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Abstract: Objective: To investigate the correlation between the left arcuate fasciculus (AF) segments
and acute/subacute post-stroke aphasia (PSA). Methods: Twenty-six patients underwent language
assessment and MRI scanning. The integrity of the AF based on a three-segment model was evaluated
using diffusion tensor imaging. All patients were classified into three groups according to the
reconstruction of the left AF: completely reconstructed (group A, 8 cases), non-reconstructed (group B,
6 cases), and partially reconstructed (group C, 12 cases). The correlations and intergroup differences in
language performance and diffusion indices were comprehensively estimated. Results: A correlation
analyses showed that the lesion load of the language areas and diffusion indices on the left AF
posterior and long segments was significantly related to some language subsets, respectively. When
controlled lesion load was variable, significant correlations between diffusion indices on the posterior
and long segments and comprehension, repetition, naming, and aphasia quotient were retained.
Multiple comparison tests revealed intergroup differences in diffusion indices on the left AF posterior
and long segments, as well as these language subsets. No significant correlation was found between
the anterior segment and language performance. Conclusions: The integrity of the left AF segments,
particularly the posterior segment, is crucial for the residual comprehension and repetition abilities
in individuals with acute/subacute PSA, and lesion load in cortical language areas is an important
factor that should be taken into account when illustrating the contributions of damage to special fiber
tracts to language impairments.

Keywords: stroke; aphasia; the arcuate fasciculus; diffusion tensor imaging

1. Introduction

Aphasia is a common and devastating consequence of stroke, usually caused by lesions in-
volving the left hemisphere. It was reported that approximately 24–38% of survivors after a stroke
suffered from acute aphasia, and the majority developed chronic aphasia, which significantly
affected their private and professional life [1,2]. Therefore, the study of post-stroke aphasia (PSA)
has been a longstanding prevalent topic in the field of brain neuroscience in recent decades.

When considering the neural mechanisms underlying PSA, most previous studies have
mainly focused on the structural integrity and functional activation of cortical areas in language
processing [3–5]. Progress made by studies using advanced neuroimaging technologies in-
creased our understanding of the mechanisms underlying language impairments following
stroke. The current view is that speech and language abilities could be affected by damage to the
specific cortical areas and co-occurring damage to the subcortical white matter pathways [6,7].

The arcuate fasciculus (AF), originating from Wernicke’s area and terminating in
Broca’s area, is one of the most studied language-related neural tracts [8]. It was proposed
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that the AF was responsible for the bidirectional information transfer between the temporal
and frontal language areas, which implied the importance of the information regarding
speech production on language comprehension [9,10]. In 2005, Catani et al. (2005) [11]
delineated the two parallel pathways model of the AF, consisting of a classical long segment
(LSAF) that directly connected Wernicke’s with Broca’s area and an indirect pathway that
encompassed an anterior (ASAF) and a posterior segment (PSAF). The ASAF connected
Broca’s with Geschwind’s area (i.e., the inferior parietal lobule), while the PSAF linked
Geschwind’s with Wernicke’s area. Functionally, they speculated that the direct pathway
involved in phonological processing (e.g., repetition), and the indirect pathway, mediated
lexical-semantic mapping (e.g., auditory comprehension and the vocalization of semantic
content). Subsequently, Glasser et al. (2008) [12] divided the AF into two segments: one
terminated in the posterior superior temporal gyrus (STG) and another projected to the
middle temporal gyrus (MTG). They advocated a phonological role (e.g., repetition) of
the segment to STG and a lexical-semantic function (e.g., spontaneous speech) of the
segment to MTG. As well, Friederici and colleagues (2013) [13] outlined two distinct
functional branches within the AF: one connected the posterior STG (Brodmann area, BA
22/Wernicke’s area) to Broca’s area (BA 44, pars opercularis) and involved in complex
syntactic processing, while another linked STG/MTG to the premotor cortex (BA 6) and
contributed to speech repetition. Although different models of the AF have been proposed,
the three-segment model was widely recognized and applied in language research because
of the relatively higher detection rates of the AF [8,14,15].

A growing number of studies have attempted to illustrate the linguistic role of the
AF and pointed out that the AF might be involved in the natural progress of language
processing, and that damage to the AF was associated with various speech and language
impairments, such as speech production, verbal fluency, semantic comprehension, repeti-
tion, naming, and reading [8,16]. However, most previous studies investigated its linguistic
role in the condition that the AF was treated as a uni-functional entity, and no consensus has
yet been reached. This may be partially related to the anatomic details of the AF described
by Catani et al. (2005) [11] and Glasser et al. (2008) [12]. Thus, subdividing the anatomical
structure and clarifying the linguistic role of the AF segments in brain pathologies including
stroke is essential, which will advance our understanding of the pathological mechanisms
of the disease as well help clinicians when making diagnoses, predicting outcomes, and
setting scientific rehabilitative strategies [2,17].

In this study, we did not evaluate the language-related functions of the whole AF tract
in aphasia after stroke. We focused on investigating the correlations between damage to
the left AF segments based on the three-segment model of Catani et al. (2005) [11] and
language performance and aimed to illustrate the linguistic roles of the left AF segments
in acute/subacute PSA. Herein, based on the anatomical details and functions proposed
previously, we hypothesized that the contributions of different segments of the left AF to
language performance in individuals with acute/subacute PSA varied.

2. Materials and Methods
2.1. Subjects

Twenty-six right-handed patients (20 males and 6 females, mean age = 54.50 years, SD = 11.30,
mean duration of education = 10.92 years, SD = 3.19, mean time post-stroke = 39.46 days,
SD = 32.02) with various types of aphasia secondary to left hemispheric strokes were
recruited in the department of rehabilitation medicine of our hospital between March 2020
and May 2022 (See Table 1). The inclusion criteria were as follows: first-ever left hemi-
spheric stroke with normal consciousness, aged between 18 and 80 years, right-handedness
and Chinese speakers, the consistent presence of aphasia (the aphasia quotient (AQ) of
western aphasia battery (WAB) < 93.8), and being able to complete a language assessment
and MRI scanning. The exclusion criteria included right or bi-hemispheric stroke, history
of stroke, concomitant neurological diseases, other aphasic syndromes such as primary
progress aphasia, and being unable to tolerate language assessment or MRI examination.
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Table 1. Demographic and general clinical characteristics of the patients.

Patient ID Age/Sex Education
(Years)

Time Post Onset
(Days) Stroke Type Aphasia Type Aphasia

Severity Lesion Site Lesion Volume
(cm3)

Lesion Load
(%)

01 M/52 9 8 Infarction TSA mild Basal ganglia, corona radiate, and centrum semiovale 7.94 0
02 M/49 15 10 Infarction Broca moderate Basal ganglia, frontotemporal parietal lobe, and corona radiata 43.43 3.02
03 F/59 6 12 Infarction TSA moderate Basal ganglia, corona radiate 8.19 0
04 M/36 9 16 Infarction Broca moderate Basal ganglia, temporal lobe, corona radiata, and centrum semiovale 27.79 0
05 M/59 12 17 ICH Wernicke severe Temporal lobe, insula 75.34 0.7
06 F/56 12 18 ICH Wernicke severe Temporal parietal lobe 68.07 26.88
07 F/56 9 81 ICH Conduction moderate Basal ganglia, corona radiata 17.15 0
08 M/38 15 83 ICH Broca moderate Basal ganglia, frontal lobe 27.34 0.02
09 M/55 12 16 Infarction Global very severe Basal ganglia, frontotemporal parietal lobe, and corona radiata 200.50 26.29
10 M/61 12 45 Infarction Conduction severe Frontotemporal parietal lobe 21.02 1.97
11 M/64 12 75 Infarction Global very severe Frontotemporal parietal and occipital lobe 50.87 9.36
12 F/71 6 89 Infarction Global very severe Frontotemporal parietal and occipital lobe 150.50 35.14
13 M/56 15 85 Infarction Global severe Basal ganglia, frontoparietal lobe, and insula 76.59 2.24
14 M/34 12 77 Infarction Global very severe Frontotemporal parietal lobe 54.30 15.19
15 M/61 9 21 Infarction Anomic moderate Basal ganglia, frontal lobe 38.50 2.9
16 M/72 16 23 Infarction Broca moderate Basal ganglia, corona radiate 12.50 0.03
17 F/33 6 5 Infarction Global severe Temporal and parietal lobe, insula 40.26 32.01
18 M/64 9 8 Infarction Global severe Temporal and parietal lobe, insula 11.51 0.89
19 M/69 12 5 Infarction TSA moderate Basal ganglia, temporal and parietal lobe, and corona radiata 14.42 0.28
20 M/48 9 88 ICH MTA severe Basal ganglia, frontotemporal lobe 29.30 0.17
21 F/50 12 15 Infarction Broca severe Temporal and parietal lobe, corona radiata, and insula 10.84 6.33
22 M/43 16 53 Infarction Anomic moderate Frontoparietal lobe, insula 26.95 2.07
23 M/69 6 68 ICH TMA severe Basal ganglia, frontal lobe 46.70 0.19
24 M/64 15 73 Infarction MTA severe Frontoparietal lobe 151.30 21.02
25 M/48 9 24 Infarction Global very severe Frontotemporal parietal lobe, basal ganglia, and insula 1.44 48.30
26 M/50 9 11 Infarction Wernicke severe Temporo-occipital junction, insula 35.26 15.73

Note: F, female; ICH, intracerebral hemorrhage; M, male; MTA, mixed transcortical aphasia; TMA, transcortical motor aphasia; and TSA, transcortical sensory aphasia.
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This study protocol was approved by the local institutional review board (IRB), and
all participants or their families gave written informed consent.

2.2. Language Assessment

All patients received language assessment by a speech-language therapist with the Chi-
nese version of the WAB. The WAB includes both linguistic subtests, including spontaneous
speech, auditory comprehension, repetition, and naming, and nonlinguistic subtests, in-
cluding subtests for reading, writing, praxis, and construction. The linguistic subtests were
analyzed in the current study. The AQ of the WAB reflecting the global severity and type
of aphasia was calculated according to the following formula: AQ = (spontaneous speech
score + auditory comprehension score/20 + repetition score/10 + naming score/10) × 2.
An AQ value less than 93.8 was considered to indicate the presence of aphasia, and the
aphasia severity was classified into four levels: very severe (0–25), severe (26–50), moderate
(51–75), and mild (≥76), according to the AQ value [18].

2.3. MRI Acquisition and Preprocessing

MRI data were acquired using a 3-Tesla Siemens Skyra scanner with a standard
radiofrequency head-coil. High resolution structural images of the whole brain using
a 3-dimensional T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE)
protocol (voxel size of 1 × 1 × 1 mm) were acquired according to the following parameters:
repetition time = 2300 ms, echo time = 2.98 ms, inverse time = 900 ms, flip angle = 9◦, field
of view = 256 × 248 mm2, slice thickness = 1.1 mm with no inter-slice gap, number of
slices = 160, and acquisition time = 5.2 min. The DTI data were acquired using a single-shot
echo planar imaging (EPI) sequence in 49 contiguous slices parallel to the anterior–posterior
plane according to the following parameters: repetition time = 7200 ms, echo time = 104 ms,
flip angle = 90◦, field of view = 896 × 896 mm2, acquisition matrix = 96 × 96 mm2,
reconstructed to matrix = 128 × 128 matrix, b = 0, 1000 s/mm2, gradient directions = 64,
slice thickness/slice spacing = 2.5 mm/2.5 mm, and acquisition time = 8.3 min.

All original data were preprocessed offline using the Oxford Centre for FMRIB Soft-
ware Library (FSL) 5.0.9 software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL, ac-
cessed on 22 March 2022) [19]. First of all, the raw DICOM data files were converted into the
NIfTI format, then head motion and eddy currents were corrected with the Eddy_correct
tool. After that, skull-stripping and the removal of non-brain tissue were performed with
BET v2.1. Finally, the reconstruction of whole-brain diffusion tensors was performed using
the diffusion toolbox. Both the processed T1-weighted images and FA maps were spatially
normalized into the MNI152 atlas space using FSL’s FLIRT registration tool.

2.4. Lesion Overlay Map and Lesion Load

Lesion maps were manually drawn slice-by-slice on the normalized T1 structural
images by using MRIcroGL (https://www.mccauslandcenter.sc.edu/mricrogl/, accessed
on 1 March 2022), and lesion volumes were calculated by using ITK-SNAP (http://www.
itksnap.org/, accessed on 1 March 2022). To evaluate the impact of damage to corti-
cal language areas on language deficits, the lesion load (i.e., the percentage of cortical
language areas overlapping with the stroke lesion) was calculated according to the fol-
lowing formula: lesion load = (the volume of the overlap/the total volume of the cortical
language areas) × 100% [15,20].

The cortical language areas consist of the frontal language area, including both pars
opercularis and pars triangularis (BA 44 and 45); the parietal language area, including
the angular gyrus (BA 39); the supramarginal gyrus (both the anterior and the posterior
divisions, BA 40); the temporal language area, including the superior temporal gyrus
posterior division (BA 22); and the middle temporal gyrus posterior division (BA 21). All
these cortical areas were defined and extracted as regions of interest (ROI) based on the
Harvard–Oxford Cortical Structural Atlas in the FSL software package [21,22].

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://www.mccauslandcenter.sc.edu/mricrogl/
http://www.itksnap.org/
http://www.itksnap.org/
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2.5. Reconstruction of the AF

The diffusion toolkit (version 0.6.4.1) [23] was used for diffusion imaging data re-
construction and fiber tracking, and the TrackVis (version 0.6.1) software was applied
to manually delineate the ROIs and perform fiber track visualization on the normalized
FA images. A three-ROIs approach was applied to accomplish the virtual dissection of
the bilateral AFs based on a deterministic fiber-tracking algorithm (fiber assignment by
continuous tracking—FACT algorithm): a frontal ROI (ROI 1, the green 2D disk) was placed
on the coronal slice at the entrance to the frontal lobe (anterior to the central sulcus), a
parietal ROI (ROI 2, the red 3D sphere) was placed tangent to the inferior parietal cortex,
and a temporal ROI (ROI 3, the blue 3D sphere) was placed on the axial slice at the entrance
to the temporal lobe (below the Sylvian fissure) [15,24] (see Figure 1). Each segment of the
AF was defined by the combination of 2 of these 3 ROIs. The fiber tracts passing through
both the ROI 1 and ROI 2 but not ROI 3 were classified as the ASAF, the streamlines passing
through both the ROI 2 and ROI 3 but not ROI 1 formed the PSAF, and the streamlines
passing through both the ROI 1 and ROI 3 but not ROI 2 constituted the LSAF [14]. Fiber
tracking was initiated with a minimum fractional anisotropy (FA) value at 0.20 and an
angle threshold of 35◦.
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Figure 1. The reconstruction of the bilateral arcuate fasciculus (AF). (a) A sample of the recon-
structed left AF according to the 3-ROIs approach: AF anterior—green, AF posterior—yellow, and
AF long—red; and (b) the location of the three ROIs on the normalized T1 images (ROI 1—the green
2D disk, ROI 2—the red 3D sphere, and ROI 3—the blue 3D sphere).
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To identify the anatomical alignment and spatial location, the reconstructed three-
dimensional segments of the bilateral AFs and stroke lesions were visualized on each
spatially normalized T1-weighted image (Figure 2). Then, the patients were classified into
three groups according to the reconstruction of the left AF [25,26]: group A, completely
reconstructed; group B, non-reconstructed; and group C, partially reconstructed. The
mean FA value and fiber number of the left ASAF, PSAF, and LSAF were measured for
statistical analyses.
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Figure 2. The reconstruction of the left arcuate fasciculus (AF). (A) A sample of the completely
reconstructed left AF according to the 3-ROIs approach in group A; (B) a representative of the non-
reconstructed left AF in group B; and (C) all patients with the partially reconstructed left AF in
group C. The pink blocks—stroke lesion. In group C, the anterior and LSAF presented with different
degrees of damage, despite being partially reconstructed, while the PSAF was relatively less damaged,
by contrast.
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2.6. Statistical Analyses

Statistical analyses were performed using the IBM SPSS software package (ver-
sion 25.0). The normality of data was evaluated by the Shapiro-Wilk test. The Pearson
correlation and one-way ANOVA were used for parametric variables (normally dis-
tributed data with homogeneity of variance), whereas the Spearman correlation analysis
and Kruskal–Wallis test with the Nemenyi post-hoc test were used for nonparametric
variables (non-normally distributed data or with a heterogeneity of variance). The sig-
nificance level in multiple comparisons was adjusted with the false discovery rate (FDR)
correction. The correlation coefficient indicates the strength (weak correlation, 0.1–0.29;
moderate correlation, 0.3–0.49; and strong correlation, ≥0.50) and direction (positive or
negative) of the relationship between two variables [27]. The statistical significance level
was set at 0.05.

3. Results
3.1. Demographic and Clinical Characteristics

The demographic and clinical data of all patients arere shown in Table 1. All pa-
tients completed the language assessment and MRI sequence. The type of aphasia was
classified into non-fluent aphasia (16 cases), including Broca’s aphasia; global aphasia;
mixed transcortical aphasia (MTA); transcortical motor aphasia (TMS); and fluent aphasia
(10 cases), including Wernicke’s aphasia, conduction aphasia, anomic aphasia, and transcor-
tical sensory aphasia (TSA). According to the criteria [18], the severity grade of the patients’
aphasia ranged from mild to very severe.

3.2. Correlation Analyses between Language Performance and MRI Measures

First, we estimated the correlations between demographic and stroke-related variables
and language performance. Pearson correlations were used to analyze the correlation be-
tween age and AQ, spontaneous speech, comprehension, naming, and fluency, respectively,
and Spearman correlations were applied to analyze the correlations between education,
time post of stroke, and language performance, because of non-normally distributed vari-
ables. For dichotomous variables (sex and type of stroke), the independent sample t-test or
Mann–Whitney U test was conducted to compare the intergroup difference in language
performance. Both demographic and stroke-related variables were not significantly related
to any language subset of WAB (p > 0.05).

Subsequently, we analyzed the correlations between MRI metrics and language per-
formance using Spearman correlation due to non-normally distributed variables. Lesion
volume was significantly negatively related to spontaneous speech, comprehension, and
AQ, and lesion load was significantly negatively related to most language subsets other
than fluency. The FA values in the left PSAF and LSAF were significantly positively
associated with any language subsets other than fluency and/or repetition, and the fiber
number of the left posterior and LSAF was significantly positively associated with AQ,
comprehension, repetition, and/or spontaneous speech. However, when lesion load was
set as a controlled variable, partial correlations revealed that the PSAF was significantly
strongly related to comprehension, repetition, naming, and AQ, while the LSAF was
significantly moderately related to comprehension, naming, and AQ (Figure 3). No
significant correlation was found between the ASAF and language measures. Due to its
strong relationship with the lesion load of cortical language areas, the lesion volume vari-
able was not entered into the partial correlation analyses. The results of the correlation
analyses are presented in Tables 2 and 3.

Next, the correlations between demographic and stroke-related variables, MRI metrics,
and language performance were further estimated in the conditions of different reconstruc-
tions of the left AF.
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Table 2. The correlation analyses between language performance and MRI measures.

Lesion
Volume Lesion Load

FA Value in Left AF Segments Fiber Number in Left AF Segments

Anterior Posterior Long Anterior Posterior Long

ρ P ρ P ρ P ρ P ρ P ρ P ρ P ρ P

Spontaneous speech −0.447 0.022 * −0.547 0.004 * 0.348 0.081 0.467 0.016 * 0.525 0.006 * 0.346 0.083 0.281 0.165 0.405 0.040 *
Comprehension −0.393 0.047 * −0.688 0.000 * 0.237 0.244 0.717 0.000 * 0.521 0.006 * 0.193 0.346 0.687 0.000 * 0.395 0.046 *

Repetition −0.316 0.116 −0.548 0.004 * 0.333 0.097 0.725 0.000 * 0.366 0.066 0.094 0.646 0.629 0.001 * 0.237 0.244
Naming −0.436 0.026 * −0.642 0.000 * 0.150 0.464 0.587 0.002 * 0.591 0.001 * 0.126 0.541 0.366 0.066 0.381 0.055
Fluency −0.169 0.410 −0.299 0.138 0.363 0.068 0.195 0.340 0.438 0.025 * 0.422 0.032 * 0.055 0.791 0.375 0.059
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* Spearman correlation: α = 0.05.

Table 3. The partial correlation analyses between language performance and diffusion indices
(controlled variable: lesion load).

FA Value in Left AF Segments Fiber Number in Left AF Segments

Anterior Posterior Long Anterior Posterior Long

r P r P r P r P r P r P

Spontaneous speech 0.161 0.442 0.168 0.421 0.325 0.113 0.307 0.135 0.020 0.926 0.300 0.146
Comprehension 0.160 0.445 0.686 0.000 * 0.416 0.039 * 0.243 0.242 0.644 0.001 * 0.333 0.104

Repetition 0.198 0.342 0.708 0.000 * 0.270 0.191 0.104 0.620 0.576 0.003 * 0.159 0.447
Naming 0.006 0.979 0.488 0.013 * 0.460 0.021 * 0.115 0.583 0.254 0.220 0.295 0.152
Fluency 0.231 0.267 0.002 0.993 0.290 0.159 0.362 0.075 −0.107 0.610 0.313 0.127

AQ 0.199 0.341 0.695 0.000 * 0.504 0.010 * 0.249 0.231 0.500 0.011 * 0.378 0.062

* Statistical significance level: α = 0.05.

3.3. Intergroup Demographic and Stroke-Related Variables Analyses

In terms of intergroup differences in demographic and stroke-related variables, a
significance in the severity of aphasia was found only between group A and group B
(p < 0.05). No significant difference was found among groups in any other demographic
and clinical metrics.

3.4. Lesion Overlay Map and Lesion Load Analyses

The lesion volumes of all patients: range = 1.44–200.50 cm3, mean = 47.07 ± 49.60. The
lesion volumes among groups: group A, range = 7.94–75.34 cm3, mean = 34.41 ± 25.83; group
B, range = 21.02–200.50 cm3, mean = 92.30 ± 68.68; and group C, range = 1.44–151.30 cm3,
mean = 34.92 ± 39.30. The sum volume of the cortical language areas extracted from
the cortical structural atlas within the FSL software package was 51.05 cm3. The lesion
load of all patients was as follows: range = 0–48.30%, mean = 9.64 ± 13.66. The lesion
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load among groups was as follows: group A, range = 0–26.88%, mean = 3.83 ± 9.37;
group B, range = 1.97–35.17%, mean = 15.03 ± 13.40; and group C, range = 0.03–48.30%,
mean = 10.83 ± 15.65.

There were significant differences in the lesion load of the language areas among the
three groups of patients (p < 0.05). The Kruskal–Wallis and Nemanyi post-hoc tests showed
that the lesion load in group A was significantly smaller than in group B (adjusted p < 0.05),
but there was no significant difference between group A and group C or between group B
and group C. No significant difference in lesion volume was found among groups. The
lesion overlay map of all patients (see Figure 4a) shows the heterogeneous distribution of
stroke lesion locations among the patients. The lesion maps of groups are presented in
Figure 4b.
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3.5. Intergroup Language Performance Analyses

Significant differences were observed among groups in comprehension (F = 7.943,
p = 0.002), repetition (p = 0.004), naming (F = 3.858, p = 0.036), and AQ (F = 7.016, p = 0.004)
but not in spontaneous speech nor fluency subsets. Post-hoc tests demonstrated that
patients in group A and group C had higher scores of comprehension and repetition
subsets than those in group B and that AQ value and naming scores in group A were higher
only than those in group B. No significant differences in language subsets were observed
between group A and group C. The results of language performance analyses were shown
in Tables 4 and 5 and Figure 5.
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Table 4. The results of the WAB subsets #.

Group A Group B Group C p

Spontaneous speech 59.38 ± 12.94 41.67 ± 17.22 45.83 ± 20.43 0.149
Comprehension 60.81 ± 25.82 16.17 ± 13.34 44.71 ± 20.05 0.002 *

Repetition 58.25 ± 23.89 6.50 ± 5.17 55.08 ± 30.29 0.004 *
Naming 43.50 ± 21.73 14.33 ± 16.29 25.92 ± 20.36 0.036 *
Fluency 67.50 ± 21.21 50.00 ± 16.73 44.17 ± 23.53 0.076

AQ 56.26 ± 14.70 24.07 ± 13.18 43.48 ± 17.72 0.004 *
# Values are given in mean ± SD. α = 0.05. * Statistical significance level: α = 0.05.

Table 5. Multiple comparison tests for the WAB subsets.

Mean Diff. 95% CI Adjusted-p

Comprehension
Group A–Group B 44.65 15.60, 73.69 0.002 *
Group A–Group C 16.10 −8.45, 40.65 0.311
Group B–Group C −28.54 −55.43, −1.65 0.035 *

Repetition Test Statistic Std. Error Adjusted-p
Group A–Group B 11.85 4.13 0.012 *
Group A–Group C −0.10 3.49 1.000
Group B–Group C −11.96 3.82 0.005 *

Naming
Group A–Group B 29.17 1.29, 57.04 0.038 *
Group A–Group C 17.58 −5.98, 41.14 0.199
Group B–Group C −11.58 −37.39, 14.23 0.775

AQ
Group A–Group B 32.20 9.98, 54.41 0.003 *
Group A–Group C 12.79 −5.99, 31.56 0.276
Group B–Group C −19.41 −39.97, 1.16 0.069

Note: Comprehension: Bonferroni post-hoc test. Repetition: Nemenyi post-hoc test. Naming: Bonferroni post-hoc
test. AQ: Bonferroni post-hoc test. * Statistical significance level: α = 0.05.
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3.6. Intergroup Diffusion Indices Analyses

We attempted to reconstruct the segments of bilateral AFs in all patients according to
the approach mentioned. As a result, the left AF was completely reconstructed in 8 cases
(group A, patient 01–08), non-reconstructed in 6 cases (group B, patient 09–14), and partially
reconstructed in 12 cases (group C, patients 15–26). In group C, only the ASAF was non-
reconstructed in two cases (patients 15–16), only the PSAF was non-reconstructed in two
cases (patient 17–18), and only the LSAF was non-reconstructed in two cases (patient 19–20);
however, both the ASAF and LSAF were non-reconstructed in four cases (patient 21–24),
and both the PSAF and LSAF were non-reconstructed in two cases (patient 25–26). In total,
the ASAF was non-reconstructed in six cases (50%), the PSAF was non-reconstructed in
four cases (33%), and the LSAF was non-reconstructed in eight cases (66.7%). In addition,
despite being reconstructed, different degrees of damage to the residual portion of the
left AF segments were observed in the patients of group C. The reconstruction of the AF
segments was presented in Figure 2.

Because of the non-normal distribution of the DTI parameters in the left AF (p < 0.05),
the independent samples Kruskal–Wallis test was applied to estimate the significance
among groups. The results showed significant intergroup differences in both the FA value
and fiber number in all segments of the left AF. Post-hoc tests revealed that the diffusion
indices on the anterior and LSAF in group A were significantly higher than those in group
B and group C and that the diffusion indices on the PSAF in group A and group C were
significantly higher than those in group B. Neither significance in the PSAF was found
between group A and group C, nor in the anterior and LSAF between group B and group C.
The results of intergroup diffusion indices analyses are shown in Tables 6 and 7.

Table 6. The diffusion indices in the left AF segments #.

Segments Group A Group B Group C p

FA value
Anterior 0.40 ± 0.03 0.00 0.17 ± 0.18 0.001 *
Posterior 0.39 ± 0.05 0.00 0.25 ± 0.19 0.003 *

Long 0.42 ± 0.04 0.00 0.13 ± 0.19 0.000 *

Fiber number
Anterior 275.25 ± 58.92 0.00 97.58 ± 108.09 0.000 *
Posterior 320.50 ± 60.88 0.00 181.42 ± 154.14 0.002 *

Long 309.00 ± 82.90 0.00 64.75 ± 98.12 0.000 *
# Values are given in mean ± SD. * Statistical significance level: α = 0.05.
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Table 7. Multiple comparison tests for diffusion indices in the left AF segments.

Segment Test Statistic Std. Error p Adjusted-p

FA value Anterior
Group A–Group B 14.63 3.92 0.000 0.001 *
Group A–Group C 9.21 3.31 0.005 0.016 *
Group B–Group C −5.42 3.63 0.136 0.407

Posterior
Group A–Group B 13.63 4.01 0.001 0.002 *
Group A–Group C 5.38 3.39 0.112 0.337
Group B–Group C −8.25 3.71 0.006 0.019 *

Long
Group A–Group B 14.19 3.79 0.000 0.001 *
Group A–Group C 10.35 3.21 0.001 0.003 *
Group B–Group C −3.54 3.51 0.313 0.939

Fiber number Anterior
Group A–Group B 14.88 3.92 0.000 0.000 *
Group A–Group C 9.63 3.32 0.004 0.011 *
Group B–Group C −5.25 3.63 0.148 0.445

Posterior
Group A–Group B 14.38 4.01 0.000 0.001 *
Group A–Group C 6.63 3.39 0.051 0.152
Group B–Group C −7.75 3.72 0.007 0.021 *

Long
Group A–Group B 14.75 3.80 0.000 0.000 *
Group A–Group C 11.58 3.21 0.000 0.001 *
Group B–Group C −3.17 3.51 0.368 1.000

* Independent samples Kruskal–Wallis tests with the Nemenyi post-hoc test, statistical significance level: α = 0.05.

4. Discussion

In the current study, to investigate the linguistic role of the left AF segments based on
a three-segment model in aphasia, we assessed the correlations between demographic and
stroke-related variables and language performance and further analyzed the intergroup
differences in both language performance and diffusion indices in the condition of different
reconstructions of the left AF segments in patients with acute/subacute aphasia secondary
to left hemispheric stroke. Our results could be translated into two findings: (i) the
integrity of the left AF segments, particularly the PSAF, is crucial for the residual auditory
comprehension and repetition abilities in individuals with acute/subacute PSA; and (ii) the
lesion load of cortical language areas may be an important factor that should be taken into
account when illustrating the contributions of damage to special fiber tracts to language
impairments. Below, we discussed the linguistic functions of the left AF segments and our
findings, respectively.

4.1. The Importance of Lesion Load of Cortical Language Areas in PSA

Correlation analyses revealed a significant linguistic role of the lesion load of the
cortical language areas in aphasia; we hence first discussed the contribution of lesion load
to language deficits.

Lesion load is defined as a combined variable of the lesion site, and lesion size is
an important parameter in brain injury research and is commonly used to measure the
effects of a lesion on anatomical structures [28–30]. It has been reported that the relationship
between the disruption of special fiber tracts and language impairments can be mediated by
damage to cortical areas. Breier et al. (2008) [31] found that when considering the impacts
of lesions extended into the left temporal lobe, the significant relationship between damage
to the left AF and comprehension deficits did not exist, namely, the relationship between
the disruption of the AF and comprehension deficits was not independent of the damage to
the cortical language areas. Similarly, Ivanova et al. (2021) [15] recently pointed out that the
relationship between fiber tract indices and language performance significantly diminished
when lesion size was considered. Consistent with these previous findings, our results also
highlighted the important influence of damage to cortical language areas in the correlation
between the left AF segments and language performance after a stroke. Therefore, the
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lesion load effects of cortical areas should be taken into account to discriminate between
the differential contributions of special fiber tracts and the observed speech disturbances,
when illustrating the functions of fiber tracts [15]. However, the extent to which language
impairments were directly an outcome of damage to the cortical areas involved remained
unclear. We also did not assess the effects of the lesion site on language impairment as
they were reported to be other important factors in PSA [28,32]. Additionally, several
studies reported that the lesion load of the left AF might be used as a variable to predict
impairment of speech production, speech fluency, and naming abilities in individuals with
PSA [33,34]. However, it was proposed that disconnection of the tract was generally more
sensitive than the lesion load of the tract when evaluating white matter damage [35,36].

When analyzing the intergroup differences in language performance and lesion load, it
seemed that these intergroup differences in language performance could not be sufficiently
explained by the impacts of damage to the language areas. For example, patients in group A
and group C performed better in language tests than those in group B, while the lesion load
in group C was not significantly different from that in group B. Although lesion size was
reported to be significantly related to behavioral impairments [37,38], Geva et al. (2015) [39]
found that patients whose left AF could be tracked on DTI tractography performed better
in language task tests than those the AF could not track, and this difference was significant
over and above the influence of lesion size. Accordingly, these intergroup differences in
language performance may be somewhat related to the disruption of the left AF.

4.2. The Linguistic Roles of the Left ASAF in PSA

In the seminal work of Catani and colleagues (2005) [11], the left ASAF was proposed
to contribute to speech production. Since the three-segment model of the AF was proposed,
several publications have reported the involvement of the left ASAF injury in speech
production and verbal fluency. Fridriksson et al. (2013) [40] argued that damage to the
left ASAF negatively influenced speech fluency, which implied a robust predictive role of
this subsection in speech fluency impairments in patients with chronic non-fluent aphasia.
Basilakos et al. (2014) [41] found that the overlapping portions of the aslant and the ASAF
were a significant predictor of fluency in PSA. Van Geemen et al. (2014) [42] reported that
the electrostimulation of the left ASAF caused speech production disturbances in patients
with a glioma involving the left ventral premotor cortex (vPMC). Recently, Gajardo-Vidal
and colleagues (2021) [43] pointed out that both the left ASAF and LSAF were likely to
contribute to long-lasting speech production impairments after Broca’s area was damaged.

However, Ivanova et al. (2016) [44] reported no significant correlation between the
ASAF and any language scores in patients with chronic PSA. Forkel et al. (2020) [14] found
that the left ASAF was not associated with repetition and naming performance in patients
with primary progress aphasia (PPA). Although PPA and PSA significantly differ in terms of
their underlying etiology and clinical manifestations, this finding does not support the role
of the left ASAF in repetition and naming abilities. Similarly, we did not find a significant
relationship between the ASAF and language measures, despite a significant intergroup
difference in diffusion indices on the ASAF. There are two possible explanations for these
contradictory results about fluency: firstly, verbal fluency is a multidimensional parameter
of speech production that encompasses various elements, including speech rate, prosody,
phrase length, syntactic structure, pauses, articulatory struggle, and accuracy; it is difficult
to assess and lacks standard measuring instruments [45,46]. Secondly, we used the 10-point
rating scale within the WAB to evaluate verbal fluency, which might insufficiently reflect
the multidimensional nature of verbal fluency [40]. We did not determine the relationship
between the ASAF and speech production impairments according to the limited evidence
since it was reported that a lesion commonly disrupted both the ASAF and the LSAF due to
the extreme proximity running in the frontoparietal white matter, which possibly resulted
in the functional submersion of the ASAF [43,47]. This co-occurring damage to the ASAF
and the LSAF can be seen in patients in group C (see Figure 2). Future research should
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comprehensively assess verbal fluency and try to dissect the roles of the ASAF from the
LSAF in language impairments using specialized methods.

4.3. The Linguistic Contributions of the Left LSAF in PSA

The LSAF directly connecting the Wernicke’s territory with the Broca’s territory was
postulated to subserve the dorsal phonological stream, which was involved in mapping
acoustic features into articulatory representations [11,12]. It was reported that the LSAF
might be involved in pragmatic integration and higher cognitive function processes of
language [48,49]. López-Barroso et al. (2013) [50] pointed out that the direct connections
between temporal and frontal areas through the left LSAF contributed to novel word
learning by mediating fast communication interactions between auditory and motor areas
(i.e., auditory–motor integration). Gullick et al. (2015) [51] found that the left LSAF was the
best significant predictor of reading ability change in children between the ages of 8 and 14.

In studies on brain pathologies, Forkel et al. (2020) [14] found no significant correla-
tions between the left LSAF and naming, word comprehension, and repetition deficits in
patients with PPA. In the study by Ivanova et al. (2021) [15], the microstructural integrity
of the left LSAF was associated with auditory comprehension and naming scores, despite
not surviving the FDR correction for multiple comparisons. In this study, although correla-
tion analysis demonstrated a relationship between the LSAF and language performance,
including AQ, comprehension, and naming, the specific role of the LSAF could not be
further identified in intergroup differences analyses because the diffusion indices on the
LSAF in group A were higher than those in group C, while the language performance of
patients in group A was not statistically different from those in group C. According to
the models of Glasser et al. (2008) [12] and Friederici et al. (2013) [13], the LSAF could be
further subdivided into two different branches, respectively, terminating in the posterior
STG (pSTG) and the posterior MTG (pMTG). It has been shown that the pSTG activates
for sentence-level semantics and the pMTG supports lexical-semantic processes [52,53]. In
a recent neuroanatomical framework for syntax, Matchin et al. (2019) [54] proposed that
the pMTG, the pSTG, and the posterior inferior frontal gyrus (pIFG) might be involved
in the syntactic processing. They pointed out that the pMTG and the pSTG were crucial
for both sentence production and comprehension. Accordingly, the LSAF directly connect-
ing the pIFG and the pSTG/pMTG may support the processing of syntactically complex
sentences [55]. Indeed, damage to the left LSAF could cause deficits in processing com-
plex syntactic structures, which results in impairments in comprehension of noncanonical
sentences [56,57]. Collectively, these prior findings may provide support for the correla-
tions between the left LSAF and comprehension as well as naming performance, which
were found in the partial correlation analyses. Thus, the contributions of the LSAF to
higher-order language abilities should be further investigated in the future.

According to the classic models of language organization, the left LSAF was asso-
ciated with speech repetition and its disruption would lead to conduction aphasia [47].
However, a few reports argued that lesions to the left AF were insufficient to cause rep-
etition deficits or unnecessary for recovery from aphasia [58,59]. Obviously, the reports
of Forkel et al. (2020) [14] and Ivanova et al. (2021) [15], together with our findings, do
not support the role of the left LSAF in repetition. According to the model proposed by
Friederici et al. (2012) [55], the LSAF was responsible for the processing of syntactically
complex sentences but not speech repetition. This viewpoint also supports our findings. In
addition, the high injury rate and heterogeneity of the LSAF (as seen in Figure 2) in patients
in group C made it difficult to determine the relationship between the left LSAF injury
and specific language subsets. Indeed, it seemed impossible to isolate the linguistic role of
the left LSAF in PSA because of common co-occurring damage to the AF segments [43].
Therefore, the contributions of the left LSAF to aphasia after stroke, particularly to speech
repetition ability, should be further explored.
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4.4. The Linguistic Functions of the Left PSAF in PSA

We found a significantly strong relationship between the left PSAF and the resid-
ual comprehension and repetition abilities in the current study. The PSAF connects the
Geschwind’s with Wernicke’s territory (the center of auditory comprehension).
Catani et al. (2005) [11] hypothesized that the indirect segments of the left AF connecting
temporal and parietal areas might support auditory comprehension. Lesion-symptom
mapping studies have also demonstrated the importance of the temporal portion of the
left AF in sustaining lexical-semantic integration [60]. Breier et al. (2008) [31] found that
damage to the AF was related to comprehension deficits, which might be mediated by
lesions involving the left temporal lobe language areas. Song et al. (2011) [61] pointed
out that a lesion involving Wernicke’s area and the left PSAF would lead to Wernicke-like
conduction aphasia. Wernicke’s area has long been thought to be critical for language com-
prehension, and the combination of damage to this area and neighboring regions, including
the underlying fiber tracts, commonly results in a special type of aphasia characterized by
auditory comprehension deficits. In the DTI studies by Ivanova and colleagues [15,44], the
FA value and volume measurements of the PSAF were significantly related to some lexical-
semantic and syntactic language abilities, including auditory comprehension. Based on
these previous reports and two recent studies that demonstrated that the pSTG, pMTG, and
the posterior superior temporal sulcus (pSTS) were crucial for sentence comprehension and
phrase comprehension [54,62], it is not novel to state that damage to the temporal cortical
language areas and the left PSAF significantly affected auditory comprehension ability.

The viewpoint that the left AF is involved in speech repetition ability, and that damage
to this tract commonly causes conduction aphasia characterized by poor repetition, has
long been recognized [10,31]. However, which subsection of the left AF is responsible for
speech repetition remains unclear. Speech repetition is a complex ability involving the
perception of speech, phonological working memory to hold the perceived information,
and some aspects of speech production (i.e., articulatory planning and execution) [13]. The
networks for speech perception and conceptual-semantic systems are within the MTG, the
STG, and the inferior parietal lobes, suggesting the importance of the temporal and inferior
parietal lobes on speech repetition [54]. Recently, Forkel et al. (2020) [14] reported that the
atrophy of both the temporo-parietal cortex and the indirect pathways of the left AF was
prominent in patients with PPA with severe repetition deficits and that the volume of the
left PSAF was highly associated with repetition deficits. Similarly, Ivanova et al. (2021) [15]
pointed out that the volume of the PSAF contributed to speech repetition in individuals
with PSA. Indeed, studies using quantitative lesion mapping have reported that the cortical
damages that most frequently result in repetition impairments are located within the left
temporo-parietal region and that the inferior parietal lobe has been indicated to encompass
the cognitive module necessary for repetition ability [63–65]. Therefore, consistent with
these findings, our results support the relationship between damage to the left PSAF and
comprehension and repetition deficits in acute/subacute PSA. Given the importance of
the temporal and parietal lobes for phrase comprehension and sentence syntactic process-
ing [54,62] and its anatomical connection between these two areas, we inferred that the
PSAF might play an important role in higher-order language functions (e.g., syntax), which
was expected to be verified in future research.

Notably, we did not find a clear correlation between damage to the PSAF and naming
deficits when analyzing the intergroup differences in language performance and diffusion
indices, which seemed to be inconsistent with the findings of Ivanova et al. (2021) [15].
Naming is a complex process including early visual processing and recognition, the retrieval
and selection of semantic knowledge, lexical retrieval, and the coordination and execution
of motor plans for the articulators [66]. Partial correlation analyses showed that both the
left PSAF and LSAF were significantly associated with naming performance, suggesting an
important role of the temporal lobe in naming processing. However, we did not control the
impacts of other segments because of the co-occurring damage to the AF segments in the
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current study. Hence, it is difficult to elucidate the relationship between the left PSAF and
performance on naming tasks, according to our results.

Several limitations to this study should be mentioned. First, the number of patients
was somewhat limited, especially considering the high co-occurring injury rate and het-
erogeneity of the ASAF and LSAF in patients in group C. Second, the method of language
assessment applied in this study may be insufficient to fully reflect the real language ability
of our patients, particularly in terms of verbal fluency, naming, and complex syntax. Third,
we did not subdivide the terminal branches of the left LSAF, which resulted in obstacles in
investigating its roles in higher-order language functions. Finally, it is a disadvantage of the
deterministic fiber-tracking algorithm in crossed fiber tracking, which may affect the recon-
struction of the AF. Therefore, future investigations enlarging sample sizes and employing
special language assessment instruments as well as applying advanced neuroimaging
techniques such as diffusion kurtosis imaging (DKI), diffusion spectrum imaging (DSI), or
high angular diffusion magnetic imaging (HARDI) are warranted to clarify which segments
of the AF play a decisive role in different language subsets. In addition, the prognosis of
our patients’ language abilities is expected to be observed in a longitudinal investigation in
the future.

5. Conclusions

Several previous studies have reported the linguistic role of the AF segments in
the physiological and pathological brain. In this study, we investigated the contribu-
tions of damage to the left AF segments to language impairments in individuals with
acute/subacute PSA. We found significant correlations between the left AF segments
and language performance; particularly, the PSAF seemed to be crucial for the residual
comprehension and repetition abilities. Despite several limitations, our findings support
the importance of cortical language areas and highlight the linguistic role of the left AF
segments in acute/subacute PSA. We believe that is the present topic is of great clinical
importance, which is helpful for diagnosis and prognostic prediction in acute/subacute
aphasia, particularly in cases where the patients were unable to cooperate with complet-
ing clinical assessments. Therefore, the conduct of DTI research on this topic should be
encouraged in the future.
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