
Thus, administration of TLR9-L at the time of the primary 
DNA vaccination resulted in an enhanced magnitude of poly-
functional antigen-specifi c CD4 �  and CD8 �  T cells after 
challenge with SIV. 

 Although immune measurements often correlate with 
effi  cacy, the ultimate test for any vaccine is the control of infec-
tion. Thus, we followed the viral titers in the SIVmac 251 -infected 
animals. Our vaccine contained only two antigens that were 
specifi c to SIV (Gag and Pol), and it is the CD8 �  T cells (and 
not antibody) stimulated by these antigens that are known to 
confer protection. The immunogen Env (the primary target 
for antibody-mediated neutralization) was encoded by an 
HIV env gene, and thus, neutralizing antibodies stimulated by 
HIV Env are not protective against SIV ( 43 ). Thus, we were 
in eff ect evaluating the protective capacity of a CD8 �  T cell 
response that was specifi c to Gag and Pol. 

 One animal in group 1 and another in group 3 did not 
appear to have taken the challenge, as viral loads remained 
undetectable throughout the study and other parameters of 
immune activation (such as the frequency of CD4 �  T cells in 
the gut) remained normal. These two animals were excluded 
from the statistical analyses of viral loads. Challenge of unvac-
cinated animals with SIV resulted in a geometric mean peak 
viral load of 23 million copies per milliliter at week 2 ( Fig. 4, 
A and B ).  Animals that received the DNA vaccine alone 
had a peak mean viral load of 7 million copies per milliliter. 
However, in the groups that received FL + TLR9-L or FL + 
TLR7/8-L, there was a 6.3 – 8.5-fold reduction in the peak 
viral loads (3.6 million and 2.7 million copies per milliliter, 
respectively;  Fig. 4, A and B ). Viral loads were followed for a 
longer term (up to 24 wk;  Fig. 4 A ). The unvaccinated ani-
mals reached a set-point load geometric mean of 2.5 million 
copies per milliliter by weeks 10 – 24 ( Fig. 4 A ). The animals 
in group 1 reached a geometric mean set-point value of  � 0.36 
million copies per milliliter. In contrast, with the exception of 
one animal, there was a profound diminution of viral loads in 
the animals in group 3 ( Fig. 4 A ). Three of the animals had a 
geometric mean of viral loads of 448 copies per milliliter, 
which was barely above the threshold of detection of 125 
copies per milliliter ( Fig. 4 A ). The animals that received FL 
or FL � TLR7/8-L also had noticeably enhanced control of 
viral titers, although the eff ects were not as pronounced as in 
the FL � TLR9-L group ( Fig. 4 A ). In particular, there was a 
statistically signifi cant decrease in the cumulative viral loads, as 
measured by the area under the curve (AUC) for the entire 
24-wk period after challenge, in the FL � TLR9-L and FL � 
TLR7/8-L groups relative to the unvaccinated group ( Fig. 4 C ). 
There was a noticeable but statistically insignifi cant diff erence in 
the viremia reduction measured by the AUC between group 
1 and groups 3 and 4. 
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from an independent study, in which eight monkeys (four 
Mamu-A*01 �  and four Mamu-A*01  �  ) were vaccinated twice 
with a DNA vaccine encoding the SIV antigens gag, pol, 
env, nef, vpr, and vpu, followed by two boosts with MVA 
expressing the same antigens (unpublished data). The vacci-
nation regimen was similar to the present study, but the 
critical diff erence was that all the antigens encoded by this 
vaccine were SIV specifi c. The viral loads were compared with 
viral loads in the unvaccinated group, which also consisted of 
eight animals (four Mamu-A*-01 �  and four Mamu-A*-01  �  ). 

 Given the caveats noted, we addressed the potential ef-
fects of Mamu-A*01 by analyzing the viral loads within the 
Mamu-A*01 �  animals. As shown in  Fig. 4 D , there was a 
signifi cant reduction in viral loads in groups 3 and 4 relative 
to group 5. Furthermore, there was a reduction in the loads 
in groups 3 and 4 relative to group 2, although this did not 
achieve statistical signifi cance. Furthermore, we analyzed 
whether the observed lack of viral control in response to vac-
cination without any adjuvants (group 1) was caused by the 
absence of Mamu-A*01 in group 1. We thus evaluated data 

 Figure 3.   Co-injection of TLR9-L and pDNA at priming markedly enhances the magnitude of polyfunctional antigen-specifi c CD8 �  T cell 

response after SIV challenge. All animals in vaccinated groups 1 – 4, as well as naive animals in group 5, were challenged intrarectally with SIVmac 251  

virus at week 77 of the experiment. Total PMBCs were stimulated with a pool of overlapping Gag peptides at weeks 2, 10, and 24 after SIV challenge. 

(A) Frequencies of IFN- �  – producing CD8 �  (top) and CD4 �  (bottom) T cells were detected by ICC staining. Each symbol represents an individual animal in 

the experimental group; bars represent the means  �  SEM ( n  � 4 or 5). (B) Correlates of Gag-specifi c CD8 �  T cell responses after SIV challenge. Magnitude 

of expansion of Gag-specifi c CD8 �  T cells after the second rMVA vaccination correlates with specifi c T cell responses at week 2 (left) or 24 (right) after SIV 

challenge. The p-values were calculated for correlation effi ciency and were considered signifi cant at P  �  0.05. Spearman ’ s rank correlation coeffi cient 

values are represented (r). Diagonal lines represent linear regression. (C) Frequencies of multicytokine IFN- �  – , TNF- 	  – , and IL-2 – producing Gag-specifi c 

T cells after SIV infection. Total PMBCs at weeks 10 (top) and 24 (bottom) after the second vaccination were stimulated with a pool of overlapping Gag 

peptides and stained for intracellular IFN- � , TNF- 	 , and IL-2. Percentages of all three cytokine-producing cells of total Gag-specifi c CD4 �  T cells are 

shown. Each symbol represents an individual from a vaccinated group (represented by different colors). Error bars represent the mean frequencies  �  SEM 

( n  � 4 or 5). All vaccinated groups were compared with group 1 by a nonparametric Mann-Whitney test.   
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similar for Mamu-A*-01 �  and Mamu-A*-01  �   animals (un-
published data). In addition, recent work suggests that two 
other haplotypes, Mamu-B*08 and Mamu-B*17, also exert 
an infl uence on the immune control of SIV infection ( 44, 45 ). 

There was no statistical diff erence in the viral loads between 
the Mamu-A*-01 �  versus Mamu-A*-01  �   animals when an-
alyzed for the viral loads at the peak (week 2) or set point 
(week 24) of viremia, and kinetics of viral load control were 

 Figure 4.   Control of the viremia in the vaccinated groups after SIV challenge. All animals in vaccinated groups 1 – 4, as well as naive animals in 

group 5, were challenged intrarectally with SIVmac 251  virus at week 77 of the experiment. (A) Plasma was collected at weeks 1, 2, 3, 7, 10, 18, and 24 after 

challenge and tested for SIV viral loads (SIV RNA copies/ml). Symbols represent the dynamics of viremia for each animal in the group. In groups 1 and 3, 

single animals remained uninfected over the entire challenge phase and were not included in the statistical analyses. (B) Viral titers at the peak of viremia 

at week 2 after SIV challenge. Each symbol represents an individual animal in the experimental group; bars represent the geometric mean frequencies  �  

SEM. All vaccinated groups were compared by a nonparametric Mann-Whitney test. P  �  0.05 was considered statistically signifi cant ( n  � 4 or 5). (C and D) 

AUC from weeks 1 through 24 was calculated for each animal in all experimental groups (C), or Mamu-A*01 – positive animals only in groups 2, 3, 4, and 5 

(D). Log-transformed areas (AUC [log 10 ]) were used in the analysis. Error bars represent the median with range (C,  n  � 5; D,  n  � 2 or 3). Analysis of variance 

was used for the comparisons among the groups and adjusted for multiple comparisons with the Bonferroni method. P  �  0.05 was considered signifi cant 

( n  � 4 or 5). N.A., not available.   
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after challenge with SIV. Three critical issues deserve discussion: 
(a) the mechanism by which TLR9-L acts, (b) the correlates 
of protective immunity, and (c) the infl uence of Mamu-A*01 
haplotypes on the observed results. 

 Mechanism of action of adjuvants 

 An important mechanistic question is whether the observed 
increases in immune responses were caused by enhanced DC 
numbers, activation of DCs, or both. Our data suggest that it 
is the TLR9-L, rather than FL, that mediated the enhanced 
immunogenicity, because animals that received FL alone showed 
no augmentation of immune responses. This is consistent 
with previous studies suggesting that, although FL alone is 
known to enhance immune responses to soluble antigens and 
DNA vaccines in mice ( 28, 29 ), in humans it failed to en-
hance immune responses to protein antigens despite docu-
mented increases in DC numbers ( 33 ). However, it is formally 
possible that TLR9-L and FL acted in a synergistic manner to 
enhance the immune response. FL is known to expand DCs 
in most tissues of the body, including dermal DCs in the 
dermal layer of the skin ( 49 ). Thus, it is possible that the in-
creased numbers of dermal DCs at the local site of vaccination 
(i.d.) might have facilitated enhanced uptake of the DNA 
vaccine directly or by phagocytosis of apoptotic cells that had 
acquired the DNA vaccine in situ. In addition, increased DC 
numbers in the draining lymph nodes may have enhanced 
the likelihood of cross-presentation of antigens derived from 
apoptotic bodies of activated DCs migrating from the skin 
( 50 ). However, our data suggest that enhanced DC num-
bers alone do not lead to amplifi cation of cellular immune 
responses. It is thus likely that the major eff ect was mediated 
via TLR9-L stimulation. 

 Another mechanistic question is how the innate immune 
activation by TLR9-L versus TLR7/8-L translates into the 
observed eff ects on adaptive immune responses. Our data 
suggest that both TLR9-L and TLR7/8-L induce potent 
 activation of myeloid DCs and monocytes in the blood. Such 
systemic eff ects on DCs were used as surrogate measures of 
innate immune activation caused by TLR-Ls in vivo. How-
ever, it must be stressed that such systemic eff ects are likely to 
have been secondary eff ects, mediated perhaps by the release 
of proinfl ammatory cytokines released systemically by the di-
rect TLR-mediated activation of DCs and other cells at the 
site of vaccination ( 51 ). In humans and macaques, TLR9 and 
TLR7 are preferentially expressed on pDCs, whereas TLR8 
is expressed preferentially on myeloid DCs and monocytes 
( 22, 32, 35 ). Thus, TLR9-L and TLR7-L can directly acti-
vate only pDCs, whereas TLR7/8-L can directly activate 
both myeloid DCs and pDCs ( 22, 32, 35 ). We observed a 
diminution in pDC numbers in the blood, which was likely 
caused by the rapid activation and translocation of such cells 
into the secondary lymphoid organs. In contrast, both TLR9-L 
and TLR7/8-L appear to potently activate myeloid DC 
and monocytes in vivo ( Fig. 1 ). This is likely to have been 
caused indirectly, as a result of proinfl ammatory cytokines 
released by other cells, presumably pDCs ( 51 ). In any case, it 

We thus tested the animals for these haplotypes, and there 
were two Mamu-B*17 animals and one Mamu-B*08 animal 
within the entire cohort. One of the Mamu-B*17 animals 
was in group 1, and the other was in group 5. The Mamu-
B*08 animal was in group 2. Thus, group 3 which displayed 
the best control did not contain any Mamu-B*08 or Mamu-
B*17 animals. Collectively, these data suggest that the observed 
enhancement in immune responses and viral control in the 
FL + TLR9-L group are unlikely to be caused by Mamu-A*01 
eff ects alone. 

 Correlates of protective immunity 

 We evaluated potential correlations between the immune 
responses and viral loads ( Fig. 5 ).  Importantly, there was a 
strong inverse correlation between the viral loads at the set 
point at week 24 and the magnitude of the Gag-specifi c IFN- �  �  
CD8 �  T cell response after a second MVA at primary phase 
at week 1 ( Fig. 5 A ), memory phase at week 10 ( Fig. 5 B ), 
or 2 wk after SIV challenge ( Fig. 5 C ). Also, the frequen-
cies of polyfunctional CD4 �  ( Fig. 5 D ) or CD8 �  ( Fig. 5 E ) 
T cells correlated with the control of viremia at week 24 after 
SIV challenge, suggesting the identifi cation of associates of 
protection after immunization. Additionally, we determined 
if preservation of central memory CD4 �  T cells correlated 
with the control of the viremia after the challenge, as pre-
viously reported ( 46, 47 ) ( Fig. 5 F ). Percentages of CD95 � 
CD28 � CC chemokine receptor (CCR) 7 �  – expressing, cen-
tral memory CD4 �  T cells measured in the blood 24 wk 
after challenge were well maintained in vaccinated monkeys 
and correlated inversely with viral loads at the viremia set 
point ( Fig. 5 F ). 

 Finally, we evaluated the frequency of CD4 �  T cells in 
the gut, which have been shown to be destroyed rapidly dur-
ing SIV infection. Vaccination has been shown to preserve 
these cells, especially the CD4 �  central memory T cells ( 48 ). 
Our data suggest a strong correlation between vaccine-in-
duced immunity and the frequency of CD4 �  T cells in the 
gut (Fig. S5, available at http://www.jem.org/cgi/content/
full/jem.20071211/DC1). In particular, animals in groups 
1 and 5 exhibited a rapid diminution in the frequency of 
intestinal CD4 �  T cells (Fig. S5 A). In contrast, in animals 
vaccinated with FL or FL + TLR9-L or FL + TLR7/8-L, 
there was a pronounced reconstitution of the CD4 �  T cells at 
week 18 after challenge (Fig. S5, A and B). Furthermore, there 
was a striking inverse correlation between the frequency of 
CD4 �  T cells in the gut and the viral loads in plasma ( Fig. 5 G ), 
signifying an association of viral control and loss of intestinal 
CD4 �  T cells, as well as a direct correlation between the mag-
nitude of the Gag-specifi c CD8 �  T cell response at 2 wk after 
SIV challenge ( Fig. 5 H ). 

  DISCUSSION  

 The results presented in this paper suggest that activating 
DCs with TLR9-L at the time of the initial immunization 
with a DNA vaccine results in an enhanced antigen-specifi c 
CD8 �  T cell response and improved control of viral loads 
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TLR9-L versus TLR7/8-L ( Fig. 1 ). Whether this infl uenced 
the diff erences in the magnitude of the adaptive immune re-
sponses induced by TLR9-L versus TLR7/8-L remains to 
be determined. 

 Correlates of protective immunity 

 The magnitude of the antigen-specifi c IFN- �  �  CD8 �  T cell 
response after MVA challenge and after SIV-infection was 
inversely correlated with the viral loads ( Fig. 4, D – F ) and 

is striking that the TLR7/8-L failed to enhance the magnitude 
of T cell response despite potent innate immune stimulation, 
as judged by DC activation in the blood. One possibility is 
that the TLR7/8-L, which is a small molecule, administered 
in a soluble form rapidly diff uses from the site of vaccination. 
In fact, recent experiments show that direct conjugation of 
TLR7/8-L to a protein antigen results in an enhanced im-
mune response ( 22 ). In addition, we observed diff erences 
in the expression patterns of CD86 and CD80 in response to 

 Figure 5.   Correlates of immune responses and protection. Control of viral loads at the set point of challenge at week 24 was tested for correlation 

with Gag-specifi c T cell responses after the last rMVA boost (A and B) or after SIV infection (C – F). Magnitudes of expansion of Gag-specifi c CD8 � IFN- �  �  T 

cells after the second rMVA vaccination at weeks 1 (A) and 10 (B), and at week 2 after SIV challenge (C) inversely correlated with the viremia level of experi-

mental animals. Magnitudes of multicytokine IFN- �  – , TNF- 	  – , and IL-2 – producing Gag-specifi c CD4 �  (D) and CD8 �  (E) T cells after SIV challenge also 

showed strong inverse correlation with the control of the viral load at week 24. (F) Frequencies of central memory CD4 T cells were measured in PMBCs at 

week 24 after challenge. Population of central memory CD4 �  T cells were defi ned as CD95 high  CD28 high  CCR7 high , and their frequency correlated inversely with 

the viral loads at week 24 after SIV, showing preservation of memory cells in vaccinated animals. (G and H) Rectal biopsies were collected at week 18 after 

challenge. Lamina propria lymphocyte CD4 �  T cells are represented as the percentage of total CD3 �  T cells extracted from the gut tissue. ( G ) Proportions of 

CD4 �  T cells in mucosal tissue inversely correlated with the viral loads at week 18 after challenge. (H) Direct correlation between the magnitude of expansion 

of Gag-specifi c CD8 �  T cells at week 2 after SIV challenge and control of mucosal CD4 �  T cell by trial animals at week 18. Each symbol represents an indi-

vidual animal from a vaccinated group (signifi ed by different colors) or naive animals (asterisks). The p-values were calculated for correlation effi ciency and 

were considered signifi cant at P  �  0.05. Spearman ’ s rank correlation coeffi cient values are represented (r). Diagonal lines represent linear regression.   
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magnitude and quality of immune responses induced by 
DNA vaccines. This may provide a solution to the problems 
associated with the suboptimal immunogenicity of DNA 
vaccines in humans. In particular, our data suggest that 
TLR9-L may serve as a useful adjuvant in enhancing specifi c 
immunity in an HIV infection model. It is important to stress 
that in the vaccine used in the present study, only  G ag and 
 P ol were SIV specifi c, whereas the other antigens, including 
Env, were HIV specifi c. Therefore, the elicitation of robust, 
high quality CD8 �  T cell responses alone, in the absence of a 
neutralizing antibody response, can exert a major eff ect on 
viral control. The additional benefi ts in protection that are 
likely to accrue from using a vaccine encoding all antigens 
that are SIV specifi c remain to be determined. Finally, the 
potential clinical utility of such a study is critically dependent 
on strategies that circumvent the onerous FL administration 
schedule. One such strategy might involve formulating FL 
into nanoparticles that slowly release the cytokine over the 
course of a few days. 

 MATERIALS AND METHODS 
 Animals.   A cohort of 25 adult Indian rhesus macaques ( Macaca mulatta ) was 

maintained in the Yerkes National Primate Research Center and Field Sta-

tion facility. Animals were cared for under guidelines established by the Ani-

mal Welfare Act and the NIH  “ Guide for the Care and Use of Laboratory 

Animals, ”  with protocols approved by the Emory University Institutional 

Animal Care and Use Committee. NHPs were sex and weight matched and 

divided into fi ve groups of fi ve animals each ( Table I ). Animals in groups 2, 

3, 4, and 5 contained, respectively, 3, 4, 3, and 2 animals typed positive for 

the Mamu-A*01 allele with PCR analyses. Group 1 did not contain Mamu-

A*01 – positive animals. 

 Injections and reagents.   Animals were injected subcutaneously for 14 

consecutive days (day 1 – 14) with 100  � g/kg/d of human FL protein (PBS 

diluted) provided by Amgen. Cloning of pGA1-SHIV 89.6 VLP pDNA has 

been previously described ( 10 ). pDNA was purifi ed by QIAGEN and in-

jected i.d. at 2 mg per animal in PBS at weeks 2 (day 15) and 11 of the study. 

In group 3, pDNA was mixed and co-injected i.d. with 2 mg per animal 

of TLR9-L CpG 2006 type B (Coleypharma). Animals in group 4 were 

injected i.d. with a combination of pDNA and 0.3 mg/liter/animal of 

TLR7/8-binding 3M-003 synthetic compound provided by 3M Pharma-

ceuticals. The MVA double-recombinant virus expressing the HIV 89.6 Env 

and the SIV 239 Gag-Pol ( 55 ) was administered subcutaneously at 10 8  PFU 

per animal at weeks 36 and 58 of the experiment. 

 Challenge and viral loads.   All monkeys were challenged by a rectal inoc-

ulation of 10 animal infectious doses per animal of SIVmac 251  (provided by 

N. Miller, National Institute of Allergy and Infectious Diseases, Bethesda, 

MD) at week 77 of the trial. Plasma samples were collected at the time points 

indicated in the fi gures (weeks 1, 2, 3, 7, 10, 18, and 24 after challenge) 

and tested for viral RNA using the SIVmac RNA bDNA assay (Bayer 

Diagnostics). The detection threshold of the bDNA assay was 125 copies 

per milliliter. 

 Cell isolation and staining.   PBMCs were isolated with a standard method 

from heparinized or citrated blood samples. Intestinal mucosal cells were 

isolated from rectal biopsy samples. Rectal biopsy pellets were washed with 

HBSS medium twice and resuspended in RPMI 1640 containing antibiotics. 

Tissues were digested for 1.5 h in the presence of collagenase (type 4; 

Worthington) and DNase (type 1; Roche). Digested pellets were disrupted 

by pippetting and were fi ltered twice through a cell strainer. Both PBMCs 

and mucosal cells were resuspended in PBS containing 10% FBS and were 

with CD4 �  T cells levels in gut tissue ( Fig. 5 D ), which was 
consistent with numerous previous studies ( 52 – 54 ). However, 
the frequency of IFN- �  �  IL-2 �  TNF- 	  +  polyfunctional CD8 �  
and CD4 �  T cells after challenge showed an even stronger 
inverse correlation with the viral loads ( Fig. 5, D and E ), sug-
gesting that not only the magnitude but also the quality of the 
T cell response were critical correlates of protection ( 36, 38, 39 ). 
In the case of TLR7/8-L, there was a statistically signifi cant 
lowering of viral loads despite no increase in the frequency of 
antigen-specifi c CD8 �  T cells ( Fig. 4, B and C ). This implies 
that TLR7/8-L might be inducing a diff erent quality of T cells, 
not measured in this study, that results in enhanced control 
of infection. 

 Infl uence of Mamu-A*01  and other haplotypes  

 Previous studies have suggested that animals expressing the 
MHC class I allele Mamu-A*01 are particularly effi  cient at 
controlling SIV replication ( 40, 41 ), whereas recent experi-
ments suggest that this may not be so ( 42 ). Our analysis of the 
magnitude of the Gag-specifi c IFN- �  �  CD8 �  T cell response 
only in Mamu-A*01 �  animals indicated ( Fig. 2 E ) that the 
Gag-specifi c IFN- �  �  CD8 �  T cell responses were enhanced 
signifi cantly in group 3 relative to group 2 or 4, suggesting 
that the adjuvant eff ects of TLR9-L were not simply caused 
by the unequal distribution of Mamu-A*01 animals. Further-
more, the CD8 �  T cell responses against HIV Env protein, 
which does not demonstrate Mamu-A*01 – specifi c epitope 
dependence, were enhanced only in group 3, which was 
treated with FL and TLR9-L ( Fig. 2 C ). Furthermore, our 
analysis of the viral loads within the Mamu-A*01 �  animals 
( Fig. 4 D ) showed a signifi cant reduction in viral loads in 
groups 3 and 4 relative to group 5. There was also a reduction 
in the loads in groups 3 and 4 relative to group 2, although 
this did not achieve statistical signifi cance. Finally, our analysis 
of data from an independent study, in which eight monkeys 
(four Mamu-A*01 �  and four Mamu-A*01  �  ) were vaccinated 
twice with a DNA vaccine encoding the SIV antigens gag, 
pol, env, nef, vpr, and vpu, followed by two boosts with 
MVA expressing the same antigens, failed to reveal an eff ect 
for the Mamu-A*01 haplotype on viral loads (unpublished 
data). There was no statistical diff erence in the viral loads 
between the Mamu-A*-01 �  versus Mamu-A*-01  �   animals 
when analyzed for the viral loads at the peak (week 2) or set 
point (week 24) of viremia, and kinetics of viral load control 
were also similar for Mamu-A*-01 �  and Mamu-A*-01  �   ani-
mals (unpublished data). As discussed, neither group 3 nor 
group 4 contained any Mamu-B*08 or Mamu-B*17 animals, 
and, thus, these haplotypes cannot have contributed to the 
observed enhancements in viral controls. Collectively, these 
data suggest that the observed enhancements in immune re-
sponses and viral control in the FL + TLR9-L group are un-
likely to be caused by Mamu-A*01 eff ects alone. 

 Perspectives 

 In summary, these data indicate that strategies that enhance 
the activation of DCs may be benefi cial in enhancing the 
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IFN- �  –  and/or TNF- 	  –  and/or IL-2 – producing T cells after the last MVA 

boost. Fig. S4 demonstrates the quality of Gag-specifi c, IFN- �  –  and/or 

TNF- 	  –  and/or IL-2 – producing CD4 �  T cells after SIV challenge. Fig. S5 

shows the frequency of CD4 �  T cells in the intestine after SIV challenge. 

Online supplemental material is available at http://www.jem.org/cgi/

content/full/jem.20071211/DC1. 
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stained for fl ow cytometry. All cells were analyzed on FACSCalibur or 

three-laser LSRII instruments (both from BD Biosciences). The following 

antibodies were used for fl ow cytometric analysis: CD3 (SP34-2 or FN-18), 

CD4 (L200), CD8 (SK-1), CD14 (M5E2), CD20 (2H7), and HLA-DR 

(L243); CD123 (7G3); CD80 (L307.4); CD86 (2331-FUN-1), CD11c 

(S-HCL-3), CD28 (CD28.2), CD95 (DX2), IL-2 (MQ1-17H1), TNF- 	  

(MAb11), and IFN- �  (B27; BD Biosciences); and CCR7 (150503; R & D 

Systems). All cytometry data were analyzed using FlowJo software (Tree 

Star, Inc.). 

 ICC staining.   Approximately 2  �  10 6  PBMCs were stimulated with total 

pools of SIV-Gag or HIV-Env proteins at the fi nal concentration of 2  � g/ml 

(15-mers overlapping by 11; courtesy of the NIH AIDS Reagent Program) 

in 5-ml polypropylene tubes in RPMI 1640 medium containing 10% FBS, 

and anti – human CD28 and anti – human CD49d (1  � g/ml each; BD Biosci-

ences) in a fi nal volume of 500  � l. Ovalbumin peptide (SIINFEKL) – stimu-

lated PBMCs were used as negative controls. After 2 h of incubation at 

37 ° C, 20  � l of medium containing 10  � g/ml Brefeldin A was added, and 

cells were cultured for an additional 4 h at 37 ° C at an angle of 5 degrees. 

Cells were surface stained with fl uorochrome-conjugated antibodies to CD8 

and CD4. Cells were incubated with fl uorochrome-conjugated antibodies to 

CD3, IFN- � , IL-2, and TNF- 	  in perm/wash solution (BD Biosciences) for 

20 min at 4 ° C. Cells were washed twice with Perm/wash, washed once with 

PBS/10% FBS, and resuspended in 2% PFA in PBS. Approximately 500,000 

lymphocytes were acquired for analysis. 

 ELISPOT.   MULTISCREEN 96-well fi ltration plates (Millipore) were 

coated with the anti – IFN- �  capture antibody at a concentration of 5  � g/ml 

in PBS and refrigerated overnight. Plates were washed two times with RPMI 

1640 medium and blocked with RPMI 1640 containing 10% FBS for 1 h at 

37 ° C. Plates were washed fi ve more times with RPMI 1640/10% FBS me-

dium, and cells were seeded in duplicates in 100  � l of complete medium at 

concentrations of 2  �  10 5  cells per well. SIV-Gag or HIV-Env total peptide 

pools were added in a volume of 100  � l in RPMI 1640/10% FBS medium 

resulting at the end concentration of 1  � g/ml of each peptide in reaction. 

Cells were cultured at 37 ° C for  � 20 – 36 h under a 5% CO 2  atmosphere. 

Plates were washed six times with wash buff er (PBS with 0.05% Tween 20) 

and incubated with 1 – 2  � g of respective biotinylated anticytokine antibody 

diluted in wash buff er containing 2% FBS. Plates were incubated for 2 h at 

37 ° C and washed six times with wash buff er. Avidin – horseradish peroxidase 

(Vector Laboratories) was added to each well and incubated for 60 min at 

37 ° C. Plates were washed fi ve times with wash buff er, and spots were devel-

oped with stable DAB used as substrate (Research Genetics). Spots were 

counted by using an automated ELISPOT reader (CTL). Data were normal-

ized for the background by control samples stimulated with an ovalbumin 

peptide (SIINFEKL) and are represented as several spot-forming cells per 10 6  

PBMCs. The following capture and detection antibody pairs were used: 

anti – human IFN- �  capture antibody (clone B27; BD Biosciences) and anti –

 human IFN- �  detection antibody (clone 7-B6-1; Diapharma Group, Inc.). 

 Statistical analysis.   All data were analyzed using Prism software (GraphPad 

Software, Inc.). Cellular responses, mucosal CD4 �  T cell numbers, and viral 

loads data were compared using the nonparametric Mann-Whitney test. P  �  

0.05 was considered statistically signifi cant. For viremia control, AUC from 

weeks 1 to 24 was calculated for each infected animal. Log-transformed areas 

(AUC [log 10 ]) were used in the analysis. Analysis of variance was used for the 

comparisons among the groups and adjusted for multiple comparisons with 

the Bonferroni method; P  �  0.05 was considered signifi cant. For correlation 

analysis, all datasets were calculated for correlation effi  ciency and were con-

sidered signifi cant at P  �  0.05. Spearman ’ s rank correlation coeffi  cient val-

ues were evaluated and represented (r). 

 Online supplemental material.   Fig. S1 represents the experimental 

design of the trial. Fig. S2 shows the gating strategy for specifi c, cytokine-

producing CD4 �  and CD8 �  T cells. Fig. S3 shows the quality of Gag-specifi c 
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