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Abstract: Three-dimensional multicellular spheroids (MCSs) have received extensive attention in
the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo
more accurately than traditional in vitro two-dimensional models and to simulate cell–cell and cell
extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model
for tumor research, high-throughput drug screening, tissue engineering, and basic biology research.
In the review, we first summarize methods for MCSs generation and their respective advantages and
disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of
spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we
discuss the development direction and prospects of MCSs

Keywords: cell spheroids; three-dimensional cell culture; tissue engineering

1. Introduction

In the field of biomedicine, cell biology is researched by culturing cells in vitro. Tra-
ditionally, cells are cultured in a petri dish or a culture bottle using a two-dimensional
culture method. In 1943, Earle created a monolayer cell culture method. To a certain
extent, a traditional two-dimensional cell culture method is simple to operate and helps to
better the growth, proliferation, and differentiation of cells in the body. However, it cannot
simulate the complex biological microenvironment in the body and lose tissue-specific
properties, which results in a certain discrepancy between the obtained experimental re-
sults and the situation in the body. In the 1980s, Weaver systematically summarized the
relationship between cells and the extracellular matrix (ECM) and constructed a three-
dimensional cell culture (TDCC) model in the study of breast cancer cells, which gave birth
to three-dimensional culture technology. Three-dimensional culture can better simulate
the cell–cell and cell–extracellular matrix interactions in vivo, and provide a more realistic
microenvironment for the cell culture in vivo. In the three-dimensional cell culture, cells
spontaneously aggregate and form compact multicellular spheroids (MCSs) when com-
bined with cadherin [1]. Specifically, a three-dimensional cell culture process is divided into
three stages (Figure 1). In the first stage, the ECM with multiple RGD motifs acts as a long
link head, and the scattered single cells form loose aggregates under the action of integrins.
In the second stage, the epithelial cadherin expresses and accumulates, and the aggregates
enter the delayed phase of suspension of compaction. In the third stage, the loose cell aggre-
gates form dense spheroids under the strong hemophilic interaction of epithelial cadherin
by forming cadherin-cadherin binding [2]. Furthermore, extracellular mechanical cues were
transduced to actin filaments by integrin of cells, which is an essential process for spheroid
self-assembly. MCSs have received extensive attention as an important three-dimensional
model for cancer research [3–5], anti-cancer drug screening [6,7], drug toxicity analysis [8],
and tissue engineering [9–11]. For example, in the field of drug screening, it is necessary to
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evaluate the efficacy of in vitro tumor models before conducting animal experiments and
clinical experiments. Multicellular tumor spheroids (MCTCs) are used as avascular tumor
models for anti-cancer drug screening due to their metabolic and proliferation gradient
distribution, similar to in vivo tumor tissues [3]. The application of MCSs helps to reduce
the cost and ethical/legal concerns of using animals for experiments in laboratories, while
helping to build a bridge between in vivo and in vitro biology research. So far, a series of
cells have been explored for the production of MCSs, including cancer cells [4,12], induced
pluripotent stem cells [13,14], and fibroblasts [15,16]. Although MCSs models have been
widely recognized in the field of biomedicine, their development and application still suffer
from limitations when it comes to how to achieve high-throughput generation, reduce
the cost and difficulty of generation, and further improve the accuracy of the biochemical
signals provided by the spheroid generation process. Although MCSs generation methods
have been reviewed by other researchers [17–19], comprehensive and systematic reviews
are still rare on the development and application of these methods. Therefore, this article
reviews recent advances in MCSs research. First, we present a series of MCSs generation
methods. Then, we cover their working principles and give examples of their real-world
applications. The materials used in the generation of MCSs are summarized. Second, the
advantages and disadvantages of various methods are analyzed. Then, the application
fields of MCSs are summarized. Finally, the current situation and future development
directions of MCSs are discussed.
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In the second stage, the epithelial cadherin accumulates, and the aggregates enter the delayed phase of suspension of
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2. Methods for MCSs Generation

MCSs were originally made by A. Moscona and H. Moscona through the self-assembly
of cell suspensions. They found that independent limb-bud cells and mesonephric cells
of early chick embryos could reconstruct tissue-like connections in vivo and restore their
unique histotypical development [20]. Generation efficiency, convenience, economy, dif-
ficulty in forming spheroids, and size consistency of MCSs are used as indicators for
evaluating spheroid generation methods. Although traditional MCSs preparation methods
are exemplified by non-adhesive surface liquid covering, the microwell arrays method,
hanging drop, rotating flask, and external force method have been widely used; they
generally deliver low production efficiency, require a large amount of labor, and have
difficulty in controlling the spheroid size. Despite some innovations on these methods,
their inherent disadvantages hinder their further development in the field of biomedicine.
With the development and progress of some technologies such as micro/nanofabrication,
cell imaging and optics, new MCSs generation technologies have been developed, among
which microfluidic technology and cell scaffold technology are typical examples. These
technologies can not only enable high-throughput preparation of MCSs, but also provide a
deeper understanding of the formation process of MCSs and the mechanism of intercellular
interactions. Moreover, researchers use hydrogels to simulate the ECM during cell growth,
thus providing more realistic in vivo microenvironment for cells. Table 1 is a summary of
various MCSs generation methods and their advantages and disadvantages.

2.1. Traditional Generation Methods
2.1.1. Non-Adhesive Surface Liquid Covering (the Microwell Arrays Method)

By injecting the cell suspension into a culture vessel with a non-adhesive surface, the
cells are prevented from adhering to the wall. Slightly shaking the vessel and stirring the
solution promotes the aggregation of cells in the suspension solution and finally forms
a spheroid. The non-adhesive surface can be prepared by a thin coating of agarose and
agar, or it can be coated with polymers such as non-sticky poly-hydroxyethyl methacrylate
(HEMA) and poly-2-hydroxyethyl methacrylate (PHEMA) [21]. Metzger et al. used the
liquid covering method to prepare single and co-cultured spheroids composed of human
osteoblasts (HOB), normal human dermal fibroblasts (NHDF), and human dermal mi-
crovascular endothelial cells (HDMEC) [22]. The spheroids formed by simple suspension
culture are irregular, also with poor preparation efficiency, inconvenience to collect them,
and the inability to monitor how they are formed. Combining microwell arrays and a
suspension culture can achieve high-throughput preparation of spheroids. Polydimethyl-
siloxane (PDMS) was fabricated by photolithography, and the cell viability of the spheroids
was monitored by scanning electrochemical microscopy (SECM) based on noninvasive
measurement [23] (Figure 2). The width of the microchannel was 700 µm and the height of
the microchannel was 100 µm. The size of the cell spheroids depended on the concentration
of the injected cell suspension. Furthermore, the respiratory activity of the spheroid was
evaluated using SECM. The spheroid chip was placed on a glass slide with the channel side
at the bottom, firstly. Then, the PDMS well was placed on the side with the smaller opening
of the chip. After adding the HEPES-based saline solution and placing the microelectrode
and reference electrode in the well, the tip was scanned above the chip surface to detect
the oxygen concentration. The microwell arrays method has been widely used in the
preparation of spheroids [7,24–28].
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Table 1. A comparison of MCS generation techniques.

Generation Methods Advantages Disadvantages References

Traditional
generation methods

Non-adhesive surface liquid covering (the
microwell arrays method)

Easy to operate
Low sheer stresses
High yield
Low cost

Labor intensive
Variation in MCSs size and shape
Inability to stimulate cell-ECM interactions

[7,21–28]

Hanging drop

Easy to operate
Good size control
Low sheer stresses
Co-cultivation of multiple cells

Labor intensive
Low yield
Difficulties in mass production
Difficult to change the medium
Difficult to transfer the spheroid

[29–32]

Rotating flask

Mass generation
Easy to operate
Long-term culture
Dynamic microenvironment
Co-cultivation of multiple cells

High sheer stresses
Variation in MCSs size and shape
Inconvenient to observe the generation
process of the spheroid
Inability to stimulate cell-ECM interactions

[33]

External force
Rapid generation
Good size control
Co-cultivation of multiple cells

Requiring professional equipment
The potential impact of external forces on cells
is unknown

[10,34–39]

Biomaterials
(scaffolds) and
microfluidic
technology

Hydrogel (scaffold,
cell sheets)

Natural polymers Realistic microenvironment
High yield
Good size control
Low sheer stresses
Labor saving
Aggregates of different shapes can be generated
Co-cultivation of multiple cells

Requiring professional equipment
Higher requirements for operation
Higher cost

[40–74]

Synthetic polymers [75–85]

Microfluidic

Emulsion technology Realistic microenvironment
High yield
Long-term culture
Good size control
Low sheer stresses
High-throughput analysis
Labor saving
Dynamic microenvironment
Generate aggregates of different shapes
Co-cultivation of multiple cells
Low reagent consumptionLow cell usage

Requiring professional equipment
Higher requirements for operation
Higher cost

[3,86–93]

Microwell and
U-shaped microfluidic
system

[6,12,23,94–100]
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Figure 2. A schematic illustration of the concept (a) and cross-section (b) of the spheroid chip.
Polydimethylsiloxane (PDMS) microchannels and the array of wells were bound to a silicon substrate.
(c) The master mold for fabricating PDMS microchannels using two-step photolithography. (d) The
fabricated microchannels which were attached to the glass substrate. (e) The tip scanned over the
spheroid for measurement. The scale bar is set at 1 mm. (Reproduced from Reference [23]).

2.1.2. Hanging Drop

In the traditional hanging drop method, cells are injected into the culture medium to
form a suspension. The cell suspension is dropped onto the bottom plate of the culture
plate through a dropper, and then the bottom plate is turned upside down. The droplets
hang upside down on the bottom plate under the action of surface tension. Under the
action of gravity, it gathers at the bottom of the droplet to form a spheroid [29]. Upreti
et al. used the hanging drop method to culture green fluorescent protein (GFP)-4T1 cells
and 2H11 mouse endothelial cells, forming tumor-cell-only and tumor–endothelia cell
spheroids [30]. As the concentration of the cell suspension increases, the volume of the
spheroid becomes larger. Cancer cells and stromal cells are co-cultured in collagen gel to
form a multicellular heterospheroid tumor model. Compared with the two-dimensional
model, the three-dimensional heterospheroid model is more resistant to doxorubicin [31].
To reduce the influence of the inversion of the bottom plate on the formation of spheroids,
a pipette can be used to directly punch holes in the bottom plate made of polystyrene and
inject droplets to form hanging drops for spheroid culture [32] (Figure 3).
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of the array plate. (c) The hanging drop formation process in the array plate. (d) The arrays plate
operated by liquid handling robot. (e) The array plates were cultured in a humidification chamber.
(Reproduced from Reference [32]).

2.1.3. Rotating Flask

The above two types of methods are used to prepare spheroids under static culture
conditions. The rotating flask method can also be used for generating spheroids. With this
method, the flask itself is rotated to prevent cell sedimentation and the contact between cells
is promoted by continuous stirring, thereby generating spheroids. The fluid movement gen-
erated by stirring can provide dynamic microenvironment and promote cell proliferation
and differentiation. To prevent cell sedimentation, it is necessary to control the flow rate of
the solution, but an excessive flow rate will damage the cells due to the greater fluid shear
force, which will reduce the survival rate of the cells. To address this problem, a National
Aeronautics and Space Administration’s high aspect ratio vessel (NASA HARV) bioreactor
was made. The device rotates around the x-axis. During the entire culture process, the
cells remain suspended under very low shear stress, which simulates the microgravity
environment. Spheroids were successfully formed for a human mammary cell line (BT 20),
prostate cancer cell line (PC3), and glioma cell (HBR 84) with this device [33].

2.1.4. External Force

To promote the aggregation of cells into spheroids, electric field [34], magnetic
force [10,35,36], and sound waves can be used as external forces to accelerate cell ag-
gregation. Ahadian et al. used dielectrophoresis to form three-dimensional embryonic
stem cell aggregates in gel matrix hydrogels [37]. Souza et al. used a bio-assembler on
magnetic levitation with gold-phage- magnetic iron oxide (MIO) suspension to prepare
human glioblastoma spheroids through spatial control of the magnetic field [38]. Chen
et al. used 3D acoustic tweezers to successfully prepare HepG2 spheroids of uniform
size [39] (Figure 4). In their study, a surface acoustic wave (SAW) was used to generate
cell spheroids. The Gor’kov potential field and microstreaming were produced by the
SAWs. Cells were levitated by drag force from microstreaming in the vertical direction and
aggregated via radiation force produced by the Gor’kov potential in the horizontal plane.
Using this technique, more than 150 size-controllable spheroids were fabricated every
30 min. Although the external force method can directionally accelerate the aggregation of
cells, it is difficult to evaluate the influence of external force on the physiological changes
of cells. Moreover, the external force method usually requires professional equipment and
operators, which undoubtedly adds difficulties to the preparation of spheroids.
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system. (Reproduced from Reference [39]).

2.2. Application of Biomaterials and Micromachining Technology in Preparation of Multicellular
Spheroids

The above-mentioned traditional culture methods use the principle of spontaneous
aggregation of a large number of cells and/or cell proliferation to form multicellular
spheroids, but it can be difficult to use these methods to simulate cell–cell and cell–ECM
interactions due to the very complicated microenvironment for cell growth [40]. More-
over, cell aggregation and/or cell proliferation can be affected by the synergistic effects of
cell-binding sites, rigidity, hydrophilicity/hydrophobicity, electric charge, space limitation,
and forces (such as gravity, centripetal force, centrifugal force, magnetic force, electric
force and/or shear force) [41]. As traditional cultivation methods cannot provide a re-
alistic cell microenvironment, perfectly biocompatible hydrogels as a scaffold material
for simulating ECM have been used for generating MCSs in tissue engineering [42]. For
example, Jeon et al. used a methacrylate alginate (OMA)/multi-arm polyethylene glycol
(PEG) double-crosslinked hydrogel microwell system to prepare multicellular human adi-
pose tissue-derived stem cell spheroids. By changing the size of the microwell, the size
of the hydrogel microwell is controlled, and the biophysical and/or chemical properties
of the hydrogel are modified locally to form a spatially controllable culture system [41].
Natural hydrogels have also been used for generating spheroids. Typical examples include
collagen [44,45], chitosan [11,46], hyaluronic acid (HA) [47], and agar [48], and synthetic
hydrogels represented by PDMS [49,50], PEG [51], and acrylic acid. The applications
will be discussed later. Traditional culture methods such as hanging drop will impede
the generation and subsequent analysis of spheroids due to the rapid consumption of
nutrients and oxygen in the culture environment and the increase in metabolic waste and
osmotic pressure. Another example is the rotation culture method. Although this method
can generate spheroids at a high throughput, excessive shear will cause damage to the
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cells. Moreover, the traditional culture method usually uses static culture, which makes it
impossible to continuously perfuse the culture medium and involves using a large amount
of medium. The micromachining technology, for example, digital micromirror devices
(DMDs), can be applied in the optical field to enable the use of the maskless lithography
technology for generating spheroid culture devices. Microfluidic systems have emerged
for years as an effective approach to the generation of MCSs. Compared to traditional
methods, a microfluidic system can perfuse culture medium continuously, consume less
reagent consumption, subject cells to an appropriate shearing force, and provide a dynamic
environment for the formation of the spheroid. All these advantages are helpful in the
generation of spheroids. Over the last decade of study, the idea of using hydrogels as
scaffolds and using microfluidic systems to generate MCSs has been widely recognized
in the industry, and has been successful in preparing HepG2 spheroids [52], human colon
cancer cell (ATCC) spheroids [50], and normal human fibroblast (NHF) spheroids [53]. The
research advances of these technologies will be examined in more detail in later sections.

2.2.1. Hydrogel (Scaffold)

Hydrogel is rich in water and MCSs can be prepared in two ways: two-dimensional
hydrogel surface and three-dimensional hydrogel embedding [54]. There are two main
ideas to prepare spheroids at the two-dimensional level. The first is similar to the traditional
low-adhesion surface. The hydrogel polymer is applied to the substrate. The polymer
used has no obvious cell-binding sites [41], which cause the cells to be unable to attach
to the substrate and promote the combination of cells and cells to form aggregates. The
other idea is to find some thermo-sensitive hydrogels [55] (Figure 5), such as poly (N-
isopropylacrylamide), at room temperature, so cells can grow on a substrate coated with
polymer. When the cells are cultured into layers, the temperature of the bottom plates is
changed, and the cell layer breaks away from the bottom plate, forming a cell sheet floating
in the culture medium, and then the cell sheet spontaneously gathers to form a spheroid. It
has been found that when cells are cultured on the bottom plate, the polymer can stimulate
the cells to produce extracellular protein, which is very important for the later formation of
spheroids [56]. The three-dimensional culture idea is to embed cells in a porous hydrogel,
which acts as an extracellular matrix. The shape and size of the porous hydrogel pores can
be controlled by computer technology, and the distance between the cells embedded in the
hydrogel can be changed by controlling the internal gap [43]. By shortening the distance
between cells, the cells are promoted to aggregate to form spheroids, and the porous
structure allows aggregates to migrate in it, thereby promoting signal exchange between
cells. It is found that the size of the spheroid in the hydrogel is associated with the initial cell
density, the culture time, and the intrinsic properties of the hydrogel, especially the binding
sites, hydrophilicity, and stiffness of cells [57]. An accurate description of cell stiffness is,
however, not impossible via current laboratory research. It has been reported that cells are
generally more likely to form polymers on soft hydrogels [58]. It has also been reported
that hydrogels with higher hardness are conducive to the generation of spheroids [59].
Natural polymers have been used to form a scaffold for the generation of spheroids due to
their excellent biocompatibility and biodegradability, and synthetic polymers have also
been used to generate spheroids due to their better structural complexity. Next, we will
summarize the applications of typical hydrogel materials.
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Natural Polymers

Hyaluronic acid (HA) is originally isolated from the bovine vitreous body [60]. It
is not sulfated or covalently bound to proteins, but exits in free form and non-covalent
complex form. It is a glycosaminoglycan. HA has low viscosity to cells, which can promote
cell–cell contact and facilitate the generation of spheroids [61]. HA can bind to receptors
and proteins on the cell surface (such as CD44) to activate a variety of signaling pathways
and regulate cell functions. In cancer cell research, HA binds to CD44 and affects tumor cell
differentiation [62], proliferation, and metastasis. The production and metastasis of tumor
cells are often accompanied by changes in the microenvironment. Studies have found
that with the production of cancer cells, epithelial cells undergo epithelial mesenchyme,
and the HA content in the microenvironment increases, achieving HA enrichment [63].
The enrichment of HA further promotes the proliferation of cancer cells. HA has been
successfully made into hydrogels [64], scaffolds [65], fiber nets [66], and other structures to
generate multicellular spheroids.

Collagen is the most abundant protein in mammals, and the most common type of
collagen is collagen type I [67]. Collagen can be extracted directly from ECM. Collagen is an
excellent cell attachment matrix. Cells can recognize and bind to collagen through integrin
receptors [68]. In order to study the influence of the pore size of the collagen scaffold
on cartilage regeneration, Zhang et al. prepared collagen scaffolds with four pore sizes:
150–250, 250–355, 355–425, and 455–500 µm. The results showed that 150–250 µm was the
best choice for cartilage regeneration [59]. At present, collagen has been combined with
microfluidic technology to rapidly produce collagen microspheroids while maintaining the
viability of cultured cells [69]. Kaufman et al. found that when the cells cultured on the
base gel are covered by collagen type I, the cells can be rearranged to form a spheroid [70].
Ma et al. embedded human glioma cells in collagen and formed hypoxia to simulate the
tumor microenvironment in vitro. The results showed improved proliferation, spheroid
formation and invasion of U87 glioma cells transfected with hypoxia-inducible factors
(HIFs) compared to non-treated cells [45]. Kim et al. used collagen to culture human
bladder cancer cell lines SBT31A and T24 that express cyclin D1b mRNA to study the
ability of cyclin D1b siRNA to inhibit cancer. They found that the expression of cyclin
D1b can be limited by inducing cell apoptosis, which inhibits cancer cell stemness and
epithelial-mesenchymal transition and thereby inhibits the malignant phenotype of bladder
cancer cells [44].

Agarose is a low-cost linear polymer with uniform gel structure and high water
content; it features non-toxicity, good transparency and biocompatibility, and good perme-
ability [71], which is conducive to the diffusion of oxygen and nutrients. These advantages
make it suitable for generating MCSs [53,72,73]. Tumor spheroids can summarize the
specificity of tumor better than two-dimensional cell culture, but most of the existing
culture systems are only suitable for forming small-size spheroids. Tang et al. generated
porous analytical agarose molding for the culture of U87-MG human glioblastoma, and
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successfully generated a U87-MG tumor spheroid with a diameter of 1.4 mm. They found
that the size of the tumor spheroid did not increase with the density of the inoculated
cells [48]. Tumor spheroids are used as an in vitro model for evaluating anticancer drug
combination therapy. Barros et al. injected agarose into a micromold to form an agarose
structure with spherical microwells and successfully cultivated PANC-1 spheroids using
this structure. By changing the ratio of the therapeutic drug doxorubicin, i.e., resveratrol,
the spheroids were tested for drugs, and then the therapeutic effect and synergy potential
of the drugs were evaluated. They found that when a higher ratio of resveratrol was
used, the viability of the cells was greatly reduced. Similar conclusions were validated in
the two-dimensional cell model, showing considerable potential for the combined drug
treatment method to deliver synergistic effects [74].

Synthetic Polymers

As a hydrophobic organic silicon material, poly-dimethylsiloxane (PDMS) has been
widely used in the generation of MCSs due to its high transparency, non-toxicity, and good
chemical stability and physiological inertia [75–77]. Shi et al. prepared PDMS concave
microwells using photoresist SU-8 as a template and used them to generate chondrocyte
spheroids under low oxygen conditions. They found that the combination of the spheroid
model and hypoxic conditions significantly increased the expression of collagen II and
aggrecan at protein and mRNA levels. HIF-1α can directly regulate the expression of
aggrecan, while HIF-2α regulates the expression of Col2a2 and aggrecan primarily by
regulating the Sox-9 gene [78]. To improve the volume of the generated spheroids and
make them better simulate the size of real tumor tissues in vivo, Ratnayaka et al. generated
HepG2 spheroids with a volume of 44 mm3 by combining the use of a suspension drop
method and a PDMS well method [79]. Oxygen is a necessary substance during cell
growth and reproduction. Anada et al. only used PDMS to prepare an oxygen-permeable
chip to generate HepG2 spheroids to increase the concentration of oxygen in the culture
environment. As a control, they used acrylic acid to prepare a non-oxygen-permeable
chip for the spheroid culture. They found that the diameter of the spheroids on the
oxygen-permeable chip increased significantly, the hypoxia and survival thresholds of the
HepG2 spheroids cultured on it reached 400 and 600 mm, respectively, the cell growth
was significantly enhanced, and anaerobic glycolysis was significantly reduced [80]. To
overcome the shortcomings of the hanging drop method that the culture medium is not
easy to replace and the spheroids are not easy to transfer, Kim et al. used a method in
which a droplet array chip (DAC) containing the spheroids was contacted with a DAC to
transfer the spheroids and replace the medium [81].

Poly-ethylene glycol (PEG) is characterized by good water solubility, non-toxicity, and
good stability. It has also been widely used in the generation of spheroids [43]. Traditional
photolithography technology requires a separate mask. Using ultraviolet light and a
digital micromirror device (DMD), Hribar et al. performed nonlinear 3D projection to
prepare concave hydrogel microstructures (Figure 6), and generated breast cancer and
induced pluripotent stem cell spheroids. Through immunofluorescence and histochemical
staining, they observed that the breast cancer spheroids cultured to the 10th day formed a
hypoxic core, which was consistent with the in vivo tumor model. Both spheroids were
successfully cultured for 10 days, verifying that long-term culture of spheroids can be
achieved on this structure. The application of stereolithography technology can greatly
improve the efficiency of microstructure preparation, and can enable precise control of
microstructures [82]. The study found that the tumor microenvironment contained ECM
components such as collagen and fibrinogen. To examine the role of fibrinogen in cancer
progression, Pradhan et al. used a dual-photoinitiator, aqueous-oil emulsion technique
to encapsulate MCF7 cells in PEG-fibrinogen hydrogel microspheroids. Using scanning
electron microscopy and fluorescence imaging analysis, the apico-basal polarity of cells
appeared to be drastically reduced in tumor microspheroids, to a level significantly lower
than that of the spheroids formed by self-aggregation. This indicated the beginning of
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the epithelial-mesenchymal transition and the malignant transformation of the cells. As
revealed by the ultrastructural analysis of the tumor globules and tumor microspheroid,
the tumor microspheroids exhibited more disordered cell arrangement and smaller cell
size. The MCF7 spheroids in the microspheroids showed higher Young’s modulus of
4700 ± 650 Pa, which could be attributed partly to the increase in the hardness of PEG-
fibrinogen hydrogel [51].
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There are some other synthetic polymers used in the generation of multicellular
spheroids. For example, HepG2 spheroids have been successfully generated using
poly(N-isopropylacrylamide) (PNIPAM), such as poly(2-hydroxyethyl methacrylate)
(PHEMA) [52,83]. Zhao et al. generated NIH3T3 cell spheroids using hydrogel films with
swelling-induced wrinkling patterns [84], and Rosellini et al. generated A-549, 293-T, KB,
and MRC-5 spheroids using microplates coated with poly-2 hydroxyethyl-methacrylate
(PHEMA) [85].

2.2.2. Microfluidic Systems

Compared with non-microfluidic systems, microfluidic systems can realize continuous
infusion of the culture medium while ensuring high cell activity. Moreover, they can be
used for drug testing, live/dead cell staining, and other characterization analysis on
microfluidic chips. A microfluidic system can reduce the use of cells and the consumption
of reagents and is suitable for high-throughput screening. Owing to their combination with
hydrogels, microfluidic systems have been able to achieve the high-throughput generation
of uniform-sized spheroids in the generation of MCSs, and are showing a tendency to
reduce labor intensity and automatic monitoring. Now, microfluidic systems have become
an important tool in the field of biomedicine. Depending on whether spheroids can be
formed, microfluidic chips can be divided into microfluidic spheroid formation chips and
microfluidic spheroid culture chips. Various microfluidic spheroid culture chips have been
fabricated. They are divided into two categories according to their formation processes:
the formation of spheroids based on emulsion, and the formation of spheroids based on
microwells or U-shaped microstructures.
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Emulsion Technology

The incompatible solution is injected through the microfluidic channels of a microflu-
idic chip. The solution in one channel contains cells. When the solution of each microfluidic
channel meets in the intersection area, the solution containing cells will form emulsion
droplets due to the shear force of the fluid in the other solution. Cells are trapped in the
emulsion droplets to form a closed microenvironment, and then form spheroids through
the aggregation of cells. At present, single [3,69,86,87], two [88,89], and three [90] layers
of emulsion droplets have been developed. With this method, emulsion droplets can be
prepared with high throughput and reduced labor intensity. Kwak et al. used emulsion
technology to generate human breast cell spheroids, and the droplet generation speed
reached 1000 drops/min [91] (Figure 7). The hydrogel mentioned above has been widely
used in emulsion technology to form emulsion droplets because of its good biocompatibil-
ity. External stimulation is required for hydrogels in emulsion droplets to achieve gelation.
For example, thermal responsive hydrogels need to be solidified by changing the tempera-
ture. UV irradiation is required for photosensitive hydrogels to induce light crosslinking.
Alginate can be prepared by injecting ionic solutions [92]. Chen et al. prepared an alginate-
based microfluidic system, generated breast tumor cell spheroids, and tested them with
doxorubicin. They found that as the concentration of doxorubicin increased, the cell’s
activity and proliferation ability decreased significantly [42]. However, the disadvantage of
emulsion technology is that after the emulsion droplets are formed, the separated droplets
restrict the cells from acquiring nutrients, which may lead to cell necrosis. To solve this
problem, leveraging the high throughput of multi-phase microfluidics and ease of perfusion
with single-phase microfluidic technology, McMillan et al. prepared a new microfluidic
platform that can be used to prepare and culture spheroids in culture medium and in
alginate gel scaffolds [93]. In general, emulsion technology has been widely recognized for
the speed of droplet preparation, and the formed spheroids can be used for in vitro drug
screening.
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Microwell and U-Shaped Microfluidic System

The generation of spheroids can also be achieved by using microfluidic chips with mi-
crowells [6,23,94,95] (Figure 8) or U-shaped microstructures [12,96,97]. The basic working
principle of this method is that a solution containing cells is injected into the chip through
a microchannel, and the cells are captured by microwells or U-shaped microstructures. The
cells aggregate to form spheroids, and the medium can be continuously injected into the
chip through the microchannel, continuously providing nutrients to the cells and taking
away the waste produced by cell metabolism. This type of microfluidic chip can be used for
long-term culture of spheroids, and thereby it can find applications in vitro cancer research
and drug detection, which will be covered later in this article. Reducing cell loss during



Micromachines 2021, 12, 96 13 of 21

spheroid generation and controlling the formed spheroids in microwells or U-shaped
structures is an important indicator for evaluating the design of microfluidic chips [98,99].
Fu et al. used in-situ photolithography to prepare a microfluidic chip with a U-shaped
microstructure to generate MCSs. The influence of the angle on the cell capture efficiency
was studied by changing the tilt angle of the chip (0, 45 and 90 degrees, respectively). They
found that the cell capture efficiency was highest when the chip was tilted at 90 degrees [96].
Microfluidic chips can not only use a single cell to generate homogeneous spheroids, but
also use a variety of cells to generate heterogeneous spheroids to explore the interaction be-
tween different types of cells in the process of spheroids formation [95,99,100]. Zuchowska
et al. co-cultured breast cancer cell line MCF-7 and human mammary fibroblasts (HMFs) to
generate spheroids, and generated MCF-7 spheroids as a control to evaluate the therapeutic
effect of photodynamic therapy. Studies have found that the content of nano-TPP and ROS
is higher in the homogeneous spheroids, which indicate that the heterogeneous spheroids
are much more resistant to photodynamic therapy [95].
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3. Applications of MCSs
3.1. Tumor Research

Three-dimension models for tumor research in vitro include multicellular layers,
matrix-embedded culture, hollow fiber bioreactor, ex vivo cultures, and MCSs [101]. MCSs
have become an important model for cancer research because they can co-culture a variety
of cells to form heterogeneous spheroids and can mimic cell–cell and cell–ECM interac-
tions [12,17,102–104]. Tumor cells were co-cultured with fibroblasts and endothelial cells
to simulate the complex cell microenvironment in vivo [36,105,106]. A schematic represen-
tation of the main characteristics of 3D spheroids is shown in Figure 9. MCSs can simulate
the characteristics of angiogenesis, invasion, and metastasis. Generally speaking, angio-
genesis represents the pathological changes of tissues. Chiew et al. co-cultured HepG2
hepatocellular carcinoma (HCC) cells and endothelia cells and found that endothelial cells
form tubular networks, and endothelial cells can enhance differentiation under the action
of angiogenic factors [105]. Similarly, Esendagli et al. co-cultured mouse breast cancer
cells, fibroblasts, and macrophages to study the effects of the other two on breast cancer
cells. The study found that the number of spheroids formed by co-culturing fibroblasts and
breast cancer cells was lower than that of breast cancer spheroids prepared alone, and when
macrophages were added, the frequency of spheroids increased. These results indicate
that fibroblasts have a negative effect on the formation of breast cancer spheroids [16]. At
present, researchers have found that epithelial-mesenchymal transition (EMT) is a key
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stage in the development of cancer, with decreased cell adhesion and increased tumor
metastasis and invasiveness [45,106,107]. Malignant glioma is the most aggressive type
of brain tumor. Hypoxia is an independent prognostic factor. Ma et al. created a hypoxic
microenvironment for the spheroid of U87 cells by using hypoxia-inducible factor (HIF).
After 10 days of culture, it was found that the spheroids transfected with HIF had stronger
invasiveness, and the anterior invasive cells took on a mesenchyme-like shape [45]. When
the diameter of multicellular tumor spheroids (MCTSs) cultured in vitro exceeds a certain
limit, molecular diffusion gradients will be formed inside the MCTSs, resulting in the
inability of the internal cells to obtain enough nutrients and the accumulation of metabolic
wastes. The spheroids will form a typical three-layer structure, comprising an internal
necrosis area, an intermediate static area, and an external proliferation area [105]. The
diffusion range of oxygen and other biomolecules is about a few hundred microns, so an
MCS of 500 µm is an ideal model for cancer research [108].
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3.2. Drug Screening

Drug screening in vitro is needed before drug clinical trials. Animal models are
recognized as the most ideal in vitro models. However, using animal models for drug
screening involves high costs and is complicated by moral issues. Traditionally, a two-
dimensional cultured cell model is required before animal experiments. However, due
to the absence of cell–cell and cell–ECM interactions in the culture process, this model
cannot really simulate the real situation of the human body, which leads to poor drug
efficacy in clinical trials. The MCSs model has been used for in vitro drug screening and has
also been used for anticancer drug screening [6,29,109,110]. The liver plays an important
role as an organ of drug metabolism in vivo. To fix the position of the spheroid and limit
the size of the spheroid, Xia et al. prepared tethered spheroids and verified that CYP450
could be produced by induction [110]. Drugs such as doxorubicin [42], cisplatin [8,111],
and paclitaxel [6,108] have been used in drug resistance and sensitivity experiments on
spheroids. For example, doxorubicin, an anthracycyline drug, has been widely used. The
test of doxorubicin by MCSs revealed that as the concentration of doxorubicin increases,
the cell viability decreases, and MCSs have stronger drug resistance compared with two-
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dimensional culture (Figure 10). This demonstrates that MCSs can be used as a platform
for drug screening [29].
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3.3. Tissue Engineering

Tissue engineering is used to construct biological substitutes in vitro and inject them
into the body to replace tissues and organs to achieve minimal damage to the human
body [112]. Because of their good biocompatibility and biodegradability, hydrogels have
been widely used in tissue engineering to form scaffolds. Huang et al. constructed hypoxia
human umbilical vein endothelial cells/cord-blood mesenchymal stem cell spheroids
and implanted them into a mouse ischemic hindlimb model to promote blood vessel
formation and prevent tissue degradation (Figure 11) [112]. Mesenchymal stem cells have
been used to achieve cartilage regeneration because of their self-renewal and multi-phase
differentiation capabilities [113]. Hus et al. induced differentiation of human gingival
fibroblasts (HGF) on chitosan, and found that HGF cells formed spheroids, and C×43
activity increased, which increased the cartilage differentiation potential of HGF [15]. Kim
et al. co-cultured endothelia cells and stem cells to achieve high production of core-shell
spheroids with controllable size. The spheroids can also rapidly induce vascular networks
in micro-tissues [9].
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Figure 11. Immunofluorescence images of human umbilical vein endothelial cells (HUVEC)/cbMSC
cell spheroids stained with antibodies against F-actin, fibronectin, and hypoxiainducible factors
(HIF-1α). The results indicate that cell spheroids possessed the ECM molecule fibronectin and
hypoxiaresponsive transcription factor HIF-1α. (Reproduced from Reference [112]).

3.4. Tumor-Immune-Cell Interactions

The anti-tumor activity of immune cells is mainly influenced by the complex cellular
networks within tumors and tumor immune escape mechanisms [114–116]. T cells and
Natural Killer (NK) cells are major effectors of antitumor immune responses. Multicellular
tumor spheroids (MCTS) are recognized as relevant models to human pathologies for
studying cancer immunotherapies. Courau et al. cultured human colon tumor-derived
spheroids with allogeneic T and NK cells to assess the function [117]. The results indicated
that these immune cells rapidly infiltrated cell line-derived spheroids, inducing immune
mediated tumor cell apoptosis and spheroid destruction. Giannattasio et al. investigate
infiltration and the cytotoxicity of NK cells using human cervical carcinoma cell spheroids
and discovered that the destruction of a three-dimensional tumor spheroid took much
longer when compared to the monolayer cultures when treated by primary human NK
cells [118]. Similar work was also done by M. Lanuza and his coworkers [119]. They
analyzed the efficiency of allogeneic NK cells on colorectal (CRC) human cell spheroid.
The result indicated that colorectal tumour cell spheroids, which favoured the expression
of the inhibitory immune checkpoint PD-L1, were killed by activated NK cells efficiently.

4. Challenges and Prospects

The application of MSCs in the biomedical field has built a bridge between two-
dimensional cell culture models in vitro and the real environment in vivo. Traditional
methods such as suspension drop and non-adhesive surface liquid covering culture have
stood the test of time. The external fore-based method requires professional equipment and
has an unknown impact on cells. At present, the MSCs technology is relatively mature and
has been widely used in the preparation of spheroids. Recent advances in this technology
include new microfluidics systems and new hydrogels, which are among the most effective
ways to simulate the microenvironment in the body. Hydrogels play an important role
in simulating ECM. Microfluidics allow for continuous infusion of nutrients and thus
long-term culture of spheroids. However, biomaterials and microfluidic technology are not
only higher in cost but also hard to operate. These limitations hinder the wider application
of MCS generating techniques. The questions of how to simply and rapidly generate
microfluidic chips and how to conveniently connect with analytical instruments for high-
throughput analysis will be the focuses of future research. Future advances in technologies
such as microlens, atomic force microscopy, and 3D printing are expected to allow for more
precise control of the microenvironment when generating MCSs.

For 3D MCS culturing, although MCSs can be generated successfully by various
methods, the diameter of spheroids that can be formed is still limited to 200–400 µm due
to molecular diffusion; when the diameter of spheroids is enlarged again, there will be
necrosis areas in the middle of the spheroids due to the lack of nutrients and oxygen and
the accumulation of metabolic wastes. This in turn limits the further development of tumor
spheroids in tissue engineering. Generating heterogeneous spheroids to form micro-tissues
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and induce angiogenesis can be a promising method to expand the diameter of tumor
spheroids in the future.

Although hydrogels play a part in simulating ECM, the cell–cell and cell–ECM signal
transduction is not completely clear, and the mechanical, structural, and adhesive proper-
ties of hydrogels will impair the generation of spheroids. Different experimental results
may occur due to different properties of the same material. In the future, it is necessary to
develop standard experimental schemes to ensure the reproductivity of experiments.

In short, high throughput, convenience, and speed are required for the generation of
spheroids. With a better understanding of the mechanism of signal transmission and the
microenvironment between cells, more accurate 3D MCSs models will be generated.

5. Conclusions

Cell spheroids, as one of the most typical models of 3D cell culture, allow cells to
establish cell–cell and cell–extracellular matrix connections to form a specific 3D structure
that better simulates the complex intracellular microenvironment in vivo. In this review,
methods for MCSs generation and their respective advantages and disadvantages were
summarized, and the advances of hydrogel and microfluidic systems in the generation of
spheroids were highlighted. Then, various applications of MCSs in cancer research and
other aspects are presented and the current limitation, challenges, and the development
direction are summarized.
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