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Abstract: Human activity recognition (HAR) technology that analyzes and fuses the data acquired from
various homogeneous or heterogeneous sensor sources has motivated the development of enormous
human-centered applications such as healthcare, fitness, ambient assisted living and rehabilitation.
The concurrent use of multiple sensor sources for HAR is a good choice because the plethora of user
information provided by the various sensor sources may be useful. However, a multi-sensor system
with too many sensors will bring large power consumption and some sensor sources may bring little
improvements to the performance. Therefore, the multi-sensor deployment research that can gain a
tradeoff among computational complexity and performance is imperative. In this paper, we propose
a multi-sensor-based HAR system whose sensor deployment can be optimized by selective ensemble
approaches. With respect to optimization of the sensor deployment, an improved binary glowworm
swarm optimization (IBGSO) algorithm is proposed and the sensor sources that have a significant
effect on the performance of HAR are selected. Furthermore, the ensemble learning system based on
optimized sensor deployment is constructed for HAR. Experimental results on two datasets show
that the proposed IBGSO-based multi-sensor deployment approach can select a smaller number
of sensor sources while achieving better performance than the ensemble of all sensors and other
optimization-based selective ensemble approaches.

Keywords: human activity recognition; multi-sensor data fusion; selective ensemble; glowworm
swarm optimization; sensor layout

1. Introduction

Wearable sensor-based human activity recognition (HAR) systems have gained incredible popularity
in many human-centered applications such as assisted living [1], intelligent interactive applications [2],
athletic activities training [3,4] and factory workers monitoring [5]. Through sensors-based HAR
system, accurate and reliable information of people’s activity can be provided for ensuring a safe
and sound living environment [6]. Compared with video-based HAR systems, sensor-based HAR
systems, which are mainly based on sensing technologies, microelectronics and wireless communication
technologies, have more advantages. Video-based HAR systems are not practical in many indoor
environments especially when illumination and privacy are considered. In addition, video-based
approaches only monitor users in the camera’s specific area. Sensor-based HAR is a challenging but
promising research area which has been drawing the attention of researchers from the community of
ubiquitous computing, machine learning, medical and healthcare.

Recently, considerable research of HAR has demonstrated the potential of multi-sensor fusion
for wearable activity recognition [7,8]. In general, placing various sensors on multiple body parts can
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allow to obtain richer activity information, which could help improve the performance and robustness
of HAR. However, in many real-world applications, it is not practical to deploy numerous sensors on
multiple positions of the body. This will not only increase the equipment costs but also bring obtrusions
for elderly users, especially those who can live independently. Moreover, as the sensor-based HAR
applications typically require a large amount of data to be processed, arranging more sensors will
increase the communication burden and consequently the power consumption. Last but not the least,
the contribution of each sensor depends on the application and the type of activities to be recognized.
Some sensors may bring limited improvement on the recognition performance while increasing the
amount of data processing [9]. Therefore, a research-worthy problem for the multi-sensor fusion-based
HAR is how to evaluate the performance of sensor nodes and minimize the number of sensors required
to HAR to realize the overall configuration optimization of the multi-sensor system.

Generally speaking, in terms of the data processing level of abstraction, multi-sensor fusion
strategies can be mainly categorized into three types: data-level fusion [10], feature-level fusion [11]
and decision-level fusion [12]. As the lowest level of abstraction, data-level fusion combines the raw
data from the multiple wearable sensors directly. A large number of parameters, such as the number of
sources, sampling rate and sensing synchronization, are affected by the design choices of sensor fusion
method. Considering the system energy consumption, most techniques transform data after extracting
features from the sensor node as there is limited number of activities to recognize. Feature-level fusion
creates a new high-dimension feature vector based on features from different sensor nodes. Feature
selection algorithms are typically useful in the pattern recognition and machine learning community.
It is difficult to optimize the layout of sensors in the feature-level fusion because this will change the
dimension of the newly created feature vector. Among these three fusion levels, decision-level fusion
outputs a unique decision according to the local decision of multiple (homogeneous or heterogeneous)
sensors. The main advantages of decision-level fusion include communication bandwidth saving and
improved decision accuracy. Therefore, there are many multi-sensor-based HAR studies that have
focused on optimizing the decision-level fusion process of multi-sensors.

Over the years, ensemble learning has demonstrated great potential for the improvement of
many real-world applications [13,14]. The main idea of ensemble learning is to combine multiple
base learners to enhance performance. Ensemble learning builds a classification model in two steps.
The first step is to establish a set of basic classifiers. In the second step, the decision information of each
basic classifier is merged to give the final decision of the ensemble using a combiner function. However,
the improvement of ensemble learning system is not proportional to the number of base classifiers.
There would be 2M

− 1 nonempty base classifier subsets if a classifier pool contains M base classifiers.
This makes selecting a subset of the classifier with the optimal performance an NP-complete problem.

Selective ensemble, which is also known as ensemble pruning, is an approach for extracting a
subset of classifiers that optimizes the performance of ensemble learning system. Ensemble pruning
approaches can be categorized into three main groups: ordering-based [15,16], optimization-based [17],
and clustering-based [18] pruning approaches. Ordering-based selection is first based on an evaluation
measure (or criterion) that ranks every classifier and then aggregates the ensemble members whose
ranks are above a predefined threshold. Clustering-based pruning approaches consists of a clustering
technique, which allows identifying a set of representative classifiers that compose the pruned
ensemble. Although these methods have less computational cost, the ensemble performance may not
be optimal. In addition, for the above two approaches, there is no ideal way to choose the scale of the
ensemble learning system. Comparatively, optimization-based approach treats ensemble pruning as
an optimization problem, which makes it easier to obtain the optimal ensemble. In addition, there are
many heuristic algorithms that can be used as a searching strategy to find the optimal sub-ensemble,
such as the genetic algorithm (GA) [19], particle swarm optimization (PSO) [20], ant colony optimization
(ACO) [21] and glowworm swarm optimization (GSO) [22]. However, there are few studies [23] that
applied the effective optimization-based pruning approach to design the layout of the multi-sensor for
HAR system.
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In this study, we design a multi-sensor-based HAR framework which combines the advantages
of decision-level fusion and selective ensemble to address the aforementioned challenges. In this
proposed HAR framework, the selective ensemble approaches can be applied to reduce the scale
of ensemble sensors and improve the effectiveness of the decision-level fusion. Furthermore,
to improve the search ability and global convergence of the optimization-based approach, we proposed
a novel optimization-based selective ensemble approach, which is named the improved binary
glowworm swarm optimization (IBGSO) approach, for selecting the most optimal set of base classifiers
automatically. In this way, the sensor combination for the most important parts of the body can be
optimized, which will boost the performance of the multi-sensor-based HAR system. The proposed
system is demonstrated to be able to achieve the balance of HAR performance and the number of
sensors. The main contributions of this paper are as follows:

(1) Activity recognition framework: we design a multi-sensor-based HAR framework in which
the sensor deployment can be optimized to find a tradeoff between the number of sensors and
system performance.

(2) A novel optimization-based selective approach IBGSO: in order to improve the search ability
and global convergence, we propose a novel optimization-based selective approach IBGSO
for the multi-sensor-based HAR framework. Compared with the other three state-of-the-art
optimization-based selective approaches, the proposed IBGSO approach can help us to
comprehensively understand the crucial positions and sensors for the performance of HAR.

(3) Experimental evaluation: we conduct extensive experiments and obtain several valuable
results that can help researchers make better decisions in utilizing sensors and positions for
multi-sensor-based HAR.

2. Related Works

Considerable research has demonstrated the potential of body sensor networks (BSNs) in many
physical activity monitoring applications. However, since many activity monitoring applications
require sophisticated signal processing, feature extraction and recognition algorithms, the design and
optimization of BSN still remain a challenging task. For example, the complex sensory data, especially
when these data are uncertain or even incomplete, make the majority voting and naive Bayes fusion
methods in decision-level unsuitable for HAR. Recently, Chen et al. [24] proposed a new method
based on the Dempster–Shafer theory to improve human action recognition by using the fusion of
depth camera and inertial sensors. However, this work ignored that there exists an assumption that
the hypotheses considered should be exclusive, which is not applicable to HAR. Dong et al. [25]
designed a robust and intelligent sensor fusion strategy based on the Dezert-Smarandache theory for
HAR. In this framework, the missing data of the involved sensors are treated as ignorant without
manual interpolation or intervention. Boutellaa et al. [26] introduced a multi-wearable sensor-based
fall detection system which applied the covariance matrix and neighbor classification techniques to
process the signals. The covariance matrix-based processing is beneficial for improving the recognition
performance and has improved the mean accuracy of fall detection. Guo et al. [27] introduced a
hierarchical data fusion model for HAR by using multiple wearable inertial sensors. In this model,
two levels, namely basic classification and a fusion layer, were utilized to analyze the information from
the multiple sensors. It is shown that using the entropy-based weight and feature selection can reduce
the errors in the decision phase.

In addition to the conventional machine learning algorithms, the recently developed ensemble
learning has also been proved to be effective for the task of HAR. Chen et al. [13] proposed a
novel ensemble extreme learning machine (ELM) algorithm for HAR based on smartphone sensors.
To enhance the diversity among each base ELM, the Gaussian random projection is applied in the novel
ensemble algorithm to initialize the input weights of base ELMs. Experiments have demonstrated
that the proposed algorithm boosts the performance of ensemble learning. Gibson et al. [28] proposed
an accelerometer-based fall detection framework that utilizes multiple classifiers to improve the
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fall detection and diagnostic performance. The multi-classifier system demonstrated significant
performance advantages compared with other classification methods. The performance of five types of
ensemble classifiers which employed support vector machine (SVM) and random forest (RF) as the base
learners were discussed on HAR [29]. The experiments showed that SVM achieved the highest accuracy
rate, 99.22%, based on a random subspace ensemble classifier. Chowdhury et al. [30] compared the
performance of the custom ensemble model and conventional ensemble machine learning methods on
HAR. The results showed that a custom ensemble model using weighted majority voting achieves the
best performance.

3. Related and Proposed Techniques

3.1. Extreme Learning Machine

In this study, ELMs are utilized as the base classifiers to recognize human activity patterns. Owing
to the extremely fast learning speed and the good generalization performance, as a feed-forward neural
network, the ELM algorithm proposed by Huang et al. [31] in 2006 has been successfully applied for
the task of HAR [13]. Moreover, as the parameters of the algorithm are set randomly, the unstable and
diverse results of ELM help to improve the recognition performance of the ensemble learning system.

The structure of ELM includes an input layer, a hidden layer and an output layer, which are
shown in Figure 1, where β is a matrix weights between the hidden nodes and the output nodes and
w and b are the weights and bias from input nodes to hidden node, respectively. ELM is different from
the traditional BP learning method, which iteratively updates the parameters of {w b} according to
the gradient of the modeling error. Traditional BP learning methods are not only time-consuming
but also have low generalization performance. The ELM algorithm generates the input weights
w and bias b randomly and provides a closed-form solution of the output layer weights using the
least-squares method.
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Figure 1. The structure of ELM.

3.2. Multi-Sensor Fusion with an Ensemble Learning System

Most works on multi-sensor fusion are based on decision-level fusion. Compared with the other
two fusion methods, decision-level fusion can process heterogeneous sensor information with less
communication bandwidth consumption. Correspondingly, this paper is based on the decision-level
fusion method, which combines the information of several simple classifiers and establishes an
ensemble system that includes a one-to-one relationship between classifiers and sensors. The designed
structure of multi-sensor fusion with ensemble learning system is shown in Figure 2.
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The core idea of ensemble learning is to combine multiple base learners to improve the performance.
For base classifier generation, an important principle is the diversity among base classifiers, which can
improve the performance of an ensemble system by mining salient information with respect to different
perspectives. Generally, there are three approaches to generate the basic classifiers with diversity in the
ensemble learning system, as shown in Figure 2. The first is to train the base classifiers with different
training datasets such as Bagging, Boosting and random subspace. The second is to construct base
classifiers with different feature sets. The last one is to enhance the diversity among base classifiers
and performance of the ensemble system by an objective function or evaluative criteria, such as some
effective pruning approaches [15–18].

Base on the approaches mentioned above, this work utilizes two of the above approaches. In the
base classifier generation phase, the training of base ELM classifier is realized by data from different
body positions, which makes each position on the body correspond to a base classifier in the ensemble
learning system. After that, we applied the proposed selective ensemble approach IBGSO to find the
optimal set of classifiers to optimize the dense multi-sensor deployment. In this phase, the sensor layout
optimization problem is transformed into an ensemble pruning problem. With the optimization of the
ensemble learning system, we can utilize the proposed approach to find the optimal sensor layout.

3.3. The Proposed Optimization-Based Selective Approach IBGSO

3.3.1. Glowworm Swarm Optimization

GSO [32] is an intelligent optimization algorithm, which is based on the phenomenon that the light
emitted by glowworms can be used as a signal to attract other glowworms. The algorithm contains a
set of glowworms that are randomly distributed in the solution space. Each glowworm is a possible
solution represented by its position. The glowworms with high luminosity have higher brightness,
which can attract low-brightness glowworms. In this way, the global optimization of the algorithm can
be achieved. The basic steps are as follows.

Step 1. Initialize the basic parameters of the GSO. These parameters include population size g,
fluorescein volatilization factor ρ, fluorescein update rate γ, update rate β of the dynamic decision
domain, the set of glowworms Ni(t) in the decision domain, threshold nt for the number of glowworms
in the neighborhood, perception radius rs and move step s.
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Step 2. The fitness value of the glowworm i at the tth iteration is converted into the fluorescein
value with the following formula:

li(t) = (1− ρ)li(t− 1) + γJ(Xi(t)) (1)

where ρ is the fluorescein decay constant belonging to (0, 1) and γ is the fluorescein enhancement constant.
Step 3. Each glowworm selects individuals with higher brightness than itself within its dynamic

decision radius ri
d(t) to form its neighbor set Ni(t).

Step 4. Calculate the probability pij(t) of the glowworm Xi(t) moving to the glowworm Xj(t) in its
dynamic decision radius by Equation (2):

pi j(t) =
l j(t) − li(t)∑

k∈Ni(t)
lk(t) − li(t)

(2)

Step 5. Update the position of glowworm Xi(t) by Equation (3):

Xi(t + 1) = Xi(t) + s×
[ X j(t) −Xi(t)

‖X j(t) −Xi(t)‖

]
(3)

Step 6. Update the dynamic decision radius of the glowworm Xi(t) by Equation (4):

ri
d(t + 1) = min

{
rs, max

{
0, β× (nt − |Ni(t)|)

}}
(4)

3.3.2. IBGSO

In order to make the GSO applicable for solving the selective ensemble problem and improve the
search ability of the algorithm, this paper proposes IBGSO. Firstly, the movement of glowworms is
improved so that GSO can search in a binary discrete space. Secondly, the search behavior of GSO is
modified, which can increase the randomness of the algorithm and ensure that the algorithm avoids
falling into the local optimum. Finally, mutation behavior is introduced to increase the diversity of
the population and improve the search efficiency of the algorithm. These improvements are detailed
as follows:

(a) Bulletin board

A bulletin board is added to the algorithm to record the best position and corresponding fitness
value in the iterative process of the algorithm. After each iteration of the algorithm, the bulletin
board will be updated if the best fitness value in the population is better than the best value in the
bulletin board.

(b) Improvement of steps

The GSO does not have the ability to search for the optimal solution in a binary space.
Thus, to deal with a discrete combinatorial optimization problem, the move method of the glowworm
should be changed. In this paper, we attempt to change the position of glowworms using probability.
In the tth iteration of the proposed IBGSO algorithm, let xi(t) = [xi1(t), xi2(t), · · · , xin(t)] be the position
of the current glowworm and x j(t) = [x j1(t), x j2(t), · · · , x jn(t)] be the position of the target glowworm
that xi(t) will move to. When the position update is performed, the status of the position is changed
according to a certain probability. The position update can be expressed mathematically as:

xik(t + 1) =


xik(t), r ≤ p1

x jk(t), p1 < r < p2

r0, r ≥ p2

(5)
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where p1 and p2 ∈ [0, 1] are both selected parameters for the update formula, r is a random number
between (0, 1) and r0 is the a random number of 0 or 1, k = 1, 2, . . . , n.

(c) Improvement of search behavior

In order to improve the convergence speed and the performance of the algorithm, this paper
improve the search behavior as follows. In the tth iteration, the glowworm xi(t) respectively moves
to the best position in the bulletin board, the optimal position of glowworm in the decision domain
and a random position in the decision domain. These positions are marked as x’i(t + 1), x”i(t + 1) and
x”’i(t + 1). Then, the best one of the x’i(t + 1), x”i(t + 1) and x”’i(t + 1) will be the position of xi(t + 1).

(d) Mutation behavior

In the iterative process, if the glowworms population gathers seriously at the local optimal value
point, the algorithm will easily be trapped in a local optimum, which will affect its convergence.
In order to improve the diversity of the GSO algorithm and overcome the problem of premature
convergence, this paper introduces the mutation operation, which is described as in Formula (6):

xid =

{
x̃id if rand() ≤ R
xid otherwise

(6)

In the formula, R represents the probability of mutation and rand() is a random number uniform
distributed between (0, 1). The heuristic algorithm is required to have a strong global search ability in
the early stage and a strong local search ability in the later stage. Based on the above consideration,
the early mutation rate of the proposed algorithm should be larger, and the late mutation rate should
be smaller. Therefore, a decreasing strategy is adopted in this paper, as described in Formula (7):

R = (1−
t

tmax
)

2
(7)

In the formula, t is the index of the current iteration and tmax is the maximum number of iterations.
The flowchart of the proposed improved binary glowworm swarm algorithm is shown in Figure 3.



Sensors 2020, 20, 7161 8 of 20
Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 

 

Maximum 
iteration

End

N

Y

Start

Initialization the parameters of the algorithm and 
the glowworm population randomly

Assign the optimal fitness value and position of the 
glowworm population to the bulletin board

Update the glowworm's fluorescein value and 
dynamic decision radius

Update the glowworm's position

Update the bulletin board

Perform the mutation process

Update the bulletin board

 

Figure 3. Flowchart of the proposed improved binary glowworm swarm algorithm. 

4. Optimizing the Sensor Deployment based on the Proposed IBGSO Selective Ensemble 

Approach 

Based on selective ensemble learning and multi-sensor fusion on decision-level, this study 

proposes a sensor layout optimization scheme for HAR and a corresponding ensemble pruning 

approach. The proposed HAR structure can make use of the information from multiple body 

positions and find the optimal sensor subset according to the required performance of the system 

adaptively. The designed framework of multi-sensor-based HAR with a selective ensemble is 

specifically illustrated in Figure 4. 

Figure 3. Flowchart of the proposed improved binary glowworm swarm algorithm.

4. Optimizing the Sensor Deployment Based on the Proposed IBGSO Selective
Ensemble Approach

Based on selective ensemble learning and multi-sensor fusion on decision-level, this study proposes
a sensor layout optimization scheme for HAR and a corresponding ensemble pruning approach.
The proposed HAR structure can make use of the information from multiple body positions and find
the optimal sensor subset according to the required performance of the system adaptively. The designed
framework of multi-sensor-based HAR with a selective ensemble is specifically illustrated in Figure 4.
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binary glowworm swarm optimization (IBGSO) selective ensemble.

As shown in Figure 4, we have established a one-to-one mapping relationship between sensors
and classifiers, while the sensor layout optimization problem can be regarded as a selective ensemble
problem for the ensemble learning system. The optimal classifier set is selected by the proposed IBGSO
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approach and the corresponding optimal sensor position can be determined. The proposed method
mainly includes the following steps:

(1) Obtain the feature set of each activity from different positions. In consideration of the requirements
of the performance and efficiency of the HAR system, in this work, the maximum, minimum,
mean value, root mean square, standard deviation σ, skewness S, kurtosis K and the signal energy
E are utilized as feature construction. Some of these features can be expressed as follows:

mean =
1
N

N∑
i=1

ai (8)

σ =

√√√
1
N

N∑
i=1

(ai −mean)2 (9)

K =
1
N

N∑
i=1

(ai −mean)4/σ4 (10)

S =
1
N

N∑
i=1

(ai −mean)3/σ3 (11)

E =
N∑

i=1

∣∣∣ai
∣∣∣2 (12)

RMS =

√
1
N
(a2

1 + a2
2 · · ·+ a2

N) (13)

where ai is the acceleration data, i = 1, 2, . . . , N. N is the number of data points. After feature
extraction, all features were normalized to the interval [0, 1] to eliminate the impact of the range
difference.

(2) Generate various individual classifiers. The activity data corresponding to the different positions
of the body is employed to initially establish the ELMs. Moreover, the aggregating concept is
utilized to combine the trained base ELMs. In this work, the ensemble learning model for HAR is,
thus, built with multiple basic classifiers corresponding to positions and we utilize the majority
voting method to fuse the decision information of different positions of the body.

(3) Select the optimal subset of ELMs by the proposed IBGSO method.

After the IBGSO parameter initialization, the optimization process for the optimal ensemble
subset begins. This work utilizes a binary encoding method (a combination of 0 and 1), which can
represent the state of the base ELMs selection. Let binary strings C = {c1, c2, · · · , cM} express the
original base ELMs ensemble and M be the number of ELMs. If ci = 1, then it represents that the
ith base ELM is selected; if ci = 0, it indicates that the ith base ELM is not selected. Therefore,
the modified IBGSO algorithm can deal with the selective ensemble. For each glowworm, the bits
in the binary strings can represent whether the base ELMs corresponding to the poisons will
be selected.

The sensor layout is optimized to reduce the placement of sensors and improve the performance
of the multi-sensor motion recognition system. Therefore, when evaluating the sensor layout,
their recognition accuracy is taken as an important reference factor in this work. In addition,
we take the scale of the ensemble system (that is, the number of sensors) as another secondary
optimization goal, so we introduce a new fitness function as follows:

f itness = ω×Atr − (1−ω)
m
M

(14)
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where Atr is the training accuracy, M is the total number of ELMs, m is an integer that satisfies
0 < m ≤ M and represents the number of selected ELMs and ω is a weighting factor which is
slightly less than 1. If the two ensemble subsets have the same accuracy, the ensemble subset
with fewer base ELMs will have a lager fitness value. For each glowworm, the fitness value is
calculated as the function (14) and the base classifier combination corresponding to the maximum
fitness function will be obtained.

(4) Employ the selective ensemble system with optimized sensor layout to HAR

The proposed HAR method combines multiple classifiers, which are constructed by activity data
from different body positions. Moreover, through the proposed optimization-based classifier
selection approach IBGSO, we can reduce the number of sensors and ensure that the system has
better recognition performance. Therefore, the proposed HAR method has high practicability,
which can realize the optimal performance of multi-sensor system with a minimum number
of sensors.

5. Datasets and Experimental Setup

5.1. Datasets

We utilized two real activity recognition datasets, which were collected from on-body sensors.
The first dataset contains various sensor nodes on the body positions, which is beneficial for our work
for the variety of the optimization performance of the sensor layout. The second dataset has many
kinds of activity; we can utilize this dataset to check the HAR performance of our work. The details of
the datasets are described as described below.

The OPPORTUNITY dataset contains the data of human daily activities recorded by 72 sensors
of 10 modalities, integrated with the environment, in objects and on the body. The details of the
sensor dataset can be found in the OPPORTUNITY UCI dataset. In this work, we only utilized
the data acquired from wearable sensors of body sensor networks, which consisted of 7 inertial
measurement units (IMU) sensors and 12 3-axis accelerometers. The sensor types and their body
positions utilized in this work are shown in Table 1. There are various sensor types in the table,
which include an accelerometer (Acc), gyro (Gyro), magnetic (Magn), quaternion (Quat), Eu, Nav,
Body, AngVelBodyFrame and AngVelNavFrame. For the processing of missing data in this dataset, we
set the data recordings to zero if more than half the data were missing and copied the previous data if a
small piece of the data was missing. We utilized this dataset to recognize four kinds of daily activities
including standing (A1), walking (A2), sitting (A3) and lying down (A4), which were performed by the
four subjects five times. Then, the sliding window of 0.5 s was utilized to divide the signal and a 50%
overlap between adjacent windows was adopted.

Table 1. The sensor types and their body positions utilized in this work.

No. Position/Type No. Position/Type No. Position/Type

S1 RKNˆ/Acc S15 IMU BACK/Magn S29 IMU LLA/Acc
S2 HIP/Acc S16 IMU BACK/Quat S30 IMU LLA/Gyro
S3 LUAˆ/Acc S17 IMU RUA/Acc S31 IMU LLA/Magn
S4 RUA/Acc S18 IMU RUA/Gyro S32 IMU LLA/Quat
S5 LH/Acc S19 IMU RUA/Magn S33 IMU L-SHOE/Eu
S6 BACK/Acc S20 IMU RUA/Quat S34 IMU L-SHOE/Nav
S7 RKN_/Acc S21 IMU RLA/Acc S35 IMU L-SHOE/Body
S8 RWR/Acc S22 IMU RLA/Gyro S36 IMU L-SHOE/AngVelBodyFrame
S9 RUAˆ/Acc S23 IMU RLA/Magn S37 IMU L-SHOE/AngVelNavFrame
S10 LUA_/Acc S24 IMU RLA/Quat S38 IMU R-SHOE/Eu
S11 LWR/Acc S25 IMU LUA/Acc S39 IMU R-SHOE/Nav
S12 RH/Acc S26 IMU LUA/Gyro S40 IMU R-SHOE/Body
S13 IMU BACK/Acc S27 IMU LUA/Magn S41 IMU R-SHOE/AngVelBodyFrame
S14 IMU BACK/Gyro S28 IMU LUA/Quat S42 IMU R-SHOE/AngVelNavFrame
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Daily and sports activities dataset (DSA). This dataset consists of multi-sensor activity data from
the torso (T), right arm (RA), left arm (LA), right leg (RL) and left leg (LL) collected by the MTx
unit. Each MTx unit has a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer.
The sensor types and their body positions are shown in Table 2. The dataset has 19 kinds of activities,
which are shown in Table 3. Each activity listed in Table 3 is performed by eight volunteer subjects
(four female, four male; ages 20–30) for 5 min. The MTx sensor units are calibrated to acquire data at
25 Hz sampling frequency. The 5 min signals are divided into 5 s segments so that 480 (60 × 8) signal
segments are obtained for feature extraction.

Table 2. The sensor types and their body positions in the daily and sports activities dataset (DSA).

No. Pos/Typ No. Pos/Typ No. Pos/Typ No. Pos/Typ No. Pos/Typ

S1 T_xacc S10 RA_xacc S19 LA_xacc S28 RL_xacc S37 LL_xacc
S2 T_yacc S11 RA_yacc S20 LA_yacc S29 RL_yacc S38 LL_yacc
S3 T_zacc S12 RA_zacc S21 LA_zacc S30 RL_zacc S39 LL_zacc
S4 T_xgyro S13 RA_xgyro S22 LA_xgyro S31 RL_xgyro S40 LL_xgyro
S5 T_ygyro S14 RA_ygyro S23 LA_ygyro S32 RL_ygyro S41 LL_ygyro
S6 T_zgyro S15 RA_zgyro S24 LA_zgyro S33 RL_zgyro S42 LL_zgyro
S7 T_xmag S16 RA_xmag S25 LA_xmag S34 RL_xmag S43 LL_xmag
S8 T_ymag S17 RA_ymag S26 LA_ymag S35 RL_ymag S44 LL_ymag
S9 T_zmag S18 RA_zmag S27 LA_zmag S36 RL_zmag S45 LL_zmag

Table 3. The kinds of activities in the DSA.

NO. Activity NO. Activity NO. Activity

A1 Sitting A8 Moving around A15 Cycling on an exercise bike
in a horizontal position

A2 Standing A9 Walking in a parking A16 Cycling on an exercise
bike in a vertical position

A3 Lying on back A10 Walking on a treadmill
(4 km/h, flat) A17 Rowing

A4 Lying on right side A11 Walking on a treadmill
(4 km/h, inclined positions) A18 Jumping

A5 Ascending stairs A12 Running on a treadmill
(8 km/h) A19 Playing basketball

A6 Descending stairs A13 Exercising on a stepper
A7 Standing in an elevator A14 Exercising on a cross trainer

5.2. Performance Evaluation

The performance evaluations implemented in this study are briefly introduced as follows:
Accuracy is calculated as the ratio of the number of samples correctly classified by the classifier

and the total number of all the samples and can measure the overall performance of a classifier as
shown in Equation (15):

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where the variables TP, TN, FP and FN, respectively, represent the number of true positive, true negative,
false positive and false negative outcomes in a given experiment. In addition, F1 evaluation criteria are
also considered and are defined as the combination of the precision and the recall. Precision represents
the proportion of true positive samples among all samples classified as positive. Recall represents the
proportion of all the positive samples that are classified as positive samples. The precision, recall and
F1 are calculated as follows:

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)
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F1 =
2 × recall × precision

recall + precision
(18)

5.3. Experiment Setup

In this work, we utilized the subject-based leave-one-out cross validation method to verify our
proposed HAR approach. This approach takes a different subject out for testing in each repetition
and the data from the rest subjects are utilized for training until all the data from subjects have been
utilized for testing. The parameters of IBGSO are set as follows: fluorescein volatilization factor ρ = 0.4,
fluorescein update rate γ = 0.6, dynamic decision domain update rate β = 0.08, threshold nt = 5 and the
maximum number of iterations tmax = 300, p1 = 0.15 p2 = 0.85.

6. Experimental Results

In order to verify the effeteness of the proposed approach for optimizing the sensor layout of the
multi-sensor HAR system, we compared it with the following algorithms: GA (Genetic algorithm) [33],
BAFSA (Binary artificial fish swarm algorithm) [34] and BGSO (Binary glowworm swarm optimization) [35].
All of the aforementioned heuristic algorithms are binary searching algorithms. The maximum number of
iterations and the population size for these four algorithms are all set to the same.

6.1. Experiment 1: OPPORTUNITY Dataset

Tables 4 and 5 show the sensor selection results of the randomly selected two subjects, respectively,
by utilizing the proposed and the comparative approaches. For each subject, we perform the experiment
five times to scientifically verify the effectiveness of the proposed approach. It is apparent that the
number and the set of classifiers (sensors) selected by the four algorithms differ with subjects. Among
the results of the four algorithms, the number of classifiers (sensors) selected by IBGSO approach
is between 9 and 13. GA selects 13 to 16 classifiers (sensors). Compared with the GA, the BAFSA
and BGSO approaches normally decreases on average 2 to 4 sensors and 3 to 5 classifiers (sensors),
respectively. For a specific subject, the number of the classifiers (sensors) obtained by the proposed
IBGSO approach is the smallest, which demonstrates that the proposed approach has a strong search
ability and can reduce the ensemble scale of base classifiers (sensors) effectively.

Table 4. Sensor selection results for subject 1 with five runs using the OPPORTUNITY dataset.

Run GA BAFSA BGSO IBGSO

1 1,4,7,9,10,13,16,17,19,
20,22,25,27,35,39,40

1,4,6,9,10,12,14,17,
19,21,25,27,27,35

1,7,9,13,16,17,20,
23,31,37,39

1,7,9,13,16,17,23,
25,31

2 1,9,11,13,25,16,18,20,
22,23,27,35,38,40,

2,5,9,10,13,16,20,22,
25,31,40

1,7,9,12,17,20,23,
25,27,29,31,37

1,7,9,13,17,23,29,
31,35,37.39

3 1,2,4,5,6,9,16,17,18,21,
23,27,29,31,36,39,40,

1,3,7,9,16,17,21,25,
28,31,35,38,40

1,5,7,9,12,17,20,
22,23,25,27,29

1,5,7,9,13,16,17,21,
25,27,37,39

4 1,7,8,12,13,16,17,20,
23,28,31,35,39

1,4,6,7,9,10,12,15,17,
19,22,24,28,31,40

1,4,5,7,9,16,17,20,
23,27,35,37

1,3,5,7,8,16,17,20,
23,25,27,35,37

5 2,5,9,12,17,19,21,25,
27,28,31,33,36

2,6,9,19,12,14,16,17,
21,23,25,27,28,35,37

1,7,9,12,16,17,20,
22,31,35,37,39

1,5,7,13,16,17,22,
23,27,31,35,37

Table 5. Sensor selection results for subject 2 with five runs using the OPPORTUNITY dataset.

Run GA BAFSA BGSO IBGSO

1 1,2,4,7,10,13,15,17,19,
20,23,25,28,29,31,34

2,3,6,7,10,12,13,17,
18,19,23,25,29,31

1,3,6,7,10,13,21,
25,27,31,35

1,2,3,7,10,13,25,
28,29,31

2 1,2,3,7,10,13,17,18,21,
25,27,28,29,31,34

1,2,3,7,10,13,17,25,
27,29,31

1,7,10,13,17,23,
25,27,28,29,31

1,5,7,10,13,17,
21,25,27,28,31

3 1,3,6,7,9,12,14,16,18,
19,25,27,29,31,35

1,2,3,9,10,16,25,27,
28,29,35,37,38

1,3,5,10,12,13,17,
19,25,28,29

1,2,3,7,13,25,27,
29,31

4 1,2,6,7,10,13,14,16,18,
25,27,28,29,31,35

1,2,7,9,10,13,17,21,
25,27,29,31,35,38

1,4,7,9,16,17,20,
23,27,35

2,3,5,7,10,13,21,
27,31,35

5 1,2,4,7,9,10,13,16,19,
22,25,27,28,29,31,35,

1,2,4,5,7,9,10,13,16,
19,25,27,28,31,34,35

1,3,7,10,13,17,21,
25,28,29

1,2,3,10,13,17,
25,27,28
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Figure 5 shows the fitness evolutionary curves of the four heuristic algorithms. From Figure 5,
it can be seen that the proposed IBGSO has better convergence and search performance than the other
three binary heuristic algorithms overall. In the early phase of the algorithm iteration, the proposed
algorithm has a rapid improvement of fitness value compared with the other three algorithms. In the
middle phase of the algorithm iteration, the fitness value slowly increases and until the latter phase of
the iteration, the fitness curve, levels off. After the 250th iteration, the fitness value of IBGSO cannot be
significantly improved.
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According to the sensor selection results of the four optimization approaches, Tables 6 and 7
respectively show their average testing performance, including the accuracy and F1 of the four subjects.
It can be seen from Tables 6 and 7 that the set of classifiers (sensors) obtained by the proposed
IBGSO approach can attain the best performance among all the approaches on most subjects, except
subject 2. The performance achieved by IBGSO for subject 2 is slightly less than the ensemble of all
approaches, but the number of classifiers (sensors) utilized by IBGSO is significantly less than the
ensemble of all approaches; this will be described in more detail below. For a lightweight and robust
multi-sensor system, it is worthwhile to achieve a more ideal recognition performance with fewer
sensors. In addition, the results show that the ensemble of all the classifiers (sensors) fail to obtain the
best performance on most subjects, which demonstrates that using all classifiers (sensors) may not give
the best system performance.

Table 6. Accuracy comparison of the four subjects for the five approaches using the OPPORTUNITY dataset.

Method Subject 1 Subject 2 Subject 3 Subject 4

Ensemble all 0.932 0.927 0.912 0.877
GA 0.862 0.861 0.865 0.824

BAFSA 0.918 0.910 0.876 0.864
BGSO 0.907 0.896 0.913 0.892
IBGSO 0.939 0.923 0.926 0.916
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Table 7. F1 comparison of the four subjects for the five approaches using the OPPORTUNITY dataset.

Method Subject 1 Subject 2 Subject 3 Subject 4

Ensemble all 0.928 0.937 0.927 0.916
GA 0.911 0.873 0.898 0.866

BAFSA 0.927 0.923 0.948 0.918
BGSO 0.938 0.935 0.937 0.934
IBGSO 0.954 0.929 0.952 0.949

Table 8 shows the average testing performance for all subjects with regard to the accuracy, F1 and
the ensemble size; it can be seen from Table 8 that IBGSO has a better performance than the other
three approaches using a lower number of classifiers (sensors). For the proposed IBGSO, more than
75% of the classifiers (sensors) are pruned. From the results of the ensemble size and performance,
it can be seen that the four optimization approaches differ greatly in the number of selected classifiers
(sensors) and performance; the number of sensors is not the only condition for improving recognition
performance. The proposed IBGSO-based approach helps us to optimize the sensor layout and achieve
the trade-off between the number of sensors and the average performance.

Table 8. Performance comparison for the five approaches using the OPPORTUNITY dataset.

Method Accuracy F1 Ensemble Size

Ensemble all 0.912 0.927 45
GA 0.853 0.887 15.4

BAFSA 0.892 0.929 13.6
BGSO 0.902 0.936 12
IBGSO 0.926 0.946 10.8

Additionally, the confusion matrixes for the ensemble of all approaches and the proposed
IBGSO-based ensemble are constructed in Figure 6 to show a better insight into the effectiveness of
the proposed method in optimizing sensor deployment. Figure 6a shows the result of the ensemble
of all approaches and Figure 6b shows the results of the proposed approach. It can be seen from the
comparison that there are major confusions among activities, such as A1 and A3, A2 and A3 and A2
and A4 in the ensemble of all approaches, while the proposed IBGSO-based approach increases the
discrimination of these activities. Therefore, the HAR method proposed in this paper can effectively
reduce the number of sensors and improve the recognition performance.
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6.2. Experiment 2: Daily and Sports Activities Dataset

In this dataset, as each direction component of the three kinds of sensors (accelerometer, gyroscope,
magnetometer) is regarded separately as a sensor (Table 2), we can find the optimal set of the
sensor orientation components using data from five body parts with the proposed IBGSO approach.
Tables 9 and 10 respectively show the combination of sensor orientation components that have an
important impact on the HAR performance, obtained by using the four optimization approaches based
on two randomly selected subjects. For each subject, we performed the experiment five times. It can
be seen from the Tables 9 and 10 that the size of the classifiers (sensors) obtained by the proposed
IBGSO approach is between 13 and 16, which is the smallest compared with the other three algorithms.
This result is similar to the OPPORTUNITY dataset. Moreover, it can be seen that no matter which
approach is adopted, the components of the tri-axial accelerometer from the torso (T) are always
selected. However, the components of the tri-axial accelerometer from other positions are not. Therefore,
the tri-axial accelerometer on the torso is recommended to be deployed in a multi-sensor-based system
for HAR.

Table 9. Sensor selection results for subject 1 with five runs using the DSA.

Run GA BAFSA BGSO IBGSO

1
1,3,5,6,9,10,12,16,
18,19,21,22,23,25,

28,37,39,43,

1,2,5,7,10,11,16,17,
19,22,28,37,38,40,

42

1,2,3,5,10,12,15,19,
20,28,30,37,38

1,2,3,5,10,11,17,
19,24,29,30,37,

40

2
1,3,5,6,7,8,12,13,

16,19,21,24,27,30,
35,36,38,40,43

1,3,5,7,8,10,13,19,
20,22,29,30,37,38,

39,42,44

1,2,3,6,10,11,14,19,
20,28,29,31,37

1,3,6,7,10,11,19,
20,21,28,38,39,

42

3
1,2,4,5,6,9,16,17,

18,21,23,27,29,31,
36,39,40,

1,5,7,6,10,12,13,15,
19,22,28,29,37

1,3,5,10,12,16,18,
19,20,22,29,31,

37,38

1,2,3,5,6,10,12,17,
18,20,21,28,

29,34,39

4
2,3,7,8,9,12,15,17,
20,25,27,29,37,38,

40,42,43

1,2,4,5,6,10,12,15,
16,19,20,28,37,38,

42

1,2,4,5,10,19,20,
26,28,30,37,39,

42,44

1,3,5,7,9,10,13,15,
19,24,29,32,

37,39,42

5
1,2,5,6,9,13,15,17,
19,22,25,27,28,30,

37,38,42,44

1,3,5,8,9,10,13,19,
20,23,25,29,31,37,

39,40,42

1,2,3,4,9,10,12,
19,21,28,29,30,

37,38,41,44

1,2,4,7,10,13,19,
20,21,22,27,29,

37,39,42

Table 10. Sensor selection results for subject 2 with five runs using the DSA.

Run GA BAFSA BGSO IBGSO

1
1,2,3,7,6,9,11,12,

17,18,20,21,24,26,
27,29,32,37,38,42

1,2,4,7,8,9,10,11,
15,18,20,23,27,
29,33,37,38,40

1,2,4,5,11,12,13,
15,18,20,21,27,

31,37

1,2,3,6,7,10,11,16,
19,22,26,28,30

2
1,2,3,4,5,7,9,10,12,
16,17,20,23,25,27,
30,33,35,38,42,43

1,3,6,7,8,9,10,11,
14,16,19,20,22,
28,29,30,33,38,

41,44

1,3,5,8,9,11,13,
16,17,20,28,30,

33,37,38

1,2,4,6,7,8,10,11,
16,19,21,26,29,37

3
1,2,3,4,5,7,10,14,

18,19,20,23,26,28,
30,35,37,39,40

1,5,8,9,11,15,17,
19,20,21,28,29,37

2,3,5,6,7,11,13,
15,18,28,29,34,

37,39

1,2,3,5,7,9,10,11,
12,15,19,21,29,37

4
1,2,5,7,8,9,11,14,

17,21,25,23,26,28,
29,31,33,35,40,42,43

1,2,3,5,8,10,12,
19,21,23,26,28,

29,31,37,39

1,2,4,5,10,19,20,
26,28,30,37,39,

42,44

1,2,3,4,6,9,10,19,
21,28,35,37,39

5
1,2,4,6,8,12,16,17,18,
21,24,27,29,32,34,35,

37,38,42,44

1,3,4,6,8,9,11,17,
18,19,22,24,26,

28,29,36,38,40,42

1,2,3,4,10,12,19,
21,22,28,29,30,

37,38,41,44

1,2,5,7,9,10,12,15,
21,22,26,28,32,35,

37,39

Figure 7 shows the fitness evolutionary curves of the four heuristic algorithms when the daily
and sports activities dataset is utilized. It can be seen from Figure 7 that the fitness values of the four
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optimization algorithms are improved with the iteration times and the proposed IBGSO produces a
similar performance trend to Figure 5 during the iteration process. Overall, the proposed IBGSO is
superior to the other three algorithms in terms of convergence and search performance.
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Based on the selection results of the sensor properties and the direction components from five
body positions, the average testing performances of the four optimization approaches for the four
randomly selected subjects are shown in Tables 11 and 12. It can be seen that the proposed IBGSO can
attain the best performance among all the approaches on the randomly selected subjects. Therefore,
this demonstrates that the proposed IBGSO approach is also effective when applied to the daily and
sports activities dataset.

Table 11. Accuracy comparison of the four randomly selected subjects for the five approaches using
the DSA.

Method Subject 1 Subject 2 Subject 3 Subject 4

Ensemble all 0.856 0.805 0.816 0.831
GA 0.745 0.675 0.707 0.729

BAFSA 0.775 0.736 0.765 0.752
BGSO 0.821 0.784 0.799 0.764
IBGSO 0.865 0.837 0.818 0.848

Table 12. F1 comparison of the four randomly selected subjects for the five approaches using the DSA.

Method Subject 1 Subject 2 Subject 3 Subject 4

Ensemble all 0.874 0.821 0.836 0.865
GA 0.787 0.702 0.748 0.771

BAFSA 0.842 0.729 0.807 0.762
BGSO 0.864 0.827 0.818 0.819
IBGSO 0.912 0.854 0.842 0.892

The ensemble sizes and the testing performances of the four algorithms are shown in Table 13
when the daily and sports activities dataset is utilized. It can be seen that IBGSO selects the lowest



Sensors 2020, 20, 7161 18 of 20

number of classifiers (sensors), while GA uses the highest number of classifiers (sensors) among the
three optimized approaches. Moreover, IBGSO has better performance than the other three approaches
using a smaller number of classifiers (sensors). For the daily and sports activities dataset, more than
70% of the classifiers (sensors) are pruned by using IBGSO. Therefore, it can be concluded that IBGSO
is also the optimum approach on this dataset.

Table 13. Performance comparison for the five approaches using the DSA.

Method Accuracy F1 Ensemble Size

Ensemble all 0.827 0.849 45
GA 0.714 0.752 18.6

BAFSA 0.757 0.785 16.2
BGSO 0.792 0.832 15.8
IBGSO 0.842 0.875 13.4

Figure 8 shows the confusion matrixes for ensemble all and proposed IBGSO-based ensemble on
DSA. From the left matrix, we can see that there are many activities that have been misrecognized.
For example, A1 is easily recognized as A9, A5 is easily recognized as A6 and A10 is easily recognized
as A11. From the right one, minor confusions can be seen from these activities. Therefore, this
demonstrates that the proposed approach for optimizing sensor deployment is also effective for the
DSA dataset, which contains various kinds of activities.
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7. Conclusions

This paper addresses the challenge of the HAR problem in the multi-sensor network from the
perspective of optimization sensor deployment to gain a tradeoff among computational complexity
and performance for a multi-sensor-based HAR system. We designed a multi-sensor-based HAR
framework and proposed a novel optimization-based selective approach IBGSO to select the most
crucial positions and sensors for HAR. Extensive experiments on two wearable sensor-based HAR
datasets (OPPORTUNITY dataset and DSA) demonstrated the superiority of the proposed approach.
For these two datasets, respectively, 0.926 accuracy and 0.946 F1 with an average of 10.8 sensors and
0.842 accuracy and 0.875 F1 with an average of 13.4 sensors. The representative sensors selected by the
proposed optimization-based selective approach IBGSO have the advantages of a smaller number of
classifiers and better performance compared with other optimization-based approaches.
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In future work, we will explore the performance of the proposed method of the sensor deployment
optimization on certain specific activities such as fall or gait, which will have beneficial significance for
the clinical diagnosis of some diseases such as stroke and movement disorders. In addition, in the
future we will attempt to modify the proposed IBGSO approach and find other heuristic algorithms for
optimizing the sensor deployment.
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