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Introduction
The use of chimeric antigen receptor (CAR) 
modified T cells targeting specific tumor-cell 
antigens has certainly changed the landscape of 
immunotherapy in cancer. This technology 
involves harnessing cytotoxic immune T cells in 
order to target specific tumor-cell antigens. In 
non-Hodgkin’s lymphomas (NHLs), specifically 
in diffuse large B-cell lymphoma (DLBCL), tar-
geting CD19+ malignant B cells has proven 
highly efficacious in the refractory-disease setting 
when no other available treatment options exist. 
As a result, two CAR T-cell products are nowa-
days approved for refractory DLBCL. Here, we 
extensively review the mechanism of action, effi-
cacy and toxicity(ies) of available CAR T-cell 
products currently in clinical use for B-cell NHLs.

Treatment overview of selected B-cell 
lymphomas
It is estimated that in 2019, there will be 74,200 
diagnosed cases of NHL with approximately 
19,970 disease-specific related deaths.1 NHL is 

the seventh leading cause of new cancer cases and 
accounts for approximately 3% of cancer-related 
deaths in the United States.1 Among all NHLs, 
DLBCL is the most common lymphoma subtype 
comprising 32.5% of all newly diagnosed cases, 
followed by follicular lymphoma (FL) with 
17.1%, and mantle-cell lymphoma (MCL) repre-
senting 3–5%.2

Diffuse large B-cell lymphoma
Over 25,000 new cases of DLBCL are diagnosed 
annually in the United States, representing an inci-
dence rate of 6.9 per 100,000.3 Addition of the 
anti-CD20 monoclonal antibody, namely rituxi-
mab, to the standard chemotherapy, R-CHOP, 
resulted in significant improvement in complete 
response (CR) rates, event-free (EFS) and overall 
(OS) survival in DLBCL.4 Unfortunately, approx-
imately 30–40% of cases relapse or progress after 
R-CHOP.5 There are specific subgroups of 
patients who will have poor responses and out-
comes to standard R-CHOP such as MYC-
rearranged DLBCL, high-grade B-cell lymphomas 
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with MYC, BCL2 or BCL rearrangements, acti-
vated B-cell (ABC) DLBCL that could benefit 
from novel approaches.6–11

High-dose therapy followed by autologous hemat-
opoietic cell transplantation (auto-HCT) is consid-
ered standard of care in patients with relapsed 
DLBCL that is sensitive to salvage chemoimmuno-
therapy, typically a platinum-containing base regi-
men.12,13 Randomized controlled studies and 
registry data have shown better survival with auto-
HCT vis-à-vis standard chemotherapy or chemo-
immunotherapy.12,14 Nonetheless, 40–50% of the 
cases will not be eligible for auto-HCT due to 
chemorefractory disease, and the other 50% who 
undergo the procedure are at risk of disease relapse 
postautografting.12,14,15 Unfortunately, salvage ther-
apies have limited efficacy in some relapsed/refrac-
tory settings such as primary progression, stable 
disease after frontline therapy and relapsed disease 
within 12 months from diagnosis, showing short-
lasting objective response rates of only 26% (com-
plete response rate of 7%) and an overall survival 
(OS) of 6.3 months.16,17 In patients who ultimately 
receive an allogeneic HCT (allo-HCT), the 5-year 
OS ranges from 18–37%, based on two registry 
studies from the Center for International Blood and 
Marrow Transplant Research (CIBMTR).18–20 
This limited efficacy of allo-HCT is in large part 
due to the high nonrelapse mortality (NRM), which 
may exceed 40%, mainly when using myeloablative 
conditioning (MAC) regimens.18,21,22

Follicular lymphoma
FL is a biologically heterogeneous disease that 
represents the most common type of indolent 
NHL in the Western world.23,24 There are several 
prognostic tools or models that integrate clinical 
data, laboratory studies and even molecular data 
that stratify the disease in different risk subgroups 
with specific outcomes.25–27

Combination of conventional chemotherapy plus 
rituximab is considered the standard frontline 
treatment of patients with FL and other indolent 
lymphomas.28 Treatment response is an important 
determinant of outcomes in patients with lympho-
mas, including FL subtype. Trotman and col-
leagues, in a pooled analysis from three multicenter 
studies evaluating six cycles of frontline rituximab-
based chemotherapy for high-tumor-burden FL 
prior to response assessment with conventional 

contrast-enhanced computed tomography (CT) 
and positron emission tomography (PET) low-
dose CT, demonstrated that achievement of CR 
was associated with good prognosis.29–32 Duration 
of first remission (CR1) has shown as prognostic in 
a landmark study that used data from the National 
LymphoCare Study (NLCS) that showed disease 
progression within 2 years from initial therapy was 
associated with inferior 5-year OS (50% versus 
90%) in patients with stage 2–4 FL treated with 
R-CHOP as frontline regimen.33 A combined 
observational study from the NLCS and CIBMTR 
showed that early use of auto-HCT (defined as 
within 1 year of frontline induction failure) was 
associated with significantly reduced mortality 
[hazard ratio = 0.63; 95% confidence interval (CI) 
= 0.42–0.94, p = 0.02].34

Patients with FL relapsing after multiple lines of 
therapy are offered an allo-HCT with curative 
intent if deemed eligible for the procedure. Use 
of MAC regimens have been associated with high 
NRM exceeding 40%.35,36 Availability of reduced- 
intensity conditioning regimens have expanded 
allo-HCT to patients with FL owing to a more 
favorable toxicity profile, a lower risk of NRM of 
16% and encouraging 3-year OS exceeding 
80%.37,38 Although impressive, there are several 
limitations to universally offering allo-HCT to 
FL patients due to the fact that these patients 
tend to, generally, be of more advanced age and 
have associated comorbidities that may disqual-
ify them from receiving the procedure.

Mantle-cell lymphoma
MCL is a relatively rare entity accounting for 
approximately 3–5% of all NHL cases.39,40 It is a 
distinct subtype of B-cell lymphoma which is diag-
nosed by detection of cyclin D1, immunopheno-
typing of cell surface antigens (CD5+, CD20+, 
CD23−), and molecular testing for the t(11;14) 
(q13;q32) by fluorescence in situ hybridization.39 
In line with prognostic tools available for other 
NHLs, the MCL International Prognostic Index 
(IPI; MIPI) has been developed.41 MIPI segre-
gates MCL patients into three distinct prognostic 
risk subgroups: low, intermediate, and high, with 
anticipated median OS of not reached, 51 months, 
and 29 months, respectively.41

High-dose therapy followed by auto-HCT is con-
sidered an optimal treatment strategy as frontline 
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consolidation for chemosensitive disease, particu-
larly younger patients or even for older patients 
who have adequate organ function and good per-
formance status. The Nordic MCL trial treated 
160 consecutive patients, treatment naïve, younger 
than 66 years, in a phase II protocol with dose-
intensified induction R-CHOP, alternating with 
rituximab plus high-dose cytarabine. Authors 
reported excellent outcomes with long-term effi-
cacy.42 For patients of more advanced age with or 
without associated comorbidities and poor perfor-
mance status, practicing hematologists generally 
prescribe R-CHOP as the preferred frontline treat-
ment choice; however, other regimens such as ben-
damustine and rituximab (BR) are also offered.43,44

For relapsed/refractory MCL, either ibrutinib or 
acalabrutinib have elicited excellent responses but 
cures are not anticipated and patients will eventu-
ally relapse.45,46 Prognosis of relapsed/refractory 
MCL is generally poor after failing an auto-HCT. 
An analysis from the European Society for Blood 
and Marrow Transplantation (EBMT) showed a 
5-year OS of 34% in patients who receive an allo-
HCT at the expense of an NRM of 30%.47 Patients 
who received an allo-HCT after a late relapse 
(defined as > 12 months) from auto-HCT had 
superior OS when compared with those with ear-
lier progression after autografting.47 Newer and 
more effective therapies are needed for patients 
with relapsed/refractory MCL.

Rationale for CAR T-cell therapy in B-cell 
lymphomas
The basic anatomy of a CAR structure consists of an 
antigen-recognition domain, usually a single-chain 
variable fragment (scFv) derived from a monoclonal 
antibody targeting the selected antigen (i.e. CD19); 
a hinge [usually derived from CD8 or immunoglob-
ulin 4 (Ig4) molecules] that links the recognition site 
to the transmembrane domain which bridges the 
membrane; and finally, the intracellular domain that 
typically contains a CD3ζ chain critical for T-cell 
receptor (TCR) signaling. Second-generation CAR 
molecules contain a second costimulatory-signaling 
molecule, such as CD28 or 4-BB, that enhances 
T-cell activation and antitumor potency.48–51 CD19 
is a transmembrane glycoprotein involved in regulat-
ing activation of B cells in an antigen–receptor-
dependent manner. CD19 is uniformly expressed at 
all stages of B-cell differentiation and it is carried 
during B-cell malignant transformation.52 CD19 is 

expressed in over 95% of B-cell malignancies, such 
as chronic lymphocytic leukemia (CLL), B-cell 
NHL, and B-cell acute lymphoblastic leukemia 
(ALL). Although CD19 is expressed on normal, 
nonmalignant B cells, it is well established that 
patients can survive depleted B-cell levels resulting 
from chemotherapy or chemoimmunotherapy.

All these factors make CD19 an attractive target 
for immunotherapeutic approaches. Several com-
panies and academic institutions have developed 
and continue developing pivotal trials with anti-
CD19 CAR T-cell-directed therapies

Overview of CAR T-cell products and 
manufacturing process

CAR T-cell biology
CAR T-cells represent an autologous cellular 
immunotherapy using gene transfer to reprogram 
T cells to recognize and eliminate cancerous cells 
by targeting tumor-associated antigens. Although 
CAR T-cell therapies have been recently approved 
for wide commercial use, this is hardly a new con-
cept, as earlier reports showed the feasibility of 
combining a monoclonal antibody originally devel-
oped the idea engineering T-cell-derived scFv 
region with TCR-associated activation domains 
from CD3ζ or CD3γ. This strategy combines anti-
body specificity with the homing, tissue penetration 
and target-cell destruction mediated by T lympho-
cytes.53 The first-regeneration CARs delivered acti-
vated T cells against specific tumor specific antigens 
but demonstrated limited persistence and weak 
proliferation, leading to limited antitumor activ-
ity.54 According to the known two-step process for 
T-cell activation, costimulation is necessary for 
complete stimulation; therefore, second-generation 
CAR T cells included costimulatory domains that 
led to a significant improvement in signaling 
strength, expansion and persistence.55 The most 
widely used costimulatory domains are CD28 and 
4-1BB, but other molecules such as OX40 and 
CD27 have also shown enhanced CAR T-cell func-
tion.56 Second-generation CAR T cells, as we know 
them today, contain three components: an extra-
cellular antigen-recognition domain, a transmem-
brane domain and an intracellular signaling domain 
(as discussed above).50 The majority of the trials 
are utilizing second-generation CARs. In general, 
CD28-based CARs have a greater expansion but 
less persistence in contrast to 4-1BB based CARs 
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which appear to have longer persistence. It remains 
to be seen whether these properties have clinical 
implications pertaining to efficacy.57

Axi-cel (KTE-019) was approved by the US Food 
and Drug Administration (FDA) in October 2017 
for treatment of adult patients with refractory/
relapsed (R/R) large B-cell lymphoma after two 
or more lines of systemic therapy (including 
DLBCL not otherwise specified, primary medias-
tinal large B-cell lymphoma, high-grade B-cell 
lymphoma and DLBCL arising from FL). 
Tisagenlecleucel (also approved for patients up to 
25 years of age with B-cell precursor ALL) was 
also approved in May 2018 for adult patients with 
R/R large B-cell lymphoma after two or more 
lines of systemic therapy. As opposed to axi-cel, 
tisagenlecleucel is not approved for primary medi-
astinal lymphoma. Another CAR T-cell product, 
liso-cel (JCAR017) is currently being studied in 
clinical trials with promising efficacy.

CAR T-cell manufacturing
The CAR T-cell manufacturing process begins with 
T-cell harvesting by collecting peripheral mononu-
clear cells (PMBCs) through leukapheresis. The 
product is transferred to a good manufacturing 
practice facility where CD3+ T cells are separated 
(in other products, no CD3+-based separation 
occurs), then expanded and activated. Then, CAR 
gene transduction into the T cells ensues through a 
vector, typically using a replication-defective virus 
(lentivirus or retrovirus). The CAR T cells are 
expanded in vitro and then infused back to the 
patient.50,58 Although all three aforementioned anti-
CD19 CAR products use the same scFv region, 
FMC63; there are several differences, but it is 
unclear whether these variances affect function, 
safety and clinical efficacy. As mentioned, axi-cel 
contains a CD28 costimulatory domain, while tisa-
genlecleucel and liso-cel, contain a 41-BB costimu-
latory domain. Liso-cel is the only product 
manufactured in a controlled process that enables 
administration of a fixed ratio of CD4 and CD8 
CAR T cells. The lower variability and defined cel-
lular composition may lead to lower rates of toxicity; 
however, this remains to be elucidated59 (Table 1).

Pharmacokinetics and persistence
In order to achieve antitumor efficacy, CAR T 
cells must reach tumor cells, interact with their 
intended antigen, proliferate, kill tumor cells, 

attempt to escape inhibitory immune mechanisms 
and a hostile tumor microenvironment and persist 
over time in order to ensure durable tumor con-
trol.60 The pharmacokinetics (PK) of CAR T cells 
usually refers to maximum concentration (Cmax) or 
peak, area under the curve and persistence. The 
PK of CAR T cells may differ across CAR con-
structs. In general, within hours after CAR T-cell 
infusion there is a rapid initial decline that seems to 
be related to redistribution to tissues. This is fol-
lowed by the development of a Cmax (peak) and 
expansion that usually occur 1–2 weeks after infu-
sion; the peak and expansion are clinically related 
to response. This is followed by a phase of slower 
decline in the number of CAR T cells that can last 
over a period of weeks to even years.61 In general, 
the expansion and persistence of CAR T cells are 
considered essential for its antitumor efficacy, thus 
key predictors of clinical response.62–65 The upreg-
ulation of the inflammatory cytokines interleukin 
15 (IL-15) and the granulocyte/macrophage col-
ony-stimulating factor (GM-CSF) have been 
shown to contribute with CAR T-cell expansion 
and persistence. These cytokines rise a few days 
after lymphodepleting chemotherapy (especially 
when fludarabine and cyclophosphamide are 
used).63,66 There are other cytokines that appear to 
mediate the cytotoxic effect of T cells such as IL-6, 
IL-10 and granzyme B.66

Clinical efficacy of CAR T-cell therapy

Early studies in B-cell lymphomas
Initial clinical trials of anti-CD19 CAR T cells for 
B-cell lymphoma were carried out in single insti-
tutions. These included a diverse population of 
refractory B-cell NHLs, including DLBCL, FL, 
primary mediastinal B-cell lymphoma (PMBCL), 
marginal-zone lymphomas (MZL) and trans-
formed follicular lymphomas (TFLs). Two early 
reports of anti-CD19 CART cells were described 
in patients with indolent NHL.67,68

The NCI conducted the first CAR T-cell study, 
which demonstrated clinical activity in DLBCL 
using the CD3ζ-CD28 CAR T construct (later 
licensed as axi-cel by Kite Pharma, a Gilead 
Company). The prescribed lymphodepleting regi-
men consisted of a combination of cyclophospha-
mide (total dose of 60 mg/kg) followed by 
fludarabine 25 mg/m2 daily for 5 days.62 This study 
included nine patients with refractory CD19+ 
B-cell lymphoma [DLBCL (four), PMBCL (four) 
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Table 1. Characteristics of selected second-generation CAR products studied in B-cell lymphomas.

Axicabtagene 
ciloleucel

Tisagenlecleucel Lisocabtagene 
maraleucel

US FDA indication for lymphoma Adult DLBCL Adult DLBCL Not applicable**

Costimulatory domain CD28 4-1BB (CD 137) 4-1BB (CD 137)

scFv FMC63 FMC63 FMC63

Vector delivery Retrovirus Lentivirus Lentivirus

Defined cells No No Yes, CD4:CD8 fixed ratio

Lymphodepleting chemotherapy
(×3 days)

Cy 500 mg/m2

Flu 30 mg/m2
Cy 250 mg/m2

Flu 25 mg/m2*
Cy 300 mg/m2

Flu 30 mg/m2

*An alternate lymphodepletion regimen can be given prior to tisagenlecleucel consisting of: bendamustine 90 mg/m2 IV 
daily for 2 days if a patient previously experienced grade 4 hemorrhagic cystitis or demonstrates resistance to a previous 
Cy-containing regimen.
**Lisocabtagene maraleucel is not approved for commercial use at the present time.
CAR, chimeric antigen receptor; Cy, cyclophosphamide; DLBCL, diffuse large B-cell lymphoma; FDA, US Food and Drug 
Administration; Flu, fludarabine; IV, intravenous; scFv, single-chain variable fragment.

Table 2. Patient characteristics in the three anti-CD19 CAR T-cell therapy multicenter trials in aggressive 
B-cell NHLs.

Characteristics ZUMA-1
(Neelapu et al.77)

JULIET
(Borchmann et al.80)

TRANSCEND1

(Abramson et al.87)

Patients enrolled (infused), n 111 (101) 165 (111) 134 (114)2

CORE: 73

Evaluable patients, n 101 93 102 (CORE: 73)

Median age (range), years 58 (23–76) 56 (22–76) 60 (20–82)

Age ⩾ 65 years 24% 23% 33 %

Lymphoma subtypes DLBCL, TFL, PMBCL DLBCL, TFL DLBCL, TFL (CORE)3

Double-hit lymphoma NR 27% 22%

⩾ 3 lines of therapy 69% 51% 50%

Primary refractoriness 26% NR 49%

Refractory to last therapy 77% 54% 67%

Prior autologous HCT 21% 49% 38%

1Data presented from the CORE cohort.
2Twelve patients had a nonconforming product.
3The FULL cohort included: DLBCL transformed from CLL (Richter transformation) and MZL, PMBCL and follicular 
lymphoma 3B. CORE included only DLBCL and TFL.
CLL, chronic lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; HCT, hematopoietic 
cell transplantation; MZL, marginal-zone lymphoma; NR, not reported; PMBCL, primary mediastinal B-cell lymphoma; 
TFL, transformed lymphoma.
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and DLBCL transformed from CLL (one)] CAR 
T-cell manufacturing was successful in all patients. 
There were five CRs and two partial responses 
(PRs) out of the seven evaluable patients. Three 
patients still had ongoing CR at the last reported 
follow up.62 The duration of response (DoR) ranged 
from 38 to 56 months, in patients with ongoing 
responses in a long-term follow-up report.69

A larger report from the NCI included 22 aggres-
sive B-cell lymphoma patients (DLBCL = 13, 
TFL = 3, PMBCL = 2, FL = 2, MCL = 1 and 
Richter transformation (RT) = 1). In this study, a 
low-dose conditioning chemotherapy (cyclophos-
phamide 300–500 mg/m2 and fludarabine 30 mg 
for 3 days) was considered to have a lymphodeplet-
ing action and was associated with less hematologic 
and nonhematologic toxicity. In DLBCL patients, 
the overall response rate (ORR) and CR rates were 

68% and 47%, respectively. The median duration 
of remission was 12.5 months and the 12-months 
progression-free survival (PFS) was 63.3%.63

Investigators at the Fred Hutchinson Cancer 
Research Center (FHCRC) developed CAR T 
cells using a 4-1BB as costimulatory domain. A 
phase I clinical trial using this CAR construct, and 
a predefined 1:1 CD4:CD8 ratio was conducted 
based upon strong preclinical data. Specifically, 
CAR T cells manufactured using purified CD4+ 
or CD8+ central memory (CM) or naïve (N) T cells 
in a specific 1:1 CD4:CD8 ratio were more potent 
in eliminating CD19+ tumor cells as compared 
with those manufactured from effector memory 
(EM) T cells in mouse models. Thirty-four patients 
with various refractory or relapsed B-cell NHLs 
including de novo DLBCL (11), TFL (11), MCL 
(4), and FL (6) were treated.70 Patients with 

Table 3. Multicenter studies with autologous anti-CD19 CAR T-cell therapy for aggressive B-cell lymphomas.

Variables ZUMA-1  
(Locke et al.76)

JULIET  
(Schuster et al.82)

TRANSCEND 
(Abramson et al.87)

Patients enrolled (treated), n 111 (101) 165 (111) 134 (114)
73 in CORE

Median follow up 27.1 months 19.3 months1 12 months

Costimulatory domain CD28 4-1BB 4-1BB

CAR T dose (range) 2.0 × 106 cells/kg Median, 3.1 × 108 cells DL1 5.0 × 107 cells2

DL2 1.0 × 108 cells

Lymphodepleting regimen Flu 30 mg/m2 × 3 days
Cy 500 mg/m2 × 3 days

Flu 25/m2x 3 days
Cy 250 mg/m2 x3 d or B 90 mg/m2 × 2 days

Flu 30 mg/m2 × 3 days
Cy 300 mg/m2 × 3 days

Efficacy  

 Best ORR (CR) 82% (54%) 52% (40%) 80% (59%)

 6-month ORR (CR) 41% (36%) 33% (29%) 47% (41%)

 Ongoing ORR (CR) 39% (37%) NR NR

 mDOR 11.1 months Not reached 9.2 months

12-month PFS 44% 66% NR

 18-month PFS 40% 64% NR

 12-month OS 59% 49% 63%

 18- month OS 53% 43% NR

1Median time from infusion to data cutoff.
2Six patients received double dose of DL1.
B, bendamustine; CR, complete response; Cy, cyclophosphamide; Flu, fludarabine; mDOR, median duration of response; NR, not reported, ORR, 
overall response rate.
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relapsed postauto- and postallo-HCT were also 
included. Results were encouraging, with ORR 
and CR rates for the whole group of 63% and 
33%, respectively. In a subgroup of aggressive 
lymphomas (DLBCL and TFL) the ORR and CR 
rates were 67% and 38%, respectively. This CAR 
construct is now licensed by JUNO Therapeutics 
for development as JCAR017.

Another 4-1BB CART (CTL019) construct with 
significant antilymphoma action was developed at 

the University of Pennsylvania. Preliminary results 
confirmed its efficacy in patients with a variety of 
B-cell NHLs, including DLBCL, FL, and 
MCL.71,72 The updated analysis included 38 
patients with DLBCL (n = 23) and FL (n = 15); 
however, 10 DLBCL patients could not be infused 
for a variety of reasons (rapid disease progression 
= 4, inability to manufacture CAR T cells = 5, 
and consent withdrawal = 1). The lymphodeplet-
ing chemotherapy included several regimens that 
were chosen as per physician discretion. The 

Table 4. Comparison of efficacy and toxicity of patients treated with axi-cel outside clinical trials (‘real-world 
experience’) with ZUMA-1.

Characteristics ZUMA-1
(Locke et al. 2018)

Nastoupil et al.88

(ASH 2018)
Jacobson et al.89

(ASH 2018)

Patients enrolled (infused), n 111 (101) 295 (274) NR (104)

Median age (range), years 58 (23–76) 60 (21–83) 63.8 (21–80)

Median follow up 27.1 months 3.9 months 5.6 months

Double-hit lymphoma NR 23% 24%

⩾ 3 lines of therapy 69% 75% NR

Primary refractoriness 26% 35% NR

Refractory to last therapy 77% 42% 91%

Prior autologous HCT 21% 33% 27%

Bridging chemotherapy 0 55% 40%

Efficacy

 Best ORR (CR) 82% (58%) 81% (57%) 71% (44%)

 Median PFS 5.9 months 6.18 months 5.6 months

 6-month OS 78% 72% NR

Toxicity

 CRS all grades (3–4) 93% (13%) 92% (7%) 94% (16%)

 Neurotoxicity all grades (3–4) 65% (31%) 69% (33%) 76% (39%)

 Tocilizumab use 45% 63% 67%

 Steroids use 29% 55% 64%

 Grade 5 AEs 4% 3%1 7%2

1A total of 7 nonrelapse mortalities due to: infection (n = 5); hemophagocytic lymphohistiocytosis (n = 1); cerebral edema  
(n = 1).
2A total of 7 nonrelapse mortalities due to: CRS (n = 2); neurotoxicity (n = 1); infection (n = 2); cardiovascular (n = 2).
AE, adverse event; ASH 2018, 60th Annual Meeting of the American Society of Hematology; axi-cel, axicabtagene ciloleucel; 
CR, complete response; CRS, cytokine-releasing syndrome; HCT, hematopoietic cell transplantation; NR, not reported; 
ORR, overall response rate; OS, overall survival; PFS, progression-free survival.
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median CTL019 dose was 5.79 × 106 (range: 
3.08–8.87 × 106) CAR T cells/kg. Among DLBCL 
patients, the ORR and CR rates were 50% and 
43%, respectively. The median PFS was 
3.2 months; and the PFS at last follow up (median 
28.6 months) was 43%. There were no significant 
differences in outcomes between GCB/non-GC, 
double-hit status or transformed FL subgroups.72,73 
The median DoR was not reached with 86% of 
responding DLBCL patients maintaining an ongo-
ing response at the time of the last follow up.

Multicenter studies in aggressive B-cell lympho-
mas. The early single-center studies showed sig-
nificant antilymphoma activity in aggressive B-cell 
NHLs and led the design of multicenter studies 
that included several academic institutions in asso-
ciation with pharmaceutical companies.

Axicabtagene ciloleucel (KTE-C19). The first 
multicenter trial to evaluate CAR T-cell therapy 
for refractory DLBCL used the NCI CD3ζ/
CD28 CAR construct (KTE-19, now axi-cel) 

Table 5. Toxicities in the three largest multicenter studies with anti-CD19 CAR T-cell therapy for aggressive 
B-cell lymphomas.

Study ZUMA-1
(Locke, 2018)

JULIET 
(Schuster)82

TRANSCEND1 
(Abramson et al.)87

No patients enrolled (treated) 111 (101) 165 (111) 134 (114)

Cytokine-release syndrome2  

Time to onset, median, range  

Duration, median, range 2 days (1–12) 3 days (1–9) 5 days (2–12)

 Grade (all)  

 Grade 3 or 4 8 days (NR) 7 days (2–30) 5 days (NR)

 Tocilizumab use 93% 58% 37%

 Vasopressors use 13% 23% 1%

 Steroid treatment 43% 16% 21%

 ICU admission 17% 6% (high dose) NR

 27% 11% 17%

 NR NR NR

Infections

 All grades 35%3 34% NR

 Grade 3 or 4 31%3 20% NR

Neurotoxicity2

Time to onset, median (range) 5 days (1–17) NR 10 days (3–23)

Duration, median, range 17 days (NR) NR 11 days (NR)

 All grades 64% 20% 23%

 Grade 3 or 4 28% 11% 13%

1Reported from the full cohort data.
2Grading was performed using the Penn criteria.
3Febrile neutropenia.
ICU, intensive care unit; NR, not reported.
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with a streamlined closed-manufacturing pro-
cess. The ZUMA-1 clinical trial consisted of 
a phase I and a phase II portion that evaluated 
the efficacy of axi-cel in refractory high-grade 
B-cell lymphoma. The cell dose and condition-
ing chemotherapy previously tested at the NCI 
were confirmed safe in seven patients with refrac-
tory DLBCL (as defined per SCHOLAR-1: best 
response as SD to last systemic therapy or pro-
gressed within 12 months of prior autologous 
transplant).16 No bridging chemotherapy was 
allowed (prior to conditioning chemotherapy or 
prior to CAR T-cell infusion). The lymphodeplet-
ing regimen entailed cyclophosphamide 500 mg/
m2 and fludarabine 30 mg/m2 × 3 days followed 
by infusion of axi-cel at a dose of 1–2 × 106 
CAR T cells/kg16,74 The objective response was 
71% with four patients achieving CR (57%) at 
1 month evaluation. Three patients had ongoing 
CR at 12 months post axi-cel infusion. Revers-
ible grade 3 neurotoxicity (NT) and cytokine-
release syndrome (CRS) were reported among 
this cohort. One fatality occurred in a patient who 
experienced grade 4 CRS and grade 4 encepha-
lopathy, and died of intracranial bleeding, which 
was considered unrelated to axi-cel. This patient 
appeared to have had a high inflammatory state 
prior to chemotherapy and CAR T-cell infusion. 
For the phase II portion of the trial, changes in 
the safety evaluation were made and included 
baseline C-reactive protein (CRP) assessment 
and delaying CAR T-cell infusion in patients with 
fevers until appropriate work-up was completed.

The pivotal phase II portion of the ZUMA-1 had 
similar eligibility criteria as the phase I, with two 
cohorts: cohort 1 for DLBCL and cohort 2 for 
PMBCL and TFL.75 The primary endpoint was 
ORR in patients with more than 6 months follow 
up postaxi-cel infusion, as compared with histori-
cal controls. Secondary endpoints were DoR, OS, 
safety, and levels of CAR T cells and cytokines. A 
total of 111 patients were enrolled. Seventy per-
cent were refractory to at least three lines of ther-
apy and 21% relapsed within 12 months of 
auto-HCT. Ten patients could not receive axi-cel 
for various reasons [serious adverse events (SAEs) 
prior to conditioning regimen = five, nonmeasur-
able disease = two, no product available = one, 
and SAE postconditioning regimen = two].

The 101 patients that received axi-cel infusion 
were the prespecified intent-to-treat analysis 
cohort. The CAR T-cell manufacturing success 

was 99%. The median time from apheresis to axi-
cel delivery was 17 days. The study met the pri-
mary endpoint compared with the historical cohort 
(SCHOLAR-1) with an ORR of 83% and CR of 
54% (in comparison with the a prespecified ORR 
of 20%, p < 0.0001) representing a eightfold 
higher CR rate in comparison with SCHOLAR-1. 
The latest data with a median follow up of 
27.1 months was presented at ASH, 2018.76 The 
ongoing ORRs and CRs were 39 and 37%, respec-
tively. Overall objective responses remained con-
sistent across patient and disease-specific variables, 
such as advanced stage, age, bulky disease, high 
IPI score or refractory subgroups [R/R postautohe-
matopoietic stem-cell transplantation (HSCT) or 
higher than second line of therapy]. The median 
DoR was 11.1 months in all responders and was 
not reached in those achieving CR. The PFS at 
12,18 and 24 months was 44%, 40%, and 39%, 
respectively. The 12, 18 and 24-month OS was 
60%, 53% and 51%, respectively. An initial PFS 
plateau was seen at 6 months postaxi-cel infusion; 
however, there were 10 patients that exhibited dis-
ease progression beyond 6 months. The median 
PFS and OS were 5.9 months and not reached, 
respectively.76 Of note, 23 out of 61 patients with 
either PR (11) or SD (12) converted into CR with 
no additional intervention. The median time of 
conversion of PR to CR was 64 days (49–424).76,77 
Based on these results, axi-cel was approved by the 
FDA for R/R high-grade B-cell lymphoma, TFL 
and PMBCL after two preceding lines of therapy.

Tisagenlecleucel (CTL019). The JULIET trial is 
a phase II multicenter global study in patients with 
refractory DLBCL utilizing CTL019, the anti-
CD19 CAR using a 4-1BB costimulatory domain 
developed by scientists from the University of 
Pennsylvania and was initially studied in single-
center trials.73 Interim results were presented at 
the American Society of Hematology 59th annual 
meeting in 2017 and the European Hematology 
Association meeting in 2018.78–80 CAR T cells were 
manufactured centrally; however, in contrast to 
ZUMA-1, cryopreserved apheresis products were 
utilized and bridging chemotherapy was allowed 
per clinician discretion for patients with rapidly 
progressive disease. There were two regimens uti-
lized, as lymphodepleting chemotherapy consisted 
of fludarabine 25 mg/m2 and cyclophosphamide 
250 mg/m2 for 3 days or bendamustine 90 mg/m2 
for 2 days. Key eligibility criteria included aggres-
sive B-cell lymphoma (DLBCL or TFL), relapse 
after autologous HSCT or ineligible for HSCT, 
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or refractory after two lines of therapy. Similar to 
the ZUMA-1 trial, the primary endpoint was ORR 
and CR rates.

The update analysis had a data cutoff of 21 May 
2018. A total of 167 patients were enrolled and 
115 patients were infused with tisagenlecleucel (4 
patients were not infused by data cutoff).81,82 
Fifty patients could not be infused with CTL019 
due to inability to manufacture CAR T cells (n = 
12) and change in disease/patient status (n = 38). 
The median age of study subjects was 56 (22–76) 
years. The median dose of transduced cells was 
3.0 × 108 (0.1–6 × 108). In this study, 51% had 
refractory disease with at least three lines of ther-
apy and 49% had prior auto-HCT. A total of 
92% patients received bridging chemotherapy. 
The median time from infusion to data cutoff was 
19.3 months. In the 99 evaluable patients 
(⩾3 months of follow up) the best ORRs and CRs 
were 54% and 40%, respectively. The 12- and 
18-month relapse-free survival was 64 %. The 
12- and 18-month OS in all patients were 48% 
and 43%, respectively. The median DoR in 
responders was not reached. The median OS for 
all patients and CR patients was 11.1 months and 
not reached, respectively. Responses were similar 
across different subgroups (postauto- HCT, dou-
ble-hit lymphoma, refractory/relapsed status, age, 
etc.). Similar to ZUMA-1, conversion into CR 
was observed in 15/28 (54%) patients who origi-
nally achieved PR.80,82 Outpatient infusion of 
CTL019 was feasible and was given to 26 patients, 
and 20 (77%) of those remained as outpatients 
for more than 3 days.78 No deaths were attributed 
to CLT019, but three patients died within 30 days 
of infusion (all due to disease progression).

Lisocabtagene maraleucel (JCAR017). The 
4-1BB CAR T-cell construct using a defined 
CD4:CD8 T-cell ratio and developed at the 
FHCCR was tested in the multicenter TRAN-
SCEND-001 study.83,84 This study was divided 
in two groups: the FULL and CORE cohorts. 
The FULL cohort included patients with R/R 
DLBCL, TFL, FL grade 3b, MCL, RT, DLBCL 
arising from MZL and PMBCL. The CORE 
dataset included only R/R DLBCL and TFL. The 
initial analysis included three cohorts with differ-
ent dose levels (DL): DL-1S was 5 × 107, and 
DL-2S was 1 × 108. A small cohort of patients 
received double dose (n = 6) of JCAR017 at 5 × 
107 that was administered 14 days apart (cohort 

no longer open). The conditioning regimen con-
sisted of fludarabine 30 mg/m2 and cyclophospha-
mide 300 mg/m2 daily for 3 days. Bridging therapy 
was allowed for disease control. After the prelimi-
nary analysis, the DL-2S was determined for the 
expansion phase.85,86

In the updated analysis, 134 patients were enrolled 
and 114 patients infused with liso-cel. Twenty 
patients were not infused due to rapid disease pro-
gression/death (n = 13), consent withdrawal (n = 
5) or inability to manufacture (n = 2). Out of the 
infused patients, 12 had a nonconforming prod-
uct, thus 102 patients were evaluable in the FULL 
cohort (CORE cohort = 73).87 In the CORE 
cohort, the median age was 60 (20–82) years and, 
at least 50% were DLBCL cases refractory to 
three or more lines of therapy, and 38% had failed 
a prior auto-HCT. Preliminary analysis was 
reported previously.84,85 The updated analysis has 
a median follow up of 12 months reporting the 
best ORR (CR) rates in the FULL and CORE 
cohorts of 75% (55%) and 80% (59%), respec-
tively. The 6-month ORR and CR rates in the 
CORE cohort were 47% and 41%, respectively. 
Responses rates were not affected by high-risk 
DLBCL characteristics such as double-hit lym-
phoma status, chemorefractory disease or prior 
auto-HCT failure. The median DoR was not 
reached in CR patients in the FULL and CORE 
cohorts, confirming findings of prior reports.84,85 
The 12-month OS was 63% in all responders and 
89% those achieving CR. A total of 93% patients 
with CR as best response at 6 months had ongoing 
response at data cutoff (Tables 2 and 3).87

Clinical activity of CAR T-cell therapy for DLBCL 
outside clinical trials. With the approval of axi-cel 
and tisagenlecleucel for the treatment of refrac-
tory DLBCL, there was growing interest in 
reporting the efficacy of this therapy in real clini-
cal practice and outside clinical trials. In an effort 
to replicate the results of the ZUMA-1 trial with 
axi-cel, an extraordinary effort was carried out by 
23 US cancer centers with experience and with 
certification to treat patients with CAR T-cell 
therapy. To date, there are no reports of tisagenle-
cleucel in DLBCL outside clinical trials.

The first study was reported by Nastoupil and col-
leagues88 and included 295 patients, with 274 
patients treated. The final CAR T-cell product did 
not meet FDA specifications in seven patients. 
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The median time of axi-cell manufacturing was 
21.5 days. As opposed to ZUMA-1 trial, around 
55% patients received any form of bridging ther-
apy (chemotherapy, targeted therapy or radiation). 
General characteristics included a median age of 
60 (21–83), stage III/IV in 83%, performance sta-
tus (PS) 0–1 in 81%, three or more lines of therapy 
in 75% of cases and relapsed postauto-HCT in 
33%. Interestingly, 43% of patients (124/286) 
would have not been eligible for the ZUMA-1 trial 
(such as platelets < 75 000, ejection fraction < 
50%, prior allo-HCT, among other factors). The 
overall efficacy was similar as to the ZUMA-1 trial 
with 3-month ORR and CR rates of 81% and 
57%, respectively.

The second study, presented by Jacobson and 
colleagues,89 included 108 patients infused with 
axi-cel; of those, 104 were evaluable for efficacy. 
The median age was 63.8, PS 0–1 in 90% of 
cases, prior auto-HCT in 27%, prior allo-HCT in 
3%. About 52% of the evaluable patients received 
bridging chemotherapy after apheresis; 60% of 
patients would have not met criteria for the 
ZUMA-1 clinical trial. In the 95 patients evalua-
ble for response, the best ORR and CR rates were 
71 and 44%, respectively. Similarly, about 50% 
of patients who initially had a PR, achieved CR at 
a later time.

These two reports concluded that the efficacy of 
axi-cel in refractory disease could be replicated 
outside the strict eligibility criteria of clinical tri-
als. It should be highlighted that this therapy 
needs to be offered in centers with experience and 
capability of administering high-risk immuno-
therapy and cellular therapies (Table 4).

CAR T-cell therapy for indolent lympho-
mas. Although trials using anti-CD19 CAR T 
cells focus mainly on aggressive B-cell lympho-
mas, the first patients to receive this type of ther-
apy were those having indolent NHLs. The 
first-generation anti-CD19 CAR T-cells (without 
costimulation) reported no clinical efficacy in FL 
cases.67 The first case successfully treated with 
anti-CD19 CAR T cells with CD28 as the costim-
ulatory domain was reported by the NCI in a 
refractory FL patient achieving long-term remis-
sion.68 A subsequent NCI study with CD28 anti-
CD19 CAR T cells reported PR of 100% in five 
indolent NHL patients (four FL and one MZL) 
with 75% having ongoing responses at the time 

the study was published.90 These patients received 
a conditioning regimen consisting of cyclophos-
phamide 60 mg/kg × 2 days and fludarabine 
25 mg/m2 × 5 days.90

In the 32 patients treated with the 4-1BB CAR 
T-cell construct (1:1 CD4/CD8 ratio) from 
FHCRC, there were 5 evaluable FL patients and 
the reported ORR and CR rates were 80% (4/5) 
and 40% (2/5), respectively.70

The largest data in FL to date come from the 
CTL019 CAR T cell from the University of 
Pennsylvania that included 14 FLs. These FL 
patients had relapsed within 24 months of initial 
diagnosis and remained refractory to least two 
lines of therapy.71,91 Patients received a variety of 
conditioning regimens such as bendamustine 
70 mg/m2 × 2 days, cyclophosphamide, radiation 
plus cyclophosphamide and fludarabine–cyclo-
phosphamide. This trial included FL patients 
with poor prognosis features, including prior 
multiple therapies (median of five), relapsed pos-
tauto-HCT (21%) and allo-HCT (one patient). 
The updated analysis showed a 3-month ORR 
and CR of 79% (11/14) and 71% (10/14), respec-
tively. The median PFS was not reached and 70% 
of FL patients were disease free at a median fol-
low up of 28.6 months.73,91

These data support anti-CD19 CAR T-cell therapy 
as a promising alternative therapy in poor-risk FL, 
despite the low number of patients; and it may have 
a curative potential given the long-term ongoing 
responses. The ZUMA-5 is a dedicated indolent 
B-cell NHL trial that is currently enrolling patients 
[ClinicalTrials.gov identifier: NCT03105336].

CAR T-cell therapy for MCL. The experience with 
autologous anti-CD19 CAR T-cell therapy in 
MCL is limited to a few cases in single-center clini-
cal studies. The 4-1BB CAR T-cell trial at the 
FHCRC with fixed CD4:CD8 ratio included four 
patients with MCL that received doses of 2 × 105–
107 CARs/kg. The ORR was 25% (no CR).70 The 
NCI-based CD28-CAR T-cell trial reported a 
long-term CR (>17 months) in an MCL.63 The 
University of Pennsylvania (U Penn)-based 
CTL019 CAR T-cell trial included two patients 
with MCL having 50% ORR (no documented 
CR).71 Albeit limited experience, there seems to  
be promising activity of anti-CD19 CAR T cells  
in refractory MCL. We are eagerly awaiting the 
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preliminary results of the ZUMA-2 clinical trial of 
axi-cel in patients with ibrutinib-refractory MCL 
[ClinicalTrials.gov identifier: NCT02601313].

CAR T-cell-therapy-related toxicity
The toxicities related to CAR T-cell therapy were 
initially described in the earlier studies in B-cell 
lymphomas and ALL.62,70,92,93 There are two 
main categories of toxicity: CRS and neurotoxic-
ity or CAR T-cell-related encephalopathy syn-
drome (CRES). Organ damage can accompany 
CRS (renal failure, cardiac dysfunction, liver dys-
function, etc.).94,95

Cytokine-release syndrome
CRS is an excessive inflammatory response caused 
by overactivation of immune-effector cells that 
leads to significant release and elevation of inflam-
matory cytokines such as IL-1, IL-2, IL-6, IL-10, 
IL-15, interferon (IFN)-γ and tumor necrosis fac-
tor (TNF). This occurs typically in patients that 
receive CAR T-cell therapy.94–96 Patients, with this 
inflammatory response, present with a variety of 
symptoms, such as fevers, general malaise, hypo-
tension, and hypoxia. In severe cases, irreversible 
organ damage and death can occur.95,96

The most important factors for successful treat-
ment of CRS are early identification and accurate 
grading in order to guide optimal management. 
Grading is based on hemodynamic instability, 
degree of hypoxemia, organ damage and presence 
of comorbidities. Patients with grade 3 and 4 
CRS (and sometimes grade 2 in patients with 
important comorbidities) usually require aggres-
sive measures, such as vasopressors, management 
in the intensive care unit, anticytokine therapy 
and steroids. As IL-6 is a key player in the etiol-
ogy of CRS, the administration of tocilizumab 
(anti-IL-6 receptor) and siltuximab (anti-IL-6 
antibody) have become standard approaches for 
the CRS management.92,95,96

There are clinical factors that correlate with the 
development of CRS, such as disease burden (spe-
cifically in ALL) and dose of CAR T cells.62,70,80,92,93 
Increased levels of TNF (TNF-alpha), IL-2R, 
IL-6, IFN-γ, IL-10, IL-15, and ferritin have dem-
onstrated association with severity of CRS.62,70 
Peak CRP levels have been shown to directly cor-
relate with CRS severity and can be used as a  
surrogate marker for early treatment/supportive 

care.92 Recent preclinical work in mouse models 
helped clarify further the potential etiology of CRS 
and NT. In two separate studies, the role of mono-
cytes/macrophages and cytokine production upon 
interaction with CAR T cells, especially as a source 
of inflammatory cytokine production and kinetics 
(notably, IL-1 elevation preceded the IL-6 rise), 
showed the role of IL-1 blockade in potentially 
preventing CRS and NT.97,98

Neurotoxicity
NT is another common complication of CAR 
T-cell therapy that is less understood than CRS. 
Symptoms of NT can sometimes overlap to those 
seen in CRS. Patients have a variety of symptoms 
such as confusion, obtundation, tremors and 
headaches. Other symptoms such as aphasia, cra-
nial nerve abnormalities and seizures have been 
described. As in CRS, early identification and 
adequate grading is strongly recommended. 
Tools such as mini mental-status evaluation have 
been used commonly to grade NT. A more spe-
cific (and simplified) defined criterion for meas-
urement of NT, also known as CRES, was 
recently developed.94 The role of anti-IL-6 ther-
apy is unclear and does not seem to have a benefi-
cial role in treatment of NT, thus the mainstay 
treatment of CRES is steroids. Neurology evalua-
tion with brain imaging, cerebrospinal fluid 
(CSF) examination and electroencephalogram 
(EEG) assessments is usually recommended to 
rule out other causes.

Additionally, NT appears to be cytokine driven.62 
The ZUMA-1 described how elevated levels of 
IL-2, ferritin and GM-CSF were significantly 
associated grade ⩾ 3 NT.99 Baseline higher tumor 
burden, elevated lactate dehydrogenase (LDH), 
CRP and ferritin were associated with neurotox-
icity and CRS in the JULIET trial.80 The initial 
report of biomarkers in the TRANSCEND study 
demonstrated an eightfold increased risk of CRS 
and neurotoxicity with elevated LDH (>500/µl) 
and tumor burden (>50 cm2).100 Disruption of 
the blood–brain barrier (BBB), endothelial acti-
vation and increased IL-1 levels have been 
recently described as potential drivers of NT.98,101

In general, the vast majority of CAR T-cell-related 
toxicities resolve within few weeks as reported in 
both single-center and pivotal multicenter studies; 
however, CAR T-cell fatalities have also been 
reported.62,70,74,90 While, the symptoms and signs 
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of each type of toxicity may overlap, it is important 
for the clinician to recognize these potential com-
plications, as they could be life threatening and, in 
certain circumstances, lead to death. The diagno-
sis and management of CRS and CRES have been 
extensively discussed in other publications.94–96

The multicenter ZUMA-1, JULIET and 
TRANSCEND trials have reported CAR T-related 
toxicity with some differences in frequency, timing 
and severity. These variations are possibly due to 
differences in patient population, disease subtypes 
(and clinical presentation), use of bridging chemo-
therapy, use of different toxicity grading systems 
and differences in CAR T-cell constructs. The Lee 
criteria96 were used to grade CRS in ZUMA-1 and 
TRANSCEND studies while the U Penn Criteria 
were used for severity stratification of CRS in the 
JULIET trial.102 Table 5 describes the frequency 
and features of CAR T-related toxicities in the 
three multicenter studies in NHL.

Toxicities such as CRS and NT were also described 
in the outside clinical trials (real clinical experience). 
In general, the rates of toxicity were somewhat simi-
lar to what it was seen in clinical trials, except for 
one of the reports that showed lower CRS grade ⩾ 
3. Another interesting finding was that higher rates 
of tocilizumab and steroid use were reported. We 
believe that this underscores the fact that centers 
may treat CRS and NT more aggressively or that 
there is a better knowledge that steroids or tocili-
zumab does not affect efficacy of CAR T cells. 
Table 4 describes a comparison of toxicities seen in 
ZUMA-1 and outside clinical trial experience.

Challenges in CAR T-cell therapy: potential 
interventions

Overcoming resistance
Availability of CAR T-cell therapy has changed the 
treatment landscape of refractory DLBCL. 
Unfortunately, about 50–60% of patients will not 
achieve a CR or will relapse after CAR T-cell ther-
apy. Thus, understanding the mechanism of relapse 
after CAR T-cell treatment is paramount. One 
mechanism is CD19 immunological antigen 
escape, as CD19-negative B-cell malignancy 
relapses have been reported.103 Inability to express 
CD19 in B-cell malignancies due to epitope/anti-
gen loss of the CD19 through splicing/mutation 
mechanisms have been described as resistance 
mechanism or relapse in patients receiving 

CD19-directed therapy (such as CARs or bispecific 
antibodies).77,104,105 Another potential mechanism 
is increased activation of the programmed cell-
death 1/programmed cell-death ligand 1 (PD-1/
PD-L1) pathway that has been seen in relapsed 
DLBCL post CAR T-cell therapy.77

One approach to overcome resistance is by targeting 
a different antigen. Anti-CD20 CAR T cells showed 
modest activity in earlier studies but with greater 
efficacy once costimulation with 4-1BB was 
added.67,106 An ORR and CR rate of 80–83% and 
17–50% were described in two different trials, 
respectively.107,108 Another target, CD22, has shown 
antilymphoma activity in preclinical studies.109 
Although these results are focused on CD22+ 
B-cell ALL, there are ongoing trials for refractory 
CD22+ B-cell NHLs [ClinicalTrials.gov identifi-
ers: NCT02315612, NCT02794961].110 Bispecific 
CARs targeting CD19 and CD20 antigens for 
B-cell malignancies have been developed (CD19-
OR-CD20 CAR) with significant preclinical activ-
ity, even in CD19-negative tumor cells.111 Hossain 
and colleagues,112 from Stanford University, pre-
sented preliminary data on CD19/CD22 bispecific 
CAR T cells in nine patients (five DLBCL and four 
B-cell ALL) that showed clinical activity (one CR 
and two PRs in the DLBCL cohort) and a tolerable 
toxicity profile. PD-1 inhibition has become an 
attractive approach, with reported success in case 
reports.113,114 A trial of atezolizumab (anti PD-L1 
inhibitor) plus axi-cel (ZUMA-6) was presented 
and included 12 patients with three different 
cohorts. The clinical activity was promising with an 
ORR of 92% (CR 58%). Of note, albeit in its early 
phase, there was a higher grade 3 NT (50%) in 
comparison with the reported NT of ZUMA-
1.115,116 Other checkpoint inhibitors such as pem-
brolizumab and durvalumab are being studied 
[ClinicalTrials.gov identifiers: NCT03310619, 
NCT03630159]. Other agents with the potential to 
improve activation, expansion, and persistence such 
as utomilumab (4-1BB agonist), ibrutinib and 
avadomide (CC-122, an immunomodulator) are 
also being tested in combination with different CAR 
T-cell products [ClinicalTrials.gov identifiers: 
NCT03331198, NCT03310619, NCT03704298].

Patient selection/timing
With two available CAR T-cell products for refrac-
tory DLBCL after at least two preceding lines of 
therapy (excluding patients with primary central 
nervous system lymphoma) there is no guidance on 
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the FDA label with regards to (a) specific 
condition(s) where one product is to be favored 
over another. Early referral to centers certified to 
prescribe CAR T-cell therapies is strongly encour-
aged to avoid toxicities from ineffective chemoim-
munotherapies.117 Another issue is the time from 
apheresis to infusion of CAR T cells that can range 
between 2–5 weeks, depending of the CAR con-
struct and preauthorization (by private insurances). 
This time could be critical for patients with an oth-
erwise aggressive and refractory disease. Readily 
available CAR products are donor-derived CAR T 
cells (allogeneic) that seem feasible and safe.118,119 
Donor-derived CAR T cells were initially reported 
by the NCI in CD19+ B-cell malignancies, includ-
ing DLBCL, ALL and CLL with clinical efficacy. 
The CAR T-cell production took 8 days. 
Interestingly, no cases of acute graft versus host dis-
ease (GVHD) were reported but two cases of 
chronic GVHD were.120 In order to further mini-
mize the risk of GVHD, another approach is to 
suppress the TCRs by genome editing: by disrupt-
ing the expression of the alpha or beta TCR chains 
using different technologies; the transcription-acti-
vator-like effector nucleases being one of the best 
known methodologies.121

Cost/Financial toxicity
The excitement of this promising therapy for 
DLBCL has been tempered by its hefty cost of 
$375,000 for the CAR T-cell product alone with-
out accounting for cost of hospitalization and 
treatment of complications such as CRS and 
CRES, which could amount to additional hun-
dreds of thousands of dollars. It is important to 
consider these factors for pharmacoeconomic 
analysis in order to determine pricing-, coverage- 
and outcome-based reimbursement, as well as to 
the added value to society.122

Conclusions
CD19- targeted CAR T-cells represent the new 
standard of care for patients with DLBCL that 
are refractory to at least two prior lines of therapy. 
While this represents a significant addition to the 
treatment armamentarium of DLBCL, approxi-
mately 50% of cases will continue to succumb to 
their disease. As a result, future research must 
focus on identifying disease-, treatment- or 
patient-related factors that can help successfully 
predict treatment outcomes. For patients who fail 

to achieve early CR (defined as within 90 days), 
early therapeutic interventions with immune 
modulators or checkpoint inhibitors, or others, 
represent interesting questions that will need to 
be studied in ongoing and future clinical trials.
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