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The synergistic combination of visible-light-induced photoredox catalysis with

hypervalent iodine(III) reagents (HIRs) represents a particularly important achievement in

the field of hypervalent iodine chemistry, and numerous notable organic transformations

were achieved in a mild and environmentally benign fashion. This account intends to

summarize recent synthetic applications of HIRs in visible-light-induced photoredox

catalysis, and they are organized in terms of the photochemical roles of HIRs played

in reactions.

Keywords: hypervalent iodine reagent, photoredox catalysis, photochemistry, radical intermediate, synthetic

methods

INTRODUCTION

During the past several decades, the chemistry of hypervalent iodine reagents (HIRs) has gained
more and more attention due to their unique electrophilic properties (Brand et al., 2011;
Charpentier et al., 2015), valuable oxidizing abilities (Yoshimura and Zhdankin, 2016; Wang and
Studer, 2017), and environment friendly features (Zhdankin, 2013; Yoshimura and Zhdankin,
2016). The special structural features and unparalleled reactivities of HIRs lie in their unique
3-center-4-electron (3c-4e) bonds (L—I(III) —X), which are highly polarized and are longer
and weaker than classical covalent bonds (Zhdankin, 2013; Yoshimura and Zhdankin, 2016; Jia
and Chen, 2018). Generally, HIRs offer multiple advantages for synthetic organic chemistry: (i)
mild and highly chemoselective oxidizing properties; (ii) benign environmental character; (iii)
commercial availability; and (iiii) convenient structural modification (Brand et al., 2011; Zhdankin,
2013; Li Y. et al., 2016; Yoshimura and Zhdankin, 2016; Hari et al., 2018). These advantages of
HIRs give synthetic chemists the opportunities to design and access novel and more challenging
reactions. As a result, a wide array of organic transformations ranging from oxidative coupling
processes (Wang and Liu, 2016; Jia and Chen, 2018), ligand transfer reactions (Zhdankin, 2013;
Yoshimura and Zhdankin, 2016), rearrangements (Zhdankin, 2009; Brand et al., 2011), C–C, C–O
or C–N bond formations (Li Y. et al., 2016; Hyatt et al., 2019) to numerous other reactions have
recently been developed based on HIRs.

Since 2008, visible-light-induced photoredox catalysis has emerged as one of the most rapidly
expanding fields in organic chemistry (Xuan and Xiao, 2012; Koike and Akita, 2014; Romero and
Nicewicz, 2016; Shaw et al., 2016; Staveness et al., 2016; Twilton et al., 2017). In photoredox-
catalyzed procedures, metal photocatalysts (iridium-, ruthenium-, and copper-based) or organic
dyes (rose bengal, eosin Y, BODIPY, 4CzIPN, coumarins, and rhodamine derivatives) can efficiently
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convert visible light into chemical energy, thereby allowing the
activation of organic substrates via single-electron transfer (SET)
events, and eventually accessing to a large number of synthetically
important reactions under very mild reaction conditions.

Very recently, HIRs have quickly established themselves as
efficient and versatile reaction partners for visible-light-induced
photoredox catalysis. Many studies related to the elegant merging
of photoredox catalysis with HIRs have resulted in significant
advancements (Wang and Liu, 2016; Wang and Studer, 2017;
Jia and Chen, 2018). By the appropriate choice of HIRs,
photocatalysts, light sources and solvents, a wide array of bond-
forming reactions were developed in mild and environmentally
benign fashion (Figure 1).

Mechanistically, a typical photoredox catalytic cycle
consists of a sequence of three key steps: a photoexcitation
process followed by two SET processes. On account of
the smooth occurrence of the SET processes, the redox
(oxidation/reduction) potentials of both photocatalysts and
HIRs must be taken into consideration in order to find
the best-matched partners in a photoredox catalysis/HIR
reaction. The oxidative/reductive abilities of commonly used
transition metal and organic photocatalysts are relatively
well investigated (Table 1) (Reckenthaler and Griesbeck,
2013; Koike and Akita, 2014; Romero and Nicewicz, 2016;
Roth et al., 2016; Lemos et al., 2019). However, despite the
practical significance of HIRs, redox potentials of them has
not been sufficiently evaluated until now, only limited of
redox potential values of HIRs were reported in literatures
(Figure 2) (Charpentier et al., 2015; Roth et al., 2016; Vaillant
and Waser, 2017). Just in 2020, Radzhabov and coworkers
reported new calculated values of the relative redox potentials
of [bis(acetoxy)iodo]-arenes (Radzhabov et al., 2020). The
influence of various substituents and the effects of various
solvents on the reduction potentials of HIRs was both detailed
evaluated. This theoretical assessments may provide a useful
reference for the design of new photoredox reactions based
on ArI(OAc)2.

In line with photoredox catalysis, HIRs play two different
kind of photochemical roles such as reagent for functional-
group transfer and mild oxidant for substrates activation
(Wang and Liu, 2016; Wang and Studer, 2017; Jia and Chen,
2018). HIRs bearing trifluoromethyl, azido, alkynyl, and cyano
groups can readily participate in photocatalytic reactions for the
transformation of perfluoroalkylation (Koike and Akita, 2016),
azidation (Fumagalli et al., 2015), alkynylation (Kaschel and
Werz, 2015), and cyanation (Le Vaillant et al., 2017), respectively.
In contrast, hydroxyl-, alkoxyl-, and acetoxy- benziodoxoles (BI-
OH, BI-OR, and BI-OAc) are usually acted as the oxidant for
activation of carboxylic acids (Huang et al., 2016), alcohols
(Liu et al., 2018) or alkyl C-H bonds (Li et al., 2017) for
the generation of oxygen- or carbon-centered radicals under
photoredox catalysis. In certain cases (Jia et al., 2016, 2018), two
HIRs were employed in the same photoredox procedure: one of
which acts as a reagent and the other serves as mild oxidant.

The review herein intends to summarize recent synthetic
applications of HIRs in visible-light-induced photoredox
catalysis. The document is organized in terms of the

photochemical roles of HIRs played in reactions, with particular
emphasis placed on the literature from 2016 until the end
of March of 2020. In every section, we arrange the synthetic
methods according to their reaction types.

HIRS ACT AS FUNCTIONAL GROUP
TRANSFER REAGENTS

Fluoroalkylation
Visible-light photoredox catalytic methods have been proven to
be one of the most efficient pathways for the incorporation of a
variety of fluoroalkyl groups into organic skeletons (Koike and
Akita, 2016). Both cyclic and acyclic HIRs possessing various
fluorinated groups can serve as effective fluoroalkyl-transfer
reagents in photoredox-catalyzed fluoroalkylation (Li Y. et al.,
2016; Wang and Liu, 2016). In these processes, HIRs usually
choose the oxidative quenching pathway to furnish the key
fluoroalkyl radicals, thus enabling the synthesis of a wide variety
of fluoroalkylated compounds.

In 2018, Qing and coworkers reported the decarboxylative
trifluoromethylation of (hetero)arenes using ArI(OCOCF3)2 as
CF3 source by ruthenium photoredox catalysis (Yang et al.,
2018) (Figure 3A). A series of fluorinated ArI(OCOCF3)2 were
examined and C6F5I(OCOCF3)2 (FPIFA) was proved to be the
best option. Notably, FPIFA is easily accessible from C6F5I
and TFA in the presence of oxone (Harayama et al., 2006;
Zagulyaeva et al., 2010), and C6F5I could be recycled from the
decarboxylation reaction in high yield.

The authors proposed the reaction mechanism depicted in
Figure 3E. Initially, Ru(bpy)2+3 is excited by visible light to

generate the excited specie ∗Ru(bpy)2+3 , which performs the SET
process with FPIFA to afford the iodanyl radical, accompanied by
the formation of Ru(bpy)3+3 . Then, the resulting iodanyl radical
extrudes C6F5I to release the trifluoroacetoxy radical, which
can undergo further scission, leading to the formation of CF3
radical. The CF3 radical thus attack the aromatic ring in arene
to give aromatic radical. The aromatic radical might be oxidized
either by Ru(bpy)3+3 (path a) or by FPIFA (path b) to yield the
corresponding aromatic cation. At last, the aromatic cation is
converted into the target product through the deprotonation or
nucleophilic attack process.

Later, Xia and coworkers reported a mechanistically
similar reaction for the synthesis of perfluoroalkylated
aminoquinolines via Rf radical intermediates (Han et al.,
2019) (Figure 3B). The perfluoroalkylation reagents, such as
FPIFA, C6F5I(OCOCF2CF3)2 and C6F5I(OCOCF2CF2CF3)2,
were all effective in the reaction. Moreover, similar to reported
by Qing et al. (Yang et al., 2018), those HIRs can also be easily re-
covered by reaction of the by-product pentafluoroiodobenzene
with perfluorocarboxylic acids in the presence of oxone.

Xu and coworkers developed a method of
hydrotrifluoromethylation of benzyl-protected homoallylic
alcohol and amine derivatives employing Togni’s reagent as the
CF3 radical source under organic photoredox catalysis (Wang
et al., 2019) (Figure 3C). Togni’s reagent was found to be a
more effective trifluoromethylation reagent than CF3SO2Cl
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FIGURE 1 | The synergistic combination of visible-light-induced photoredox catalysis with HIRs, and typical photocatalysts and HIRs using in this methodology.
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TABLE 1 | Redox potentials of typical photocatalysts that featured in this review.

PC E1/2 (PC+/PC*) E1/2 (PC*/PC−) E1/2 (PC+/PC) E1/2 (PC/PC−) References

fac-Ir(ppy)3 −1.73 +0.31 +0.77 −2.19 (Lemos et al., 2019)

[Ru(bpy)3]
2+

−0.81 +0.77 +1.29 −1.33 (Lemos et al., 2019)

[Ir(dF(CF3)ppy)2(dtbbpy)]
+

−0.89 +1.21 +1.69 −1.37 (Lemos et al., 2019)

4CzIPN −1.04 +1.35 +1.52 −1.21 (Lemos et al., 2019)

Eosin Y −1.60 +1.18 +0.72 −1.14 (Reckenthaler and

Griesbeck, 2013)

Rose bengal −0.68 +0.99 +1.09 −0.78 (Reckenthaler and

Griesbeck, 2013)

DCA −1.01 +2.07 +1.89 −0.83 (Reckenthaler and

Griesbeck, 2013)

All potentials are given in volts in CH3CN vs. the saturated calomel electrode (SCE).

FIGURE 2 | Redox potentials of HIRs that featured in this review.

in the reaction. Dye 4CzIPN (2,4,5,6-tetra(9H-carbazol-9-
yl)isophthalonitrile) has been demonstrated as a competent
organic photoredox catalyst for generation of trifluoromethyl
radicals from Togni’s reagent. It is noteworthy that the reaction
proceeds through an oxidative quenching process to deliver a
CF3· radical followed by a crucial 1,5-hydrogen transfer relay
with in situ removal of benzyl group.

An efficient photoredox-catalyzed protocol for the
introduction of fluorinated groups into the coumarin framework
was established by Xiang’s group in 2019 (Song et al., 2019)
(Figure 3D). The reaction takes place efficiently using fac-
Ir(ppy)3 as the photocatalyst under the irradiation of blue
LEDs. When Togni’s reagent used as the perfluoroalkylated
radical resource in this protocol, ortho-hydroxycinnamic esters
were converted into 3-trifluoromethylated coumarins via a
photoredox-catalyzed cascade in moderate to good yields.

Azidation
Since its first report in 1994 by Zhdankin and co-workers,
azidobenziodoxol(on)es (ABXs, Zhdankin reagents) have
established themself as valuable alternatives to other azide
sources due to easy handling (crystalline solid) and the enhanced
stability (being stable up to 130◦C) (Fumagalli et al., 2015).
These cyclic HIRs have recently been popularly utilized as azide-
transfer reagents for azidation of a broad range of substrates
(Huang and Groves, 2016). Under visible-light irradiation and in
the presence of PC, the weak I–N3 bond in azido I(III) reagent

frequently undergoes homolytic cleavage to form an azidyl
radical and an iodanyl radical, thus triggering the radical chain
process to provide the azidated product.

Chen and coworkers disclosed an impressive protocol for
the azidation of 3◦C(sp3)–H bonds of complex substrates
using the Zhdankin reagent under Ru photoredox catalysis
(Wang et al., 2016) (Figure 4A). The azidation reactions
demonstrated excellent 3◦C–H selectivity and functional group
compatibility. Interestingly, when chlorine or bromide donor
was added into the reaction system, this protocol can be
further modulated to access aliphatic C–H chlorination and
bromination, respectively.

Greaney and coworkers have achieved a direct benzylic C–H
azidation using the Zhdankin reagent under photoredox catalysis
(Rabet et al., 2016) (Figure 4B). Reaction optimization showed
that common photoredox catalysts such as Ru(bpy)3Cl2 and
Ir(ppy)3 are totally ineffective, while Sauvage catalyst Cu(dap)2Cl
is found to be unique for this azidation. Moreover, the C–N bond
formation is wide applicable to primary, secondary, or tertiary
benzylic position. The authors proposed the reaction mechanism
depicted in Figure 4F. It is believed that the photoexcited
state ∗Cu(dap)2+ firstly reductive cleaves BI-N3 to generate a
source of azide radicals, then the azide radical serves as the H
abstractor to convert the benzylic C–H substrate to a benzyl
radical. Subsequently, the benzyl radical attacks BI-N3 to form
the azidated product and gives the chain-carrying iodane radical.
The iodane radical thus regenerates benzyl radical by abstracting
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FIGURE 3 | Photoredox-catalyzed fluoroalkylation using HIRs as fluoroalkyl-transfer reagents. (A) Trifluoromethylation of (hetero)arenes. (B) Perfluoroalkylation of

aminoquinolines. (C) hydrotrifluoromethylation of benzyl-protected homoallylic alcohol and amine derivatives. (D) Trifluoromethylation of ortho-hydroxycinnamic esters.

(E) Mechanism of reaction (A).
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FIGURE 4 | Photoredox-catalyzed azidation using HIRs as azide-transfer reagents. (A) Azidation and halogenation of tertiary aliphatic C–H bonds. (B) azidation of

benzylic C–H bonds. (C) Azidation and cyclization of carboxylic acids onto alkenes. (D) Azidative ring-expansion of silylated cyclobutanols. (E) Azidation/

difunctionalization of vinyl arenes. (F) Mechanism of reaction (B).
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a hydrogen atom from benzylic substrate and then propagates the
radical chain reaction.

In 2017, the Waser’s group reported a method of synthesis
of azidolactones starting from alkene-containing carboxylic
acids (Alazet et al., 2017) (Figure 4C). Using Zhdankin
reagent as the azide-transfer reagent and only 0.5 mol%
Cu(dap)2Cl as photoredox catalyst, (1,2)-azidolactones were
achieved under visible light irradiation. Zhdankin reagent and
azidodimethylbenziodoxole (ADBX), two typical azide-transfer
reagents, exhibited divergent reactivity in the azidolactonization:
Zhdankin reagent was ideally suited for 1,2-azidation under
photoredox conditions, while Lewis acid activation of ADBX led
to 1,1-azidolactonization via a 1,2-aryl shift. When ADBX
was used instead of Zhdankin reagent under the same
photoredox conditions, only traces of (1,2)-azidolactones
were observed.

Shortly after its discovery, this visible-light-promoted
photoredox-catalyzed azidation methodology was elegantly
expanded to alkene-substituted cyclobutanol derivatives by the
same group (Alazet et al., 2018) (Figure 4D). In 2018, they
introduced two new cyclic iodine(III) reagents (CIRs) with
higher molecular weight for azidation: tBu-ABX and ABZ
(azidobenziodazolone). The two reagents showed a better safety
profile than the most commonly used Zhdankin reagent, which
was both shock and friction sensitive. Furthermore, either tBu-
ABX or ABZ can be used as alternatives to the Zhdankin reagent
in a broad range of transformations including photoredox
catalysis. They developed an azidative ring-expansion of alkene-
substituted cyclobutanol derivatives using ABZ as the safer
azido-radical source and Cu(dap)2Cl as photoredox catalyst.

In 2019, the group of Yu has investigated the visible-
light-driven azidation of vinyl arenes with Zhdankin reagent
as azidating agent in acetonitrile by using [Cu(dap)2]PF6 as
photocatalyst (Wu et al., 2019) (Figure 4E). It was found that the
electronic nature of the aryl group attached to the olefin moiety
plays a profound effect on the reaction consequence: when
the aryl group was less electronically biased, amido-azidation
products were obtained as major products through a three-
component reaction involving the solvent acetonitrile as well as
Zhdankin reagent. The mechanistic investigations suggested that
these amido-azidation products were probably formed via the
photoredox catalysis pathway.

Alkynylation
HIRs, such as alkynyliodonium salts and
ethynylbenziodoxol(on)es (EBXs), have been demonstrated
as efficient and versatile alkynylating reagents for alkynylation.
Very recently, the synergistic merger of photoredox catalysis with
HIRs (especially EBXs) paved the way to radical alkynylation
of carboxylic acids and alcohols, thus enabling the synthesis of
valuable aryl-, alkyl and silyl-substituted acetylenes (Kaschel and
Werz, 2015; Waser, 2016; Vaillant and Waser, 2017).

Decarboxylative Alkynylation of Carboxylic Acids
Based on the previous success on visible-light photoredox
catalytic decarboxylative alkynylation of carboxylic acids, Li,
Cheng, and co-workers developed a metal-free procedure in

which 9,10-dicyanoanthracene (DCA) (Romero and Nicewicz,
2016; Neumeier et al., 2018) serve as the photoredox catalyst
for the replacement of the classic iridium catalysts (Yang C.
et al., 2016) (Figure 5A). The results showed that carboxylic acids
could be efficiently photo-oxidated by only 5 mol% of cheap
organic photocatalyst DCA at room temperature. Moreover,
natural sunlight can also be used as a light source. A gram-
scale reaction further demonstrates the synthetic utility of
this methodology.

Due to its mild conditions to generate radicals, the
photoredox catalysis provides a rational basis for developing
novel strategies in biomolecule functionalization (Hu and
Chen, 2015). Especially, photoredox-catalyzed decarboxylation
strategies were successfully applied to selectively functionalize
the C-terminal position of native peptides. Following their
success on photoredox-catalyzed decarboxylative alkynylation
of α-amino acids using EBXs, Waser and coworkers recently
extended the methodology for decarboxylative alkynylation on
C-terminus of peptides (Garreau et al., 2019) (Figure 5B).
Using EBXs as alkynylation reagents and 4CzIPN as photoredox
catalysts, alkynylated peptides can be efficiently achieved in
30min at room temperature under blue LEDs irradiation.
Moreover, this reaction exhibited superior selectivity for
the C-terminus in the presence of carboxylic acid side-
chains. The results showed that EBX reagents possess a
high potential for biomolecule functionalization under mild
photoredox-catalyzed conditions.

In 2018, the same group has shown that EBX reagents allowed
the alkynylation of cyclic alkyl ketone oxime ethers through
oxidative photoredox cycles, and versatile alkynyl nitriles were
synthesized via a fragmentation-alkynylation sequence (Franck
et al., 2018) (Figure 5C). It is worth noting that modified
4XCzIPN dyes were demonstrated as efficient photoredox
organocatalysts in this methodology, and their redox properties
were determined by both cyclic voltammetry and computation.
Among them, 4ClCzIPN dye exhibited highly efficient in
the fragmentation-alkynylation process. Various aryl-substituted
EBX reagents worked well under the reaction condition.
Preliminary investigations showed that other HIRs, such as
silyl EBX reagent (TIPS-EBX), cyanobenziodoxolone (CBX) and
phenyl vinyl benziodoxolone (PhVBX), can also react with
oxime ethers under the same reaction conditions to achieve
the corresponding alkynylation, cyanation, and alkenylation
products. However, when Togni’s reagent was employed, no
desired trifluoromethylation product was obtained.

Based on investigations conducted in this study, it is believed
that the mechanistic pathway in this process (Figure 5D) begins
with reductive quenching of the photoexcited state PS∗ of
4ClCzIPN dye by potassium carboxylate to give carboxyl radical
and the reduced state photocatalyst. The resulting carboxyl
radical undergoes decarboxylation to furnish the α-oxy radical,
which subsequently eliminates the acetone to generate iminyl
radical. 1H NMR evidence showed that the carboxyl radical
can also be trapped by EBX reagent and then hydrated to
give a by-product of the ketone. Ring-opening of the iminyl
radical then gives an alkyl nitrile radical. The alkyl nitrile
radical reacts with EBX and proceeds through a transition
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FIGURE 5 | Photoredox-catalyzed decarboxylative alkynylations of carboxylic acids with EBXs. (A) Decarboxylative alkynylation of α-amino/α-oxo/α-keto acids. (B)

Decarboxylative alkynylation of the C-terminus of peptides. (C) Fragmentation-alkynylation cascades of cyclic oxime ethers. (D) Mechanism of reaction (C).

state to give the final product and cyclic hypervalent iodine
radical. The reduction of the hypervalent iodine radical provides
carboxylate and regenerates the ground state PS to accomplish
the organocatalysis cycle.

Alkynylation of Alcohols
Similar to carboxylic acids, alcohols can also be efficiently
alkynylated employing EBXs as alkynylating reagents under
photoredox-catalyzed conditions. It should be noted that an HIR
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FIGURE 6 | Photoredox-catalyzed alkynylation of alcohols with EBXs. (A) Alkynylation of cycloalkanols and linear alcohols. (B) Alkynylation of

β-amide/β-ester/β-ketone alcohols. (C) Alkynylation of α-phosphorus alcohols. (D) Mechanism of reaction (C).

catalysis circle, in which HIR catalyzes the generation of alkoxyl
radicals, is often combined with the photoredox catalysis circle in
those methodologies.

Chen and co-workers have conducted a series of studies
aiming at photoredox-catalyzed alkynylation of different types
of alcohols. In 2016, this group exploited the combination
of photoredox catalysis and CIR catalysis for alkynylation
of alcohols using alkyl-EBX reagents (Jia et al., 2016)
(Figure 6A). Under the dual CIR/photoredox catalytic
system, both strained cycloalkanols and linear alcohols
can react with alkyl-EBXs delivering the corresponding

alkynylation adducts. Moreover, structurally complex
steroidal cycloalkanols can also convert into χ-alkynyl
ketones smoothly. Various aryl substituents appended to
EBXs are suitable for this process. The key to success in
this transformation was the visible-light-induced alcohol
oxidation for generation alkoxyl radicals and the subsequent β-
fragmentation of alkoxyl radicals into alkyl radicals. Compared
with those that employ transition metal activation under
strong oxidative conditions, visible-light-induced alkoxyl
radical generation by CIR catalysis proceeds smoothly at
room temperature.
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In 2017, this group also developed another C-C bond
cleavage/alkynylation reactions of β-amide, β-ester, and β-
ketone alcohols with EBXs via similar dual CIR/photoredox
catalysis, and ynamides, ynoates, and ynones were respectively
constructed with excellent regio- and chemoselectivity (Jia et al.,
2017) (Figure 6B).

Following the above successes, they further extended
the dual CIR/photoredox catalytic methodology to α-
phosphorus alcohols in 2018 (Jia et al., 2018) (Figure 6C).
Various arylphosphinoyl-, alkylphosphinoyl-, phosphonate-
, and phosphonic amide alcohols undergo P-C(sp3) bond
cleavage/radical alkynylation with EBXs to construct
phosphonoalkynes for the first time. Different cyclic iodine(III)
reagents, such as BIOAc, 3,4-F-BIOAc, 2,3,4,5-F-BIOH, and
3,4-OMe-BIOAc, were all effective to promote the reaction. A
range of EBXs (BI-alkynes) including ortho-, meta-, or para-aryl
substituents were well tolerated in the reaction.

A plausible mechanism for this process is depicted in
Figure 6D, the α-phosphorus alcohol first reacted with CIR
to generate the benziodoxole/α-phosphorus alcohol complex in
situ, which releases the alkoxyl radical and revives of CIR for the
new catalytic cycle upon oxidation by Ru(bpy)3+3 . The Ru(bpy)3+3
was originated from the oxidative quenching of the photoexcited
∗Ru(bpy)2+3 by CIR. The resulting alkoxyl radical subsequent
carries on P-C(sp3) bond cleavage to generate the phosphorus
radical, and further performs radical α-addition with the BI-
alkyne to yield the desired phosphonoalkyne product.

Other Reactions
Cyanation
In 2017, Waser’s group extensively investigated the photoredox
mediated decarboxylative cyanation of aliphatic acids using HIRs
as cyano-transfer reagents (Le Vaillant et al., 2017) (Figure 7). In
their model reaction, the cyanation reactivities of six hypervalent
iodine-based cyanation reagents were evaluated (Figure 7A).
Under photoredox catalysis, CDBX and acyclic iodine reagent
were almost inefficient while cyanobenziodoxolone (CBX) gave
the product in excellent yield, these results showed the superiority
of CBX as a cyanide source. The subsequent substrate scope
investigation indicated that this methodology allowed efficient
cyanation of α-amino and α-oxy acids into the corresponding
nitriles (Figures 7B,C). Furthermore, the direct cyanation of
dipeptides and drug precursors was also achieved.

Computational and experimental evidences suggested that
the favored decarboxylative cyanation mechanism may probably
different from the usually assumed decarboxylative alkynylation
(Le Vaillant et al., 2015; Zhou et al., 2015). The proposed
reaction mechanism (Figure 7D) consists of the irradiation
of IrL+2 with blue LED gives the excited-state ∗IrL+2 , which
subsequently carries on SET process with the in situ generated
cesium carboxylate to regenerate the IrL2 complex and together
give the key nucleophilic radical intermediate. The reaction of the
radical intermediate with CBX provides the desired nitrile and
an iodine centered radical. Finally, this iodine centered radical
undergoes another SET process with the IrL2 complex to close
the catalytic cycle.

Acetoxylation
In 2019, Santra, Hajra, Majee and coworkers developed a
method for regioselective coupling of C(sp3)-H of aryl-
2H-azirine and (diacetoxy)-iodobenzene (PIDA) using visible
light irradiation (De et al., 2019) (Figure 8). Aryl-2H-azirines
with different functional groups were converted into the
corresponding acetoxylated azirines under aerobic condition.
Organophotocatalyst, rose Bengal (RB), was found to be more
efficient in this reaction than transition-metal photoredox
catalysts, such as Ru(bpy)3Cl2·6H2O and Ir(ppy)3. Notably, this
protocol can be carried out in gram-scale.

The proposed mechanism of the acetoxylation reaction is
shown in Figure 8C. Firstly, when irradiation with blue LED,
rose bengal (RB) was excited into the excited state RB∗,
which performs an SET reduction with PIDA to generate
the acetoxy radical (CH3COO·), accompanied by formation of
the cation radical (RB+·), PhI, and CH3COO

−. Abstraction of
the hydrogen atom of aryl-2H-azirine by acetoxy radical provides
the 2H-azirine radical. The 2H-azirine radical then undergoes
a second SET oxidation with RB+·, leading to the formation
of intermediate carbocation while completing the photocatalytic
cycle. Finally, the intermediate carbocation couples with the
acetate anion giving the corresponding acetoxylated azirine.

Diazomethylation
In 2018, Suero and co-workers developed an aromatic C-
H bond diazomethylation reactions using the pseudocyclic
hypervalent iodine (I) by ruthenium photoredox catalysis (Wang
Z. et al., 2018) (Figure 9). The pseudocyclic hypervalent iodine
(I) carrying a diazoacetate moiety served as a diazomethyl
radical precursor through a SET process in photoredox-catalyzed
protocol, and a wide range of aromatic hydrocarbons substituted
with alkyl groups, halogens, amides and carbonyls undergo C-H
diazomethylation to generate valuable diazo compounds.

The authors proposed the reaction mechanism depicted
in Figure 9C. The photocatalytic system is initiated by the
photoexcitation of [Ru(bpy)3]

2+ to generate ∗[Ru(bpy)3]
2+. The

photoexcited ∗[Ru(bpy)3]
2+ undergoes single-electron transfer

with the pseudocyclic hypervalent iodine (I) to yield the
diazomethyl radical as direct equivalent of carbyne specie,
which is further intercepted an aromatic ring to facilitate the
cyclohexadienyl radical formation. Finally, the resulting radical
intermediate is oxidized by [Ru(bpy)3]

3+ and eliminates the
proton to obtain the expected diazo compound.

HIRS ACT AS OXIDANTS FOR SUBSTRATE
ACTIVATION

Due to the excellent coordinating property of iodine atom,
HIRs can easily experience ligand exchange reaction with
organic acids to form the hypervalent iodine-coordinated
carboxylates. When combination with the photoredox catalysis,
those hypervalent iodine-coordinated carboxylates frequently
undergo homolytic cleavage to access highly reactive hypervalent
iodine radicals as well as the oxygen radicals, thus triggering
the decarboxylative functionalization reactions or other
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FIGURE 7 | Photoredox mediated decarboxylative cyanation of carboxylic acid with CBX. (A) Model reaction of decarboxylative cyanation. (B) General reaction of

decarboxylative cyanation. (C) Selected examples of the cyanation products. (D) Possible mechanism.
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FIGURE 8 | Photoredox-catalyzed C(sp3)-H acetoxylation of aryl-2H-azirines with PIDA. (A) General acetoxylation reaction of aryl-2H-azirines. (B) Selected examples

of the products. (C) Possible mechanism.

transformations (Huang et al., 2016; Jia et al., 2018). Based
on the above concept, Chen and co-workers have conducted
a series of studies on novel dual CIR/photoredox catalytic
system (Huang et al., 2015; Jia et al., 2016, 2017), and the
research results proved that CIRs played a crucial role in
activating the substrates of organic acids and alcohols toward
photoredox catalysis.

HIR-Mediated Activation of Organic Acids
An example of CIR-enabled decarboxylative functionalization of
α, α-difluoroarylacetic acids, mediated by dual CIR/photoredox
catalysis, were developed by Qing and coworkers (Yang B.
et al., 2016) (Figure 10A). A series of novel difluoroalkylated
arenes were smoothly achieved through an HIR-promoted
decarboxylation and radical hydroaryldifluoromethylation
sequence. All of the tested HIRs including PhI(OAc)2,
PhI(OCOCF3)2, BIOAc and BIOMe give the desired
transformation. Among them, BIOMe was the best choice.
Further investigation revealed that BIOMe acts not only as an
activating reagent but also as an oxidant in the process.

Feng, Xu, and coworkers disclosed a visible-light-enabled
reaction in which α,β-unsaturated carboxylic acids are activated

by BI-OH, thus leading to the decarboxylative mono- and
difluoromethylation transformations (Figure 10B) (Tang et al.,
2017). Four candidate HIRs, IBDA, IB, BI-OH, BI-OAc, were
screened in the reaction. Among them, BI-OH turned out to
be optimal. As explained in mechanistic pathway (Figure 10D),
BI-OH can in sute generate a benziodoxole vinyl carboxylic
acid complex (BI-OOCCH=CHR), thus activating of the vinyl
carboxylic acid group.

Zhang, Luo, and coworker achieved enantioselective
decarboxylative coupling of propiolic acid and β-ketocarbonyls
by combination of chiral primary amine catalysis and visible-
light photoredox catalysis (Figure 10C) (Wang et al., 2017).
Various of alkynylation adducts were synthesized with
excellent enantioselectivities under mild conditions. For
HIRs tested in this process, PIFA, PIDA, BI-OAc, and BI-
OMe performed almost no catalysis effect, and BI-OH were
identified to give the optimal results in terms of both yield and
enantioselectivity. Mechanistic studies revealed that BI-OH
could in situ react with propiolic acid to generate the propiolate
under the reaction conditions. This propiolate acted as a
key intermediate both in photoredox catalytic circle and the
aminocatalytic circle.
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FIGURE 9 | Photoredox catalysis enabled C–H bond diazomethylation of arenes with pseudocyclic HIR. (A) General diazomethylation reaction of arenes. (B) Selected

examples of the products. (C) Possible mechanism.

Itami and co-workers developed a mild method for the
photoredox-catalyzed decarboxylation of arylacetic acids by
HIR in air, thus leading to various aryl-aldehydes and ketones
(Sakakibara et al., 2018a) (Figure 11A). Photoredox catalyst,
HIR, blue light irradiation, and O2 are all critically important for
this transformation. CIR 1-butoxy 1-λ3-benzo[d][1,2]iodaoxol-
3(1H)-one (IBB) was proved more efficient in the procedure
than non-cyclic iodine reagent PIDA. In contrast, Ph2ICl was
completely inefficient. In this process, IBB reacts with arylacetic
acid to form intermediate in situ, thus activating of the arylacetic
acid for decarboxylation.

The same group’s subsequent study revealed that the same
methodology can also be extended for construction of carbon–
nitrogen and carbon–oxygen bonds (Figure 11B) (Sakakibara
et al., 2018b). Under the activation of IBB, arylacetic acids
were directly converted into nitrogen, oxygen, or chlorine
functionalities. The reaction of IBB with arylacetic acid was
confirmed by 1H NMR, and the resulting complex was a key

activated intermediate in the photoredox catalytic cycle of the
mechanism pathway.

The authors raised a possible mechanism for the
decarboxylative imidation (Figure 11E). Initially, arylacetic
acid reacts in situ with IBB to form benziodoxole/arylacetic
acid complex. Meanwhile, the photocatalyst ([Ru(bpy)3]

2+)
is excited under irradiation of blue light to generate
its photoexcited state (∗[Ru(bpy)3]

2+). Then the excited
ruthenium photocatalyst reduces the benziodoxole/arylacetic
acid complex to give [Ru(bpy)3]

3+, arylacetic radical, and
o-iodobenzoate. The arylacetic radical in turn suffers
decarboxylation to produce benzyl radical. Parallel to this
process, another substrate, imide, is oxidized by [Ru(bpy)3]

3+

to provide imidyl radical. Finally, radical-radical coupling
of the arylacetic radical and imidyl radical affords the
imidation product.

In 2018, the Chen’s group further expanded their protocol
of photoredox-mediated Minisci alkylation of N-heteroarenes
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FIGURE 10 | HIR-mediated activation of α,α-difluoroarylacetic acids, α,β-unsaturated carboxylic acids and propiolic acid under photoredox catalysis. (A) Activation of

α,α-difluoroarylacetic acids for hydroaryldifluoromethylation of alkenes. (B) Activation of α, β-unsaturated carboxylic acids for decarboxylative fluoromethylation. (C)

Activation of propiolic acids for decarboxylative α-alkynylation. (D) Mechanism of reaction (B).

reported in 2016 (Li G. X. et al., 2016). In the improved protocol
(Figure 11C) (Wang J. et al., 2018), the alkylating agents were
replaced by aliphatic carboxylic acids, which are more abundant,
inexpensive, stable and structurally diverse than alkyl boronic
acids. Although the same HIR was employed in both protocols,
it actually demonstrated different roles under the photoredox
catalysis conditions, and these two reactions proceed through

different mechanisms. BI-OAc serves as a radical precursor in
former, while in the improved protocol, it is used for substrate
activation to facilitate decarboxylative functionalization of
carboxylic acids.

Genovino, Frenette, and coworkers developed a C–
H alkylation of heteroaromatics using an acridinium
photocatalyst and HIRs (Figure 11D) (Genovino et al.,

Frontiers in Chemistry | www.frontiersin.org 14 September 2020 | Volume 8 | Article 551159

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Hypervalent Iodine(III) Reagents in Photoredox Catalysis

FIGURE 11 | HIR-mediated activation of carboxylic acids under photoredox catalysis. (A) Activation of arylacetic acids for decarboxylative oxidation. (B) Activation of

arylacetic acids for decarboxylative C-X bond formation. (C) Activation of aliphatic carboxylic acids for Minisci alkylation. (D) Activation of carboxylic acids for C–H

alkylation. (E) Possible mechanism of reaction (B).

2018). Bis(trifluoroacetoxy)iodo benzene (PIFA), a more soluble
and under-utilized HIR, was proved as attractive option. It
is noteworthy that the more challenging linear carboxylic
acids that form primary radicals are also suitable substrates. A
mechanism pathway, which different from other photoredox

Minisci reactions catalyzed by transation-metals, was proposed
by the authors.

In 2019, Cheng reported a decarboxylative coupling of
alkynyl carboxylic acids and aromatic diazonium salts using
HIR under eosin Y photoredox catalysis (Figure 12A) (Yang
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FIGURE 12 | HIR-mediated activation of arylpropiolic acids, α-keto acid and boronic acids under photoredox catalysis. (A) Activation of arylpropiolic acids for

decarboxylative alkynylation. (B) Activation of α-keto acids for decarboxylative acylation/ring expansion. (C) Activation of α-keto acids for acyl Smiles rearrangement.

(D) Activation of alkyl boronic acids for Minisci C–H alkylation. (E) Possible mechanism of reaction (D).

et al., 2019). The results showed that BI-OAc superior to
BI-OH and BIOMe as decarboxylation facilitated reagent
for the reaction. BI-OAc and arylpropiolic acid generated
a benziodoxole 3-phenylpropiolate complex in situ, which
facilitated C–C triple bond conversion in themechanical pathway
proposed by the authors.

Duan and coworkers reported the decarboxylative
acylation/ring expansion reactions between vinylcyclobutanols
with α-keto acids to construct 1,4-dicarbonyl compounds
(Figure 12B) (Zhang et al., 2017). This methodology

takes advantage of organic photoredox catalysis and
merges it with HIR. Both transition-metal and organic
photoredox catalysts were examined in the reaction,
among them, rhodamine B, an organic dye known for
its low cost, less toxic and easy to handle, give the best
results. BI-OH was proved to play an important role in
facilitating decarboxylation of α-keto acids. Radical-trapping
experiments confirmed that nucleophilic acyl radical, which
originated from α-keto acid, was involved in this tandem
radical process.
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Chen and coworkers developed the first acyl radical
Smiles rearrangement for transformation of biarylethers into
hydroxybenzophenones (Li J. et al., 2019) (Figure 12C).
Under dual hypervalent iodine(III)/photoredox catalysis, α-
keto acids undergo ester exchange with BI-OAc to form BI-
keto acid complexes in situ, which can readily afford acyl
radicals and then suffer 1,5-ipso addition and eventually
give hydroxybenzophenones. Two typical non-cyclic iodine(III)
reagents, PIDA and PIFA, were proved both less effective than
BI-OAc. Organic photocatalyst 9-mesityl-10-methylacridinium
perchlorate (Acr-Mes+ClO−

4 ) superiors to [Ru(bpy)3](PF6)2 and
[Ir(ppy)2(dtbbby)]PF6 and gives optimal yields. Particularly, the
reaction can be applied in gram-scale synthesis and performed
in neutral aqueous conditions, implying its potential biomolecule
applications in further.

In 2016, Chen and co-workers developed a new photoredox-
mediated protocol for Minisci C–H alkylation of N-heteroarenes
using alkyl boronic acids as alkylation regents, BI-OAc as
oxidants, and Ru(bpy)3Cl2 as photocatalyst (Li G. X. et al.,
2016) (Figure 12D). This protocol can be applicable to a range
of easily accessible primary and secondary alkyl boronic acids
for the preparation of various N-heteroarenes, and various
functional groups, including alkyl bromide, aryl iodide, ester,
amide, carbamate, terminal alkyne, and benzyl chloride, are
well-tolerated. Mechanistic experiments suggested that BI-OAc
serves as a facile precursor for an ortho-iodobenzoyloxy radical
intermediate, which play a key role in the efficient transformation
of usually less reactive alkyl boronic acids to form alkyl radicals
(Figure 12E).

HIR-Mediated Activation of Alcohols
Chen and coworkers reported in 2018 that allylic alcohols can be
activated by CIRs under photoredox catalysis conditions,
and a series of cyclopentanones, cyclohexanones, and
dihydrofuranones bearing α-quaternary centers were synthesized
via alkyl boronate addition/semi-pinacol rearrangement
(Figure 13A) (Liu et al., 2018). The interaction between tertiary
allylic alcohol and BI-OAc was extensively investigated by
crystallography, NMR spectroscopy and cyclic voltammetry
experiments, and the results revealed that both the hydroxyl
and olefin groups in allylic alcohols were greatly activated via
coordination to the BI-OAc. The mechanistic investigations
suggest that the CIRs employed in this reaction played at least
triple roles in the whole pathway: (1) facilitating the formation
of the alkyl radical and the cation intermediate, (2) activating
the allylic alcohol, and (3) the in situ protecting of alcohols for
avoiding the formation of the epoxide.

Mao, Zhu, and coworkers reported the synthesis of distal
bromo-substituted alkyl ketones by visible light-promoted
ring-opening functionalization of unstrained cycloalkanols
(Wang D. et al., 2018) (Figure 13B). A set of medium-
and large-sized rings, such as cyclopentanols, cyclohexanols,
cycloheptanols, cyclododecanols, and cyclopentadecanols, are
readily brominated through inert C–C bond scission with the
assistance of HIR under visible-light irradiation. HIRs such
as PIDA, BI-OH, IBX, and DMP were all effective for the
reaction, and PIDA gave the best results. Two pathways were

proposed for the formation of the key alkyloxy radical by
authors. In one of them, PIDA was transesterificated with
cycloalkanol in situ, thus facilitating generation of the challenging
alkoxyl radical.

In 2019, Chen and coworkers discovered a method for δ

C(sp3)–H heteroarylation of free aliphatic alcohols with various
N-heteroarenes using HIRs as oxidant under Ru photoredox
catalysis (Li G. X. et al., 2019) (Figure 13C). Both cyclic I(III)
reagents (BI-OAc, BI-OH, PFBI-OH and PFBI-OAc) and acyclic
I(III) reagents (PIDA and PIFA) were examined and PFBI-OH
achieved the highest efficiency. The high electrophilicity of the
iodo center of PFBI-OH makes itself more electrophilic for
alcoholysis and easily reducible in SET process. Notably, this
method also possesses the advantage of avoiding the use of a large
excess of alcohols.

The heteroarylation process (Figure 13D) starts with
in situ alcoholysis of PFBI-OH with alcohol, and then an
alkoxy radical intermediate is generated through the SET
reduction. Subsequently, the alkoxyl radical intermediate
undergoes 1,5-Hydrogen atom transfer (1,5-HAT) to generate
C-radical, which is then engaged in Minisci-type C–C bond
formation to give heteroaryl cation intermediate. Finally, the
intermediate is converted into target heteroarene through SET
oxidation process.

HIR-Mediated Activation of Alkyl C-H
Bonds
Chen Gong and coworkers have conducted a series of studies
using HIRs as oxidants to selective functionalization of alkyl
C(sp3)-H bonds under photoredox-catalysis. In these HIR-
mediated methods, unactivated alkyl C(sp3)-H bonds, such
as tertiary, benzylic methylene, methylene, and methyl C-H
bonds, can be selectively cleaved by benziodoxole radicals (BI·),
thus offering straightforward methodologies to synthesis of
complex alkyl-substituted compounds from a wide range of
acyclic alkanes.

In 2017, this group demonstrated the use of HIRs in both
hydroxylation and amidation of tertiary and benzylic C–H
bonds, enabled by their corresponding benziodoxole radicals
(Li et al., 2017) (Figure 14). H-abstraction reactivities of eight
HIRs were investigated for C–H hydroxylation or amidation,
and PFBI-OH and BI-OH were proved as the most effective
oxidants respectively for tertiary C–H bonds and benzylic C–H
bonds. Distinct from the typical radical chain mechanism, the
authors proposed a new ionic pathway (Figure 14C) involving
nucleophilic trapping of a carbocation intermediate with H2O or
nitrile cosolvent.

In an effort focused on extending this methodology, the
same authors applied their PFBI-OH/photoredox system to
functionalize the challenging methylene C-H bonds, and a
range of alkyl-substituted N-heteroarenes were efficient and
chemoselectively constructed through Minisci-type alkylation
reaction of N-heteroarenes with alkanes (Figures 15A,B) (Li
et al., 2018). The use of PFBI-OH was crucial to elicit both
high reactivity and unique steric sensitivity for C-H abstraction
of alkanes. The PFBI· radical, which generated by homolytic
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FIGURE 13 | HIR-mediated activation of alcohols under photoredox catalysis. (A) Activation of allylic alcohols for alkyl boronate addition/rearrangement. (B) Activation

of unstrained cycloalkanols for ring-opening bromination. (C) Activation of aliphatic alcohols for remote C–H heteroarylation. (D) Possible mechanism of reaction (C).

cleavage of I-OH bond under compact fluorescent lamp (CFL)
irradiation, can smoothly cleave stronger 2◦C-H bonds even in
the presence of weaker 3◦C-H bonds.

Cai and coworkers developed a visible-light-promoted C-
H functionalization strategy to prepare α-aryl-γ -methylsulfinyl
ketones (Figures 15C,D) (Lu et al., 2018). In this process, alkyl

C(sp3)–H bond of dimethyl sulfoxide (DMSO) can be cleaved
by a new HIR to yield α-sulfinyl radical, which subsequent
undergoes radical addition with allylic alcohol, followed by 1,2-
aryl migration to give the desired sulfoxide derivatives. The new
HIR was in situ generated from the reaction of PIFA and 1,3,5-
trimethoxybenzene.
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FIGURE 14 | Photoredox-catalyzed C(sp3)–H hydroxylation and amidation. (A) Activation of tertiary and benzylic C–H bonds for hydroxylation and amidation. (B)

Selected examples of the products. (C) Possible mechanism.

SUMMARY AND OUTLOOK

As shown herein, the synergistic combination of photoredox
catalysis with HIRs has achieved numerous notable organic

transformations. These reactions illustrated that hypervalent
iodine chemistry can significantly benefit from the merger
with photoredox catalysis systems. The ability to access
highly reactive radical intermediates under very mild and
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FIGURE 15 | HIR-mediated activation of alkyl C-H bonds under photoredox catalysis. (A) Activation of C–H bonds for Minisci-type alkylation of reaction (A). (B)

Selected examples of the products. (C) Activation of C–H bond in DMSO for 1,2-alkylarylation. (D) Selected examples of the products of reaction (C).

environmentally benign conditions make these methodologies
quite attractive.

Despite the significant progress made, there remain many
opportunities for further exploration in the field of photoredox
catalysis/HIR system. Firstly, there are a wide variety of HIRs yet
to be engaged in photoredox-catalytic reactions. Moreover, from
the perspective of green and sustainable chemistry, additional
development of low-cost, non-toxic, and environmentally

benign organic-dyes as a replacement of metal photoredox
catalysts is highly desirable. Additionally, the discovery of
stereoselective asymmetric reactions using chiral HIRs under
photoredox-catalyzed conditions may potentially be a promising
direction for future research. Finally, more in-depth mechanistic
studies are highly warranted for fully understanding of the
photoredox catalysis/HIR processes. It is highly anticipated
that more and more HIRs as reagents or oxidants will
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continue to be applied in the area of visible-light-induced
photoredox catalysis.
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