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ABSTRACT Microbial communities typically contain many rare taxa that make up the majority of the observed membership, yet
the contribution of this microbial “rare biosphere” to community dynamics is unclear. Using 16S rRNA amplicon sequencing of
3,237 samples from 42 time series of microbial communities from nine different ecosystems (air; marine; lake; stream; adult hu-
man skin, tongue, and gut; infant gut; and brewery wastewater treatment), we introduce a new method to detect typically rare
microbial taxa that occasionally become very abundant (conditionally rare taxa [CRT]) and then quantify their contributions to
temporal shifts in community structure. We discovered that CRT made up 1.5 to 28% of the community membership, repre-
sented a broad diversity of bacterial and archaeal lineages, and explained large amounts of temporal community dissimilarity
(i.e., up to 97% of Bray-Curtis dissimilarity). Most of the CRT were detected at multiple time points, though we also identified
“one-hit wonder” CRT that were observed at only one time point. Using a case study from a temperate lake, we gained additional
insights into the ecology of CRT by comparing routine community time series to large disturbance events. Our results reveal that
many rare taxa contribute a greater amount to microbial community dynamics than is apparent from their low proportional
abundances. This observation was true across a wide range of ecosystems, indicating that these rare taxa are essential for under-
standing community changes over time.

IMPORTANCE Microbial communities and their processes are the foundations of ecosystems. The ecological roles of rare microor-
ganisms are largely unknown, but it is thought that they contribute to community stability by acting as a reservoir that can rap-
idly respond to environmental changes. We investigated the occurrence of typically rare taxa that very occasionally become more
prominent in their communities (“conditionally rare”). We quantified conditionally rare taxa in time series from a wide variety
of ecosystems and discovered that not only were conditionally rare taxa present in all of the examples, but they also contributed
disproportionately to temporal changes in diversity when they were most abundant. This result indicates an important and gen-
eral role for rare microbial taxa within their communities.
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Microbial communities predominate Earth’s diverse eco-
systems, contributing immense biomass and underpin-

ning integral biogeochemical processes. They sustain the bases
of food webs, provide key natural products that support human
health and energy needs, and recycle carbon and nutrients that
would otherwise stagnate. Despite the central role of microbial
communities in biological systems, we are just beginning to
understand the intricate interactions between their members
and how these interactions contribute to ecosystem functions.
Of particular interest is the role of rare microorganisms within
a community, which make up the majority of the observed
membership at any given time (1–5) (see Fig. S1 in the supple-
mental material). Determining whether these taxa remain rare
or periodically bloom to abundance will change our under-
standing of each organism’s role in microbially mediated eco-

system functions and, importantly, in the stability of ecosys-
tems in general.

Rare microbial community members encompass an immense
diversity (the “rare biosphere”) (6–9). Still, the ecological roles of
the vast majority of rare microorganisms remain unclear. Some
rare microorganisms are likely on their way to local extinction (8)
or are transient taxa that are “passing through” an environment
(10–13). Some rare taxa may even be active, providing important
functions that are disproportionate to their abundance or growth
rate (14–16), and others may be dormant or inactive, awaiting
favorable environmental conditions to grow (17, 18). An increase
in the abundance of rare microorganisms that “wait” for favorable
environmental conditions could be attributed to growth from low
abundance, to awakening from dormancy, or to differential sur-
vival (i.e., escape from predation). Though there are a variety of

RESEARCH ARTICLE crossmark

July/August 2014 Volume 5 Issue 4 ® mbio.asm.org 1

http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01371-14&domain=pdf&date_stamp=2014-7-15
mbio.asm.org


ecological explanations for rare-to-prevalent dynamics, we still
lack general empirical documentation of the phenomenon among
microbial communities, and so their general incidence remains
uncertain.

Because rare microbial taxa are difficult to observe, even less is
known about their dynamics than is known about their ecological
roles. A key unknown is how often rare taxa become abundant and
hence play a potentially greater role in the ecology of a given sys-
tem. However, there are a small but growing number of studies
that have documented the dynamics of rare microbial taxa and
provide some insights. For example, in the Arctic Ocean, rare
microorganisms exhibited biogeography, indicating that some
rare taxa, like more abundant taxa, have distributions based on
their ecological requirements (19). In a sulfide-rich artesian
spring, rare taxa exhibited patchiness over 1 mm (20), which also
suggests that rare taxa can have clear distributions at fine spatial
scales. Additionally, some coastal sand communities have rare
members that do not often become abundant, suggesting that
these members have a minimal influence on biogeochemical pro-
cesses (21). Conversely, in other coastal sand communities, rare
microbial taxa were shown to be as sensitive as prevalent taxa to
environmental changes caused by an off-shore oil spill (22). The
discrepancy between the latter two studies highlights our modest
knowledge of the potential contributions of rare taxa and espe-
cially calls into question whether such conclusions are transferable
to other ecosystems. Therefore, to understand the general impor-
tance of rare microbial taxa, their contributions to the larger com-
munity and their dynamics, we must systematically interrogate
microbial communities from a variety of ecosystems by using con-
sistent methods.

The availability of inexpensive, high-throughput sequencing
technologies has led to an increased number of temporal studies of
microbial communities (23). One of these studies identified a mi-
crobial taxon that bloomed to abundance from an apparently per-
sistently rare state (24, 25). The dynamic of rarity to prevalence
has also been observed in two other studies of marine bacterio-
plankton (14, 26). Here, we asked how the pattern of microbial
rarity to prevalence is manifested in communities inhabiting very
different ecosystems. We refer to microbial taxa that are typically
in low abundance in one locality but occasionally become preva-
lent over time as “conditionally rare.”

Our objective was to understand the incidence of conditionally
rare taxa (CRT) and their contribution to changes in microbial
communities through time. We introduce a simple method for
identifying CRT from temporal studies of diverse microbial com-
munities and apply this method to a suite of time series data sets
generated by using 454 pyrosequencing or Illumina sequencing of
16S rRNA gene fragments. Each data set contained a large percent-
age of very rare taxa, as typical for microbial communities (see
Fig. S1 in the supplemental material). These data sets were previ-
ously analyzed by using a closed-reference operational taxonomic
unit (OTU)-picking protocol (27) for direct comparison of their
temporal patterns (see Table S1 in the supplemental material)
(28). Because this OTU-picking protocol discards reads that do
not match reference sequences at a minimum of 97% identity, it
minimizes the rare OTUs arising from sequencing or PCR errors.
The closed-reference protocol also avoids the “OTU splitting”
that may occur when OTUs are defined by using a de novo proto-
col. We show that within many ecosystems, CRT contributed to
temporal patterns of microbial diversity disproportionately to

their relative abundances, suggesting an important role for CRT in
structuring microbial communities over time. We also explicitly
examine the influences of sampling frequency, study duration,
and sequencing depth on the detection of CRT.

RESULTS
A simple method for detecting CRT. Conditionally rare dynam-
ics are exhibited when a taxon that is usually in low abundance or
below the limit of detection occasionally blooms to an abundance
appreciable at the community level. Thus, the frequency of a con-
ditionally rare taxon’s abundance over time exhibits a bimodal
distribution. The lower mode of the distribution is near zero at the
time points when the taxon was rare or undetected, and the upper
mode is centered at the taxon’s average abundance during a
“bloom.” A statistical method for detecting a bimodal distribution
is to compute the coefficient of bimodality, b (29). We used this
coefficient to detect CRT. From the distribution of a taxon’s levels
of abundance through time, the coefficient of bimodality, b, is
calculated as follows:

b �
(1 � skewness2)

(kurtosis�3)

where skewness is defined as follows:

�i�1
n (xi � x�)3 ⁄ n

[�i�1
n (xi � x�)2⁄n]3⁄2

and kurtosis is defined as follows:

�i�1
n (xi � x�)4⁄n

�i�1
n (xi � x�)2⁄n]2

The coefficient, b, ranges from 0 to 1, where 1 indicates the
extreme case of the Bernoulli distribution (as in a binary data set;
see Fig. S2A in the supplemental material). Thus, we identified
bimodal taxon abundance distributions and then set a minimum
relative abundance threshold of �0.01 and confirmed that we
were able to identify a previously described conditionally rare
Vibrio taxon in the western English Channel time series (24, 25)
(see Fig. S2B). We also discovered two additional Vibrio taxa that
exhibited similar but distinguishable dynamics in the western
English Channel (see Fig. S2B) and confirmed that taxa with sea-
sonal or irregular dynamics did not have a b value, �0.90 (see
Fig. S2C). Thus, this method identified known and unknown CRT
but excluded taxa that did not have rare-to-prevalent dynamics.

As each data set in this analysis had different sequencing ef-
forts, sampling durations (numbers of days), and intensities
(numbers of sampling events per unit of time), it was important to
determine how these affected the recoverable enumeration of
CRT. To address this, we used three of the most comprehensive
data sets available in terms of sequencing effort, study duration,
and sampling intensity. The first data set was a human-skin-
associated community (male M3, right palm, 8,230 taxa) sampled
approximately daily for 1 year and sequenced with Illumina tech-
nology (rarefied to 5,031 reads per sample). The second data set
was a less rich temperate lake community (Trout Bog epilimnion,
Wisconsin, 1,816 taxa) sampled periodically over 4 years with
more intensive sampling during the ice-free season and sequenced
with Illumina (rarefied to 5,134 reads per sample). The third data
set comprised a marine surface water site in the western English
Channel L4 (2,017 taxa) that was sampled approximately monthly
for 6 years and sequenced by 454 pyrosequencing (rarefied to
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3,526 reads per sample). We subsampled these time series along a
range of sampling intensities and study durations and then calcu-
lated the percentages of CRT (see Fig. S3 in the supplemental
material). From these analyses, it is clear that sampling intensity
has a greater influence on the detection of CRT than the study
duration does. Analysis of the impact of the number of samples
included in a study revealed the same pattern across ecosystems
(see Fig. S3), suggesting that sampling intensity is the most critical
factor and should be taken into consideration when designing
studies to explore CRT dynamics. Temporal sampling intensity
will be an ecosystem-specific parameter that depends on the an-
ticipated rate of community turnover or average life span of mi-
croorganisms in the system (30). See the supplemental material
for additional considerations and recommendations for detecting
CRT.

As expected, the time series with fewer sequence reads per sam-
ple had a higher percentage of CRT at a given sequencing depth
(see Fig. S3E). This is because CRT made up a larger percentage of
an inadequately sequenced community, which is an artifact of
undersampling. The more undersampled the community, the
larger the contribution of any taxon, including a conditionally
rare taxon, will appear. Thus, unless a community is sequenced
exhaustively and sampled at an intensity and duration appropriate
for the community and range of environmental conditions in an
ecosystem, the number of CRT detected will remain a conserva-
tive estimate.

CRT are ubiquitous and contribute disproportionately to
community changes. Acknowledging that detection of CRT will
be a conservative estimate and will improve with increasing sam-
pling intensity and duration appropriate to the expected commu-
nity turnover in an ecosystem, we applied our method to the time
series spanning nine distinct ecosystems, 42 microbial communi-
ties (consortia sampled at a given locality), and 3,237 individual
observations. We found that each community included taxa that
exhibited rare-to-prevalent dynamics. The incidence of CRT
ranged from 1.5 to 28% of the total community membership
(Fig. 1A) (b value, �0.90; relative abundance, �0.5%); however, it
is important to note that when comparing CRT contributions to
different ecosystems, these values should not be interpreted as
absolute. To determine the contribution of CRT to the temporal
dynamics of the community (temporal community dissimilarity),
we calculated the fraction of Bray-Curtis similarity attributable to
CRT (Fig. 1B and 2; see Materials and Methods), which ranged
from 0 to 97% of the total community dissimilarity between time
points (Fig. 2). This is because when CRT were abundant, their
dynamics often explained a large fraction of the community dis-
similarity. Interestingly, some ecosystems, such as the human gut
(Fig. 2C), exhibited relatively more punctuated contributions of
CRT to community dissimilarity over time, while other ecosys-
tems, such as air (Fig. 2A), exhibited a more consistent contribu-
tion of CRT.

CRT represented a broad range of phylogenetic diversity (see
Fig. S4 in the supplemental material), with most environments
being dominated by Proteobacteria, except for the infant and adult
human guts, which were dominated by Firmicutes, and the human
tongue, which had an equal contribution from Cyanobacteria
(likely chloroplasts from food matter). There was no evidence that
CRT consistently represented certain lineages when different eco-
systems were compared (see Fig. S4 in the supplemental material).
Additionally, within a community, there were similar lineages

represented among CRT and the whole community membership
(see SOM in Fig. S5).

Again, because of the differences in sampling and sequencing
strategies across data sets (28), we encourage readers to consider
the general trends in CRT rather than absolute values. However,
despite these nuances, these data show not only that CRT are
widespread members of microbial communities but also that CRT
contribute to community level temporal changes disproportion-
ately to their relative abundances.

Synchrony among CRT transitions. To determine whether
multiple CRT were synchronized in their transitions from rarity to
prevalence, we performed hierarchical cluster analyses. Within
each community, we found discrete clusters of CRT that shared
the same occurrence patterns over time, as well as some CRT that
had occurrence patterns that were independent and did not occur
with other CRT (Fig. 3). These results suggest shared environmen-
tal drivers or shared sources of dispersal for synchronous CRT (see
SOM in Fig. S6 in the supplemental material).
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FIG 1 Incidences of CRT and their contributions to community dissimilar-
ity. (A) Incidences of CRT across different ecosystems. Error bars are standard
deviations of the means, but none are reported when n � 1 time series. (B)
Fraction of temporal community dissimilarity attributed to the dynamics of
CRT. Each open diamond is the mean of an ecosystem, whiskers are the lower
and upper quartiles, and closed circles show outliers. b value, �0.90; relative
abundance, �0.5%. (C) CRT observed only once in a time series, when bloom-
ing (one-hit wonders). WWT, wastewater treatment.
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One-hit wonders: can we attribute CRT to large dispersal
events? One mechanism of CRT dynamics could be the immigra-
tion and temporary bloom of a foreign taxon. In our data sets, this
would be indicated by a taxon that was below the limit of detec-
tion, achieved abundance at one time point, and subsequently
returned to undetectability; we refer to taxa exhibiting this dy-
namic as “one-hit wonders.” We wanted to understand how many
CRT could be designated one-hit wonders, which would allow us
to refine hypotheses about the potential for immigration events to
affect community dynamics. We found that while the majority of
CRT were detected at multiple time points, a subset of CRT were
detected only when they bloomed, possibly because of immigra-
tion followed by a bloom and a crash (one-hit wonders: median,
9% of detected CRT; minimum, 0%; maximum, 53%, Fig. 1C).
Generally, those communities that had relatively higher levels of
temporal variability (i.e., air and stream communities) had more
one-hit wonders than communities that were more stable (i.e.,
lake hypolimnia) (28). An exception to this were the brewery
wastewater treatment communities, which were relatively stable
but had high percentages of one-hit wonders; however, this time
series also had a low sampling intensity, which could contribute to
an increase in CRT as discussed above. Another scenario is that a
one-hit wonder was always present but below the limit of detec-
tion. Because the percentage of one-hit wonders was moderately
correlated to the sampling intensity (Pearson’s correlation coeffi-
cient, �0.51; P � 0.0005), longer or more intensely sampled time
series may reveal multiple occurrences of a conditionally rare
taxon that was originally designated a one-hit wonder.

Unraveling CRT ecology by comparing time series to distur-
bance events. We propose two classifications of CRT: those that
contribute to community dynamics given routine environmental
changes (e.g., seasonal changes) (31) and those that contribute
after a drastic disturbance. We distinguished these two classifica-
tions of CRT in a temperate lake microbial community that was
the object of a whole-ecosystem disturbance experiment (32). The
community was observed over the ice-free seasons in 2007, 2008,
and 2009, and the disturbance experiment was conducted in July
2008. Using the temporal study as a baseline to understand rou-

tine dynamics, we could determine CRT that were important for a
community response to the disturbance, helping to understand
ecological drivers of CRT.

In this study, the epilimnion and hypolimnion thermal layers
of a small bog lake (North Sparkling Bog, Wisconsin) were forced
to mix at peak summer stratification (July 2008) with two large
membranes that oscillated in the water column over the deepest
point of the lake for 8 days until thermal homogeneity was
achieved. The epilimnion was warm and oxygenated and had high
light penetration, while the hypolimnion was cold and anaerobic
and had low light penetration. Usually, thermal stratification
weakens every spring and autumn as cool air causes the epilim-
nion temperature to decrease and meet the hypolimnion temper-
ature, initiating seasonal mixing. Previous work showed that the
microbial community structure and chemistry recovered to their
predisturbance state within 20 days after the forced mixing in
summer and that the hypolimnion community was more sensitive
to mixing than the epilimnion (32). Therefore, we focused on the
response of hypolimnion CRT to the forced mixing in summer.

A total of 24 CRT (b value, �0.90; relative abundance, �0.005;
see SOM in the supplemental material) were detected in the hy-
polimnion of North Sparkling Bog between 2007 and 2009.
Changes in the abundance of these 24 CRT could be described by
four distinct patterns of increased relative abundance: (i) re-
sponding to natural and forced mixing events (Fig. 4A), (ii) re-
sponding only to the forced mixing event (Fig. 4B), (iii) respond-
ing only to the natural mixing events (Fig. 4C), and (iv) at times
that were not defined by any type of mixing (Fig. 4D). The first
group of CRT were probably driven by key environmental condi-
tions associated with the phenomenon of mixing (i.e., oxygen-
ation of the hypolimnion, redistribution of nutrients in the water
column) and were unaffected by seasonal differences. This dy-
namic suggests that these CRT were rare but always present. The
second group of CRT likely gained a competitive advantage given
the novel environmental conditions caused by the forced mixing
in summer. For example, OTU 333636, a member of the deltapro-
teobacterial family Haliangiaceae (Fig. 4B), bloomed after anaer-
obic conditions had been reestablished in the hypolimnion imme-
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diately following the forced mixing event but while the
temperature remained elevated above typical seasonal averages
(31), suggesting that this CRT thrives in warm and anaerobic wa-
ters, which would never have occurred during natural mixing
events. The third group of CRT likely had seasonal constraints,

and the fourth group of CRT may use multiple strategies to adapt
to an increasing biomass, or similar but unmeasured environmen-
tal niches were established periodically. Included in the fourth
group was a one-hit wonder that did not increase during the
forced mixing in summer.
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Color gradient key
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Infant gut time seriesStream
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FIG 3 CRT clustered by shared occurrence patterns in representative time series. Each taxon was most abundant at the time point colored black. b value, �0.90;
relative abundance, �0.5%. WWT, wastewater treatment.
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DISCUSSION

Our results show that CRT can influence changes in microbial
community structure. CRT contributed from 0 to 97% of the vari-
ability in the observed temporal community dissimilarity.
Though it may seem obvious that CRT would contribute the most
to temporal community dissimilarity during their transitions, it
was unexpected that they would contribute so disproportionately
(i.e., up to 97%) compared with their relative abundance during a
“bloom” (mean relative abundance during a bloom, 2.7%; me-
dian, 1%). Our previous analysis suggested that the longer a com-
munity is observed, the more the perceived magnitude of the
changes in community structure is reduced, suggesting very low
rates of community change over long-term observations (28). To-
gether, these results indicate that many baseline temporal changes
in bacterial and archaeal diversity may be attributed to changes in
the relative contributions of taxa that already exist within the
community, including CRT transitions.

We provide a simple tool for identifying CRT and suggest that,
on the whole, CRT comprise taxa that are always present and that
it is less common for these taxa to be introduced by a dispersal

event. However, while our strategy identifies taxa that can be tar-
geted for further analysis, it does not explicitly reveal the ecologi-
cal mechanisms of CRT within a community. These mechanisms
are diverse and numerous, and determining the ecological prop-
erties of individual taxa is difficult and costly (33–35). However,
we provide one example in which we capitalized on a temporal
lake study to deduce CRT ecology by contrasting routine dynam-
ics with a disturbance. In doing so, we were able to distinguish
CRT that responded to both natural and forced mixing events
from those that responded only to a forced event. These methods
provide a springboard for hypothesis generation and are useful for
understanding the contributions of CRT to different types of eco-
logical dynamics. For example, in the context of human microbial
consortia, similar analyses may be done in instances of pathogen
invasion or pathobiont formation to understand when, how, and
under what environmental conditions a typically rare or invasive
member of the human microbiome is able to thrive following such
a disturbance.

Though we cannot prove that one-hit-wonder CRT are not
artifacts due to PCR (36) or sampling anomalies (37), the fact that
the majority of CRT were observed multiple times within a series
suggests that this scenario is not common and asserts that CRT
would remain important contributors to community dynamics
despite occasional misidentification due to artifacts. In reality,
one-hit-wonder CRT likely comprise a combination of newly dis-
persed taxa that fail to thrive long term, rare but persistent taxa
that fall below the level of detection when not blooming, CRT that
were not observed long enough to detect subsequent blooms (in-
sufficient time series), and artifacts.

There have been two distinct approaches to considering the
rare biosphere in microbial ecology: (i) deep sequencing to detect
as many rare members as possible (6) and (ii) omission of the
entire rare “tail” to clarify overarching community patterns,
whether arbitrary (e.g., 50 or fewer sequences) or methodological
(e.g., after determining the abundance cutoff at which rare taxa do
not contribute substantially to community dissimilarity) (38). Al-
though the ecological roles of many rare taxa are unknown, it has
been suggested that rare taxa are not necessarily important for the
comparison and interpretation of microbial community patterns
(10, 38). As more data from temporal studies of microbial com-
munities are collected, it is likely that the dynamics of CRT will
play an increasingly important role in our understanding of both
the subtle temporal variability (39) and the disturbance responses
of microbial communities. Furthermore, we know that some rare
taxa play critical ecological roles in ecosystems, for example, di-
azotrophs in seawater (40), bacterial and archaeal ammonia oxi-
dizers in soils (41, 42), and methanogens in guts (43). Thus, de-
tection of CRTs will provide clues as to the identities of rare taxa
that play previously unknown but equally critical ecological roles.
Finally, studies that use unsaturated sequencing efforts to infer
community assembly rules may attribute the appearance of new
taxa to dispersal, when these taxa may instead already persist in the
community in low abundance or in a dormant state (24). There-
fore, close inspection of CRT dynamics in sufficiently sequenced
communities will provide insights into the different roles of dis-
persal and blooms in community dynamics.

Given the ubiquity of CRT detected across an array of ecosys-
tems and the large contribution of CRT to community dissimilar-
ity, our results show that rare-to-prevalent dynamics are generally
important and that these dynamics are especially critical for the
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community at the time points of CRT transitions. These data pro-
vide evidence that not all of the members of the microbial rare
biosphere are always rare but that many contribute to the larger
community at key time points. Furthermore, our analysis revealed
synchronous dynamics of many CRT within a community and
suggests that some CRT may be indicators of environmental
changes that are unmeasured, providing clues about the identities
of more subtle physical, chemical, or biological drivers of micro-
bial dynamics. Finally, as transient members of the rare biosphere,
CRT likely contribute to the high alpha diversity observed in many
microbial communities.

MATERIALS AND METHODS
The microbial time series used in this study were previously published as
separate studies (12, 25, 44–47), except for the lake data set, which is avail-
able from the Earth Microbiome Project (http://www.earthmicrobiome.org)
(48). The whole-lake manipulation, including physical and chemical lake
conditions, was described previously (32). The descriptions, quality con-
trol, and normalization of these data sets also are detailed elsewhere (28).
OTUs were defined at 97% sequence identity of the 16S rRNA gene. We
chose to include these 42 time series because they had study durations of
at least 60 days. Because microbial communities have different degrees of
richness, relative abundances were used when comparing community
members. The overarching patterns of CRT were robust when different
thresholds were used for the coefficient of bimodality and maximum rel-
ative abundance (see SOM in Fig. S7 in the supplemental material).

The study duration was the total number of days spanning the time
series collection. Sampling intensity was the average number of days be-
tween observations. The influences of study duration and sampling inten-
sity on the detection of CRT were investigated by subsampling the human
male M3 gut, freshwater lake Trout Bog epilimnion, and marine L4 west-
ern English Channel time series by a “moving-window” approach (49).
This approach involves the partitioning of a time series into as many
window subsets as possible given the number of observations and calcu-
lation of the number of CRT detected within each window. For example,
a 250-time-point series would first be divided into one 250-point window,
two 249-point windows, three 248-point windows, etc. Subsampling of a
data set to fewer sequences per sample (rarefaction) was performed by
using the multiple_rarefactions.py script in QIIME v. 1.6.0 (50). We also
rarefied the observed taxa classified as CRT by generating replicated, sub-
sampled data sets at systematically varied sampling effort (i.e., number of
samples). The percentage of CRT was calculated for each subsampled data
set as described above. To extrapolate rarefaction curves to a standard
sample size, the three parameters of the function

a

(b � c)
� c

were estimated by maximum likelihood using custom scripts in R.
The R environment for statistical computing v 2.15.2 was used for all

other analyses (51). Hierarchical clustering of CRT (to determine syn-
chronous responses) was performed as described previously (10), by using
dynamics of CRT standardized for each time series and k-means cluster-
ing of common occurrence patterns. To assess whether the subset of CRT
represented a composition or structure different from that of the whole
community, we used Pearson’s product-moment correlation. Some plots
were made in R with the ggplot2 package (52). We calculated Bray-Curtis
dissimilarity as a metric of community dissimilarity as follows:

BCjk �
�|Xij � Xik|
�(Xij � Xik)

where BC is the Bray-Curtis dissimilarity between communities j and k
and X is the relative abundance of taxon i. For each time series, we calcu-
lated the Bray-Curtis similarity of all of the samples and then calculated
the dissimilarity attributed to the taxa that were identified as conditionally

rare (b value, �0.90; relative abundance, �0.05%). Because the Bray-
Curtis dissimilarity is a scaled summation of abundance differences be-
tween two communities, we can easily partition Bray-Curtis dissimilarity
between two samples attributable to a subset of the community. To do so,
we use only CRT when calculating the summation in the numerator of the
Bray-Curtis dissimilarity expression but use all of the taxa when calculat-
ing the scaling summation in the denominator. In this way, the Bray-
Curtis dissimilarity of CRT and non-CRT will sum to the Bray-Curtis
dissimilarity of the whole sample. We then divided the Bray-Curtis dis-
similarity of CRT by the total community Bray-Curtis dissimilarity to
report the fraction of beta diversity attributed to CRT. R scripts for calcu-
lation of CRT are freely available on GitHub (53).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01371-14/-/DCSupplemental.
Text S1Supplemental results and discussion to accompany the text. Download
Text S1, DOCX file, 0.1 MB.
Figure S1Taxa ranked by abundance in a representative community from each
ecosystem examined in this study. Colors show the relative abundance of the
taxon observed over the time series. Similar to many other environmental
microbial communities, these communities have a large percentage of low-
abundance taxa. Download Figure S1, EPS file, 10.3 MB.
Figure S2Use of the coefficient of bimodality (b) to detect CRT in microbial
communities. (A) b values for uniform, Bernoulli, and trimodal distributions.
(B) Dynamics of three conditionally rare Vibrio taxa (OTU defined at 97%
sequence identity) detected in the western English Channel with a b value of
�0.95 and a maximum relative (Max rel.) abundance of �0.01. (C) Examples
of taxa that did not fit the conditionally rare criteria. Panels B and C include the
time series of the taxon’s relative abundance (left) and the distribution of the
taxon’s levels of abundance though time (right). Download Figure S2, EPS file,
0.7 MB.
Figure S3Influence of time series duration and sampling intensity on the de-
tection of CRT. In panels A and C, the color gradient shows the percentages (of
the total number of community members) of CRT detected. (A) The marine
western English Channel (L4 site). (B) A freshwater lake, Trout Bog epilim-
nion, in northern Wisconsin. (C) A human male right palm skin community.
The patchy nature of this distribution is attributed to the frequent disturbances
associated with the habitat (e.g., hand washing that removed taxa and contact
with a variety of objects that added taxa). (D) Influence of the number of
samples, a proxy for sampling intensity, on the CRT detected. (E) Influence of
sequencing depth on the CRT detected. b value, �0.90; relative abundance,
�0.5%. Note the differences in y axis ranges. Download Figure S3, EPS file, 1.5
MB.
Figure S4Taxonomic distribution of CRT among microbial communities,
summarized by ecosystem. Note the differences in x axis ranges. WWT is
brewery wastewater treatment. b value, �0.90; relative abundance, �0.5%.
Download Figure S4, EPS file, 0.7 MB.
Figure S5Summary of significant (P � 0.05, blue) and not significant (NS,
pink) two-sided Pearson’s correlation tests to compare the composition of
each whole community and that of its subset of CRT. Community composi-
tion was summarized at the phylum (circle), class (triangle), and order
(square) levels. Download Figure S5, EPS file, 0.5 MB.
Figure S6CRT clustered by shared occurrence patterns from the western Eng-
lish Channel time series. Each taxon was most abundant at the time point
colored black. b value, �0.90; relative abundance, �0.5%. Taxonomic assign-
ments are provided. Some synchronous CRT were from closely related phylo-
genetic lineages (i.e., blue-highlighted example of cooccurring Pseudoaltero-
monas taxa), while other synchronous CRT were more diverse (i.e., yellow-
highlighted example of Vibrio taxa cooccurring with Tatumella and
Pseudoalteromonas taxa), suggesting that patterns of CRT cooccurrences are
complex and could be either redundant or modular. Download Figure S6, EPS
file, 3.6 MB.
Figure S7Incidence of CRT in each ecosystem with different coefficient-of-
bimodality (b) and maximum-abundance (ra) thresholds and the inclusion or
omission of singletons. Few CRT were detected with a maximum-abundance
threshold of 0.05 (5%), indicating that this cutoff is uninformative because it is
too high. This analysis suggests that an abundance threshold between 0.005
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and 0.01 is consistent within a data set and bimodality cutoffs of �0.90 are
consistent. Download Figure S7, EPS file, 0.9 MB.

Table S1, DOC file, 0 MB.
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