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On the evolution of sexual 
receptivity in female primates
Kelly Rooker1 & Sergey Gavrilets1,2,3,4*

There has been much interest in the evolutionary forces responsible for, and underlying the diversity 
in, female primate reproductive cycles. While there has been limited research on sexual receptivity 
in primates, this has been one recurring topic of interest. Some primate species are like humans, 
sexually receptive to mating throughout their entire estrus cycle, while other species are the opposite, 
receptive for mere hours out of their several-week cycles. Why is there such prominent variation 
in sexual receptivity length among primate species? Here we examine the evolutionary trade-offs 
associated with sexual receptivity length using mathematical modeling. We investigate how various 
factors, including having ovulation signs present versus concealed ovulation, female physiological 
costs, and group size, each influence the length of females’ receptive periods. We find that both 
continuous receptivity and very short lengths of receptivity are able to evolve. Our model predicts 
that increasing the impacts of infanticide will increase the length of the female receptive period, 
emphasizing the possible importance of paternity confusion. Similar effects can also be achieved 
by increasing the non-genetic benefits provided by males. Overall, our work offers a theoretical 
framework for understanding the evolution and diversity of mating traits in female primates.

The unique behavioral changes associated with the estrus cycle of female mammals have been researched for 
over a century. As early as 1900, scientists were interested in when and why females were willing to receive male 
mates, noting that in most species there was a “special period of sexual desire...and only at that time, the female 
is willing to receive the male1.” Despite recurring interest in this topic throughout the past century, there is still 
relatively limited research on primate sexual receptivity. Not only is this topic of interest among primatologists, 
it may help to give insight into why human females are continuously receptive to mating.

Definitions.  In general, there are three main characteristics used to describe the changes through which 
female mammals go when they are in estrus: sexual attractivity, proceptivity, and receptivity2. Although the focus 
of this paper is on female sexual receptivity, much of the work surrounding the estrus cycles of female mammals 
has instead been in relation to sexual attractivity, that is non-behavioral cues, such as sexual swellings, bright 
colorations, etc. around the female’s genital region, that are used to signal probable times of ovulation. Con-
cealed ovulation, also of much interest, is the lack of any such visual signs around a female’s time of ovulation. 
Proceptivity refers to behavioral cues displayed by females in order to initiate and/or maintain sexual interactions 
with males. Finally, receptivity is the willingness of a female to accept a male and allow copulation/intravaginal 
ejaculation with him to occur3.

Hence, attractivity can be thought of as the value to a male of a female being a sexual stimulus, and typically 
gets measured for primates in the field via male behaviors: frequency of approaches by males to a female, fre-
quency of attempts by males to mount a female, etc.4 Proceptivity instead gets measured via female behaviors: 
counts of affiliative behaviors (e.g., a female moving to sit near a male or to stay in his vicinity), more direct sexual 
solicitation (e.g., a female presenting her hindquarters to a male or making species-specific vocalizations, facial 
expressions, and/or gestures like lip-smacking in baboons or head-bobbing in rhesus monkeys), investigation of 
the male’s anogenital region, female grooming of the male, etc.2 (See p.133 of Dixson (2012) for a more complete 
list of proceptive behaviors in female primates3.)

Receptivity is harder to measure in the field since it requires a male approaching and wanting to mate. 
However, it can be seen by the female shifting to a specific stance allowing for penile insertion or ejaculation 
(depending on the species), remaining stationary in that position, etc.4 Receptivity, even when the female is 
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most fertile, is not a passive action. Females may avoid or actively refuse male mount attempts, or terminate the 
mount prior to ejaculation. In the field, receptivity in primates often gets measured by counting such refusals, 
acceptances, and terminations of male mounts by females2, 5.

Also, it is important to note that even in species with long lengths of receptivity, matings will not necessarily be 
evenly distributed throughout such periods of receptivity. Things like female desire and female-initiated matings 
may increase around their time of fertility, despite a female being receptive for longer proportions of her cycle6.

Receptivity in non‑primate mammals.  Receptivity as an aspect of primate behavior is much different 
from the vast majority of non-primate mammals2. In most non-primate mammals, receptivity is limited to the 
peri-ovulatory (i.e., around the time of ovulation) phase of the female’s estrus cycle, and strongly dependent on 
hormones, including estrogen and progesterone. Prosimian primates (lemurs, galagos, etc.) also tend to be more 
like non-primate mammals in that they only have limited periods of sexual receptivity during their peri-ovula-
tory phase7. Not only is this time of receptivity typically brief in non-primate mammals and prosimians, but in 
many species (including galagos), the vagina is actually fused shut, or otherwise completely covered, outside the 
female’s receptive period, making mating outside of this time physically impossible4.

In addition, in many non-primate mammals and prosimian primates, ovariectomy (surgical removal of 
the ovaries and hence also removal of the ovary-produced hormones estrogen and progesterone) results in a 
complete lack of sexual receptivity in the female, with females even attacking males attempting to copulate with 
them in the case of galagos. This is quite different from the anthropoid primates (including humans), in which 
copulations will still occur, even after removal of the ovaries8.

Variation in receptivity among primates.  Among all species of primates, there is great variability in 
the duration of the estrus cycle where the female is receptive. Some species are like humans or bonobos in which 
individual females are receptive throughout their entire cycle, while other species are like gorillas or the prosim-
ians, in which individual females are receptive exclusively during the middle of their cycles around their time 
of ovulation2. In some species, females will initiate the majority of all matings (e.g., in Gorilla, Ateles, Alouatta, 
Cebus, and Rhinopithecus), while in other species females initiate 0% of all mounts (e.g., in greater galagos and 
owl monkeys)3. Other primate species lie more in between, with females initiating 18% of all mounts in free-
ranging chimpanzees9, 66% in gelada baboons10, and 69% in lion-tailed macaques11.

Other aspects of receptivity.  Species whose females are receptive throughout their entire cycle are 
referred to as being ‘continuously receptive’. Many species engage in what is called ‘situation-dependent recep-
tivity’, i.e., when a female becomes receptive despite not being in the middle of her cycle. This most frequently 
occurs when a female encounters an unfamiliar male. For example, non-receptive females (including in some 
cases even pregnant females) in gray langurs and gelada baboons will display both proceptive and receptive 
behaviors within days of new males invading their group4.

Longer receptivity is clearly less important in species where forced copulations occur12. However, in many 
primate species, the female takes an active role in mating via proceptive behaviors and many males wait for such 
behaviors prior to attempting to mate2. On the other hand, longer receptivity could be more important in select 
species where ‘food-for-sex’ is the norm (i.e., the female receives provisionings or other resources from a male in 
exchange for her copulating with him)13. Similarly—and more commonly—the female could instead be trading 
copulations with a male for protection of herself against predators, harassment, etc., which could also provide 
selection pressure on the lengthening of receptivity. Alternatively, females could increase their fitness by mating 
with males more likely to provide paternal care to their offspring14,15. Note all these different costs and benefits 
of receptivity can be thought of as encapsulated together in a single ‘benefit-to-cost’ ratio, what we term later 
the ‘benefit of paternal male quality’.

Female competition for preferred mates.  As stated in a review paper on female–female competition, 
“Female competition for the sperm of preferred (or competitively successful) males could be a potentially wide-
spread but previously overlooked evolutionary force13.” Indeed, receptivity may function less in securing females 
any mate, but rather in securing them their preferred mate (i.e., a high-quality male). In these situations, females 
are trying to concentrate paternity of their offspring in that preferred mate. At least in some contexts, sperm 
limitation may play a role7,16.

In both gelada baboons and hamadryas baboons, there is a negative relationship between conception rate 
and the ratio of estrus females to males. Similarly, among gorillas, females will receive fewer copulations when 
other females are in estrus simultaneously13. Note that such preference in females for ‘high-quality males’ can 
be thought of not only as a preference for good genes, but also in maturity, rank, fertility, protection, invest-
ment, vocal or visual displays, etc. (reviewed in Clutton-Brock17). Surbeck et al.18 showed that, when comparing 
bonobos to chimpanzees, male bonobos have a higher reproductive skew and stronger relationship between 
dominance rank and reproductive success, despite female bonobos having the longer periods of receptivity.

In general, there exists a trade-off between the benefits of a female being receptive for a longer amount of time 
versus a female being receptive for shorter. A female with a shorter period of receptivity would have less time in 
her cycle to mate, which helps both concentrate paternity in high-quality males and also avoid the physiological 
costs of having longer receptivity. On the other hand, a female with a longer period of receptivity would have 
more time to mate with multiple males in one cycle, helping to confuse paternity19. Possible benefits of mating 
with multiple males in one cycle include reduced risk of infertility, increased protection of offspring against 
predators, increased investment to offspring by multiple males, and genetic diversity17,20,21.
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Infanticide.  Another important possible benefit to females from both paternity concentration and paternity 
confusion—and hence also a possible effect on female receptivity length—comes from infanticide. Infanticide, 
the killing of a female’s offspring prior to weaning, is extremely detrimental to a female’s fitness22–28. However, 
committing an act of infanticide may benefit any male who is not the father of that particular offspring, and 
hence infanticide is often seen when a new male takes over a group27. Since many female primates have pro-
longed lactational amenorrhoea19, a male killing a female’s offspring results in bringing that female back to 
fertility sooner by prematurely ending her lactation29,30. The infanticidal male can then subsequently mate with 
this female, meaning his offspring will be able to be born sooner than would otherwise be possible had he never 
committed infanticide31. Although infanticidal events are typically rare, they have been documented in many 
primate species22,32, and constitute up to 64% of all infant mortality in some primate species19.

Indeed, since males’ decisions about whether to help or harm an infant are primarily based on their mating 
history, one prominent counterstrategy used by females to protect against infanticide is the manipulation of 
males’ probabilities of paternity, either actual or perceived. For example, if infanticide is likely to only be com-
mitted by one male in a group, it may be in females’ best interests to concentrate their future offspring’s paternity 
in him. This would help ensure that he believes he is the father of her offspring, and hence he would be much 
less likely to kill the offspring, and may even go out of his way to help protect it should any other male attempt 
to commit infanticide against that offspring19. Observational and genetic data both confirm that infanticide is 
rarely committed by the father of that offspring22,30,33,34.

Conversely, paternity confusion could also play a role in protecting an offspring from infanticide. If infanticide 
may be committed by multiple males in the group, or any new outsider male who takes over the group, it would 
instead likely be in the female’s best interest to mate with as many of those males during one cycle as she possibly 
can, in order to help confuse paternity, i.e., make multiple males think they may be the father of her offspring19. 
Indeed, infanticide could have provided the main selection pressure favoring situation-dependent receptivity, 
including continuous receptivity. Such a female with the capacity to facultatively and opportunistically solicit 
sexual behavior would be better equipped to manipulate males’ probable paternities, thus lowering the risk that 
her infant might be killed22.

Research questions.  In situations with no fossil record, as is the case with female receptivity, scientists must 
often rely upon comparative analyses and evolutionary modeling in order to help understand such phenomena. 
The application of the comparative approach to female primate sexual receptivity has, so far, been limited. Hrdy 
and Whitten4 collected much data on female primate receptivity, proceptivity, sexual swellings/colorations, male 
behaviors, breeding patterns, etc. However, their work was meant as more of an exposé of all the variation that 
is present among primate species rather than a true comparative analysis between different traits. van Schaik 
et al.19 were primarily concerned with infanticide and those sexual behaviors relating to defense against infanti-
cide. Their collected data and statistical analyses focused on correlations among traits and behaviors present in 
today’s species, rather than on their evolutionary origins. Finally, Stockley35 looked only at the specific relation-
ships between female receptivity length and male baculum length and penile spinosity in primates.

Given the complex evolutionary trade-offs between factors affecting female receptivity, theoretical insight 
based on evolutionary modeling is warranted. However, to our knowledge there has yet to be any mathematical 
modeling work done on the evolution of primate sexual receptivity. It is our aim to address this gap. In particu-
lar, we construct a mathematical model in order to gain explicit insight into the following questions: How does 
length of sexual receptivity contribute to female reproductive success? What factors facilitate the evolution of 
continuous receptivity and/or very short lengths of receptivity? What role could infanticide have in the evolu-
tion of receptivity? How is receptivity linked to the evolution of sexual attractiveness, namely a female having 
obvious visual ovulation signs or concealed ovulation?

Methods
Building on earlier work36, we construct an agent-based model where the genes for female sexual receptivity are 
able to evolve. Our goal is to determine how female receptivity length can evolve, both with and without visual 
ovulation signs simultaneously evolving. Below, after formulating the model, we will present our results in three 
steps by considering: 

(1)	 Evolution of receptivity given fixed concealed ovulation,
(2)	 Evolution of receptivity given fixed ovulation signs present, and
(3)	 Evolution of both receptivity and ovulation signs.

In our model, all evolution is controlled by “fitness”, or each female’s relative reproductive success. In this way, 
“fitness” can be thought of as the expected number of offspring surviving to the age of reproduction. When 
considering female sexual receptivity, various factors (positive and/or negative) affect such fitness, which we 
summarize in the following fitness function:
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Below we describe the general biological logic of our model, its variables, and its most important parameters, 
while the full details of the model, explicit fitness functions, and full definitions of all equations are delegated to 
the Supplementary Information (SI).

General setup.  Our model assumes a population of individuals living in a large number of groups, each 
with N males and N females. We assume generations to be discrete and non-overlapping. Females can differ 
genetically in both their visible ovulation signs present and their length of receptivity, while males differ in their 
quality to females, meaning any benefit from the male to a female and/or her offspring. We do not consider 
evolution in males, assuming instead that male traits are at a [stochastic] evolutionary equilibrium. Males and 
receptive females compete for mating opportunities. Mating is followed by offspring production and dispersal. 
Males can also engage in infanticide.

Females.  We explicitly account for the female cycle, which we split into D discrete units of time. While such 
units could be hours, minutes, etc., we choose to call such units ‘days’ (for example, with 29 days in one female 
cycle). Each female is characterized by one genetically controlled trait, r, the length of time the female is recep-
tive to mating (a non-negative, integer value). In addition, females may also be characterized by their visual 
ovulation signs, denoted x(d) for each day d of the cycle, thought of as overlapping curves. Visual ovulation signs 
are characterized by two evolvable, genetically controlled traits. Ovulation signs magnitude m is the maximum 
amount of ovulation signs a female has visible during her cycle (a non-negative, continuous value), while ovula-
tion signs length ℓ is the number of days a female has some amount of ovulation signs visible (a non-negative, 
integer value). We also account for the costs of having ovulation signs visible (scaled by parameter c) and the 
costs of receptivity ( cr ). For an example of what receptivity lengths r and ovulation signs x(d) could look like 
across a cycle, see Fig. 1.

For each female, the distribution of probabilities of fertilization across the cycle has the same shape but is 
randomly centered (meaning cycle synchrony may only occur probabilistically). Visual ovulation signs and recep-
tivity are correlated with these days of fertility, but can each still evolve independently. This means we assume 
there exists at least some reliability of the ovulation signal (since a female’s peak day of fertility will also be her 
day of peak ovulation signs and her median day of receptivity), and that such reliability is the same in all females.

Males.  Variation in male quality is scaled by parameter b, which also characterizes female benefits. Such 
quality is explicitly split into a genetic component yg (GC) and a non-genetic component yng (NGC). GC is due 
to the male’s genes being passed to the female’s offspring, while NGC is any non-genetic benefit to the female 
from mating with that male. For example, NGC could be protection provided to the female or increased food, 
provisioning, access to resources, etc. (as reviewed in detail in Clutton-Brock17). For simplicity, the distribution 
of male quality in the population remains constant, e.g., as a result of mutation-selection balance.

female fitness = baseline female fitness

+ genetic quality of the father

+ average non-genetic quality over all mates

± effect of infanticide from all males

− cost of having visible ovulation signs

− cost of receptivity.

Figure 1.   Example ovulation signs, fertility, and receptivity length for two females. Female 1 is denoted by 
green ( r = 9,m = 0.5, ℓ = 7 ), and Female 2 by blue ( r = 13,m = 1, ℓ = 15 ). Visible ovulation signs are 
depicted by the solid vertical bars, fertility probabilities by the lighter-colored lines, and receptivity by the red 
horizontal bars at the bottom of the graph. Ovulation is assumed to happen on Day 8 for Female 1 and Day 20 
for Female 2. Note receptivity length and ovulation signs and magnitude can all vary independently between 
females, while fertility curves have the same shape for all females.
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We assume that yg correlates with each male’s rank (and hence his success in reproductive competition). 
We also allow for correlation ρ between yg and yng . For example, ρ < 0 corresponds to the case when power-
ful males are less interested in providing any protection/provisioning to females. ρ > 0 instead corresponds to 
the case when being a more powerful male implies being better at protecting/provisioning females. Parameter 
0 ≤ η ≤ 1 specifies the relative weight of NGC; with η = 0.5 , male-provided genetic and non-genetic benefits 
are equally important for females.

Mating.  For every unit of time, all males and all receptive females in each group enter the competition for 
mates. Note our model assumes female behavioral freedom (i.e., no coerced mating). For computational sim-
plicity, we assume each individual to mate exactly once on every unit of time (e.g., day). Males of higher rank 
(and GC) are more likely to mate with receptive females with stronger ovulation signs (higher x(d)), i.e., when 
the female is likely to be most fertile. Males of lower rank (and GC) mate with receptive females who have fewer 
ovulation signs visible, i.e., when the female is less likely to be most fertile (note this assumption in primates has 
empirical support37–39).

The strength of such assortment in our model is controlled by reproductive stochasticity parameters ǫm ≥ 0 
and ǫf ≥ 0 , in males and females respectively. With ǫm = ǫf = 0 , mating pairs are formed deterministically so 
that the highest-GC male mates with the female with the most ovulation signs visible, and so on; this is the case 
of perfect assortment in mating. Increasing ǫm increases stochasticity in the outcome of male competition for 
mating success, and thus reduces male reproductive inequality. Increasing ǫf  reflects a decrease in the reliability 
of the ovulation signal as well as a lack of opportunity or interest for fertile females to mate with a higher-GC 
male (e.g., as shown empirically in Amboseli baboons40). With large ǫm, ǫf  , mating becomes random.

For any female’s potential offspring, every male in the group will have an associated probability of paternity, 
ranging anywhere from zero to one. This quantity is determined by both the number of times that particular male 
mates with the female during her cycle, as well as her probability of fertilization on the days of each mating event.

Infanticide.  Modeling infanticide is similar to that in Rooker and Gavrilets36, which itself was adapted from 
van Schaik et al.26. Any male is able to help or harm (note ‘harm’ here could simply mean not helping) an off-
spring prior to the infant being weaned, although some males (e.g., those of higher quality, size, or strength) are 
able to do so more effectively. Our model does not distinguish between the threat of infanticide via an outsider 
male or a previously-subordinate male. Infanticide’s effects on offspring viability are scaled by parameters α 
(maximum benefit of protection from infanticide) and β (relative maximum cost of infanticide). An additional 
parameter 0 ≤ κ ≤ 1 determines the extent to which males take visible female ovulation signs into account 
when estimating their paternity in determining what actions to take regarding infanticide. κ = 0 means males 
estimate their probability of paternity solely by the number of matings with an offspring’s mother, while κ = 1 
means males instead estimate paternity exclusively on the basis of the female’s visible ovulation signs during their 
time of mating.

Female fitness.  As introduced earlier, fitness is the expected number of offspring surviving to the age 
of reproduction, normalized to keep the total population size in each generation constant. While males are 
assumed to be at an evolutionary equilibrium, selection occurs for females via fertility selection. Assuming 
additivity of cost and benefit effects for simplicity, the general female fitness function is defined earlier and in 
more detail in the SI.

Numerical simulations.  This model was implemented in C++, using evolutionary simulations of a genetic 
algorithm. Note that because of the complexity of social interactions, finding useful analytical solutions is not 
possible. Instead, we have to rely on extensive numerical simulations. Full information on parameter values 
tested and each of their effects is available in the SI.

Migration occurs with only females migrating between groups, although simulations were also run with 
only males migrating between groups and the results were unaffected. Mutation occurs with a mutation rate 
per gene per generation of 10−3 . Mutations for m are selected from N(0, 0.1) , while mutations for ℓ and r inde-
pendently from the set {−1, 1} with equal probability. 2N offspring are created in each group every generation, 
with N female and N male, determined randomly. The expected number of offspring per female is 2; the actual 
number is random, proportional to each female’s fitness. While all simulations were ran for 100,000 generations, 
convergence typically took place closer to 50,000 generations, with convergence sometimes happening in as few 
as 10,000 generations.

Results
We present our results in 3 different sets which differ in the trait(s) being selected: 

(1)	 Evolution of receptivity (r) given fixed concealed ovulation ( m, ℓ = 0),
(2)	 Evolution of receptivity (r) given fixed ovulation signs present ( m = 0.9, ℓ = 4 ), and
(3)	 Evolution of receptivity (r), ovulation signs magnitude (m), and ovulation signs length ( ℓ).

Note that studying the evolution of female sexual receptivity in isolation first (i.e., Sets 1 and 2) will allow us to 
better understand the coevolution of receptivity length with ovulation signaling. For each set, we investigate our 
model both with and without the effects of infanticide.
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In all cases, numerical simulations of our model show that the average values of the receptivity trait (r) (and 
ovulation signs magnitude trait (m) and ovulation signs length trait ( ℓ ), if included) converge to the unique 
equilibria r∗ (and m∗, ℓ∗ , if included). A more complete investigation of the effects of all parameters can be 
found in the SI.

Set 1: Evolution of receptivity (r) given fixed concealed ovulation ( m, ℓ = 0).  Results from Set 
1 can be seen in the white bars of Fig. 2. The effects of N, b, and cr are visible in the white bars in Fig. 2a. We 
intuitively expect that increasing the receptivity costs parameter ( cr ) will decrease receptivity length equilibrium 
r∗ , and that is indeed the case. We also see that group size (N) and variation in male quality (b) have little effect 
on female receptivity length.

In the white bars of Fig. 2b, we see increased receptivity length r∗ with increased effects of infanticide (i.e., 
increased α and β ). These results are intuitive since with stronger effects of infanticide come an increased ben-
efit to females of mating with multiple males. Having a longer length of receptivity allows females more time 
to be able to mate with multiple males, which in turn makes multiple males think they may be the father of her 
offspring and hence help protect (or at least not harm) that offspring. Recall parameter κ controls how much 
males take visible ovulation signs into account when estimating their paternity. In the concealed ovulation case, 
decreasing κ results in increased receptivity length r∗ . Even with concealed ovulation, if males only take the num-
ber of matings with a female into account when calculating their perceived probability of paternity, females are 
able to get benefit from mating at any point of their cycle. Hence there becomes an increased benefit to females 
for having longer lengths of receptivity.

Finally, Fig. 2c investigates the effects male traits have on female receptivity length. Increasing the relative 
weighting of male non-genetic effects (i.e., increasing η ) increases r∗ . As male non-genetic benefits become more 
valuable to females, females have increased incentive to mate outside of their fertility window, hence increasing 
their length of receptivity. ρ , the correlation between male genetic and non-genetic effects, has very little effect.

Set 2: Evolution of receptivity (r) given fixed ovulation signs present ( m = 0.9, ℓ = 4).  Results 
from Set 2 can be seen in the black bars of Fig. 2. Looking at receptivity length under conditions of fully visible 
ovulation signs, we see the same effects as in Set 1 of parameters cr , η , α , and β , and the same non-effects of N, 
b, and ρ . The parameter κ also has the same effects as in Set 1 for similar reasons. As males put less weight in the 
amount of visible ovulation signs a female has when mating with her, females are able to get more benefit in mat-
ing with multiple males by mating at times of their cycle when they have fewer (or even no) signs visible. Hence 
there again becomes an increased benefit to females for having longer lengths of receptivity with smaller κ . These 
effects are all visible in the black bars of Fig. 2a, c (no infanticide) and Fig. 2b (with infanticide).

Note that extended female sexual receptivity length can evolve both with and without visual ovulation signs 
being present (i.e., in both Set 1 and Set 2). This is interesting in that neither concealed ovulation nor visual 
ovulation signs are necessary for female receptivity lengths to evolve. Indeed, when continuous receptivity is 
most beneficial (for example, with low costs of receptivity cr , strong effects of infanticide α,β , and/or increased 

Figure 2.   The effects of varying parameters on the average equilibria values of receptivity ( r∗ ) in the case 
when only r is allowed to evolve. Note the different y-axis scales. White bars indicate Set 1 (assuming concealed 
ovulation: m, ℓ = 0 ), while black bars indicate Case 2 (assuming fixed visible ovulation signs: m = 0.9, ℓ = 4 ). 
Equilibria are obtained by averaging over 10 initial condition runs (with standard deviation indicated by error 
bars). (a) Varying N (group size), b (variation in male quality), and cr (costs of receptivity) in the case of no 
infanticide ( α = 0, ρ = 0, η = 0.5 ). (b) Varying α (maximum benefit of infanticide protection), β (maximum 
cost of infanticide), and κ (weight males put on visible ovulation signs in estimating paternity) in the case of 
with infanticide ( N = 8, b = 0.2, cr = 0.6, ρ = 0, η = 0.5 ). (c) Varying η (relative weighting of male non-
genetic effects) and ρ (correlation between male genetic and non-genetic effects), in the case of no infanticide 
( N = 8, b = 0.2, cr = 0.6,α = 0 ). Other parameters held constant throughout: c = 0.2 , ǫm = 0.25 , ǫf = 0.01.
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weight placed on non-genetic male benefits η ), continuous receptivity evolves in both the concealed ovulation 
and visible ovulation signs cases. When continuous receptivity is less beneficial, we see receptivity length r∗ 
typically not exceed 4 when visible ovulation signs are present. This is due to ovulation signs length ℓ being fixed 
at 4, meaning receptivity length is typically not evolving to be longer than the amount of time the female has 
ovulation signs visible, an intuitive result.

Set 3: Evolution of receptivity (r), ovulation magnitude (m), and ovulation length ( ℓ).  We now 
allow for each of receptivity length (r), magnitude of visible ovulation signs (m), and length of visible ovulation 
signs ( ℓ ) to independently evolve. We compare these results with not just each other, but also with results for m∗ 
and ℓ∗ when r does not evolve and continuous receptivity is instead assumed. Note full results for the evolution 
of m and ℓ with continuous receptivity assumed can be found in Rooker and Gavrilets36. Our results for Set 3 are 
shown in Fig. 3 (a, c, without infanticide and b, with infanticide). In Fig. 3a we see the costs of having visual ovu-
lation signs c to have little effect on receptivity length r∗ and to have similar effects as in Rooker and Gavrilets36 
on m∗ and ℓ∗ , both as expected. In Fig. 3b we see receptivity length equilibria ( r∗ ), ovulation signs magnitude 
equilibria ( m∗ ), and ovulation signs length equilibria ( ℓ∗ ) increase with the impacts of infanticide α and β . As 
discussed above and in Rooker and Gavrilets36, these results are intuitive.

We also begin to see a trade-off between receptivity length and ovulation signs magnitude. For example, in 
Fig. 3b, we see that increasing κ (parameter controlling how much males take visible ovulation signs into account 
when estimating their paternity) increases m∗ and decreases r∗ . This pattern is due to the importance of paternity 
concentration. The stronger the magnitude of the ovulation signal, the more beneficial it is to the female to only 
be receptive around those day(s) of having a peak signal, thus concentrating paternity in high-quality males.

Figure 3.   The effects of varying parameters on the average equilibria values of receptivity length ( r∗ , left 
graphs), ovulation signs magnitude ( m∗ , middle graphs), and ovulation signs length ( ℓ∗ , right graphs), with both 
continuous receptivity assumed (white bars) and evolvable receptivity (black bars). Equilibria are obtained by 
averaging over 16 initial condition runs (with standard deviation indicated by error bars). (a) Varying N (group 
size), b (variation in male quality), and c (costs of having visible ovulation signs) in the case of no infanticide 
( cr = 0.6,α = 0, ρ = 0, η = 0.5 ). (b) Varying α (maximum benefit of infanticide protection), β (maximum cost 
of infanticide), and κ (weight males put on visible ovulation signs in estimating paternity) in the case of with 
infanticide ( N = 8, b = 0.2, cr = 0.6, ρ = 0, η = 0.5 ). (c) Varying η (relative weighting of non-genetic effects), 
ρ (correlation between male genetic and non-genetic effects), and cr (costs of receptivity) in the case of no 
infanticide ( N = 8, b = 0.2, c = 0.2,α = 0.6 ). All other parameters held constant: ǫm = 0.25 , ǫf = 0.01.
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In the extreme case, when κ = 0 , males are only taking the number of matings with a female into account 
when estimating their paternity, thus ignoring any visible ovulation signs present for their paternity estimate 
(but still using such signs to find the most likely fertile mates). As the effects of infanticide increase, females gain 
increasing benefit from mating with multiple males during any one cycle. With κ = 0 , a female is able to make 
males think they might be the father of her offspring by mating with them even when she has zero ovulation 
signs visible. Hence it becomes advantageous for obtaining multiple matings (and female fitness, provided the 
effects of infanticide are large enough) to have as long a length of receptivity as possible, in order to be able to 
mate with the most males possible.

In Fig. 3c, we see that increasing ρ (the correlation between male genetic and non-genetic effects) slightly 
increases each of receptivity length and ovulation signs. Increasing ρ increases the value to females from mating 
with high-quality males since such high-quality males now effectively have ‘double’ the quality (i.e., genetic and 
non-genetic). In line with the trade-offs discussed earlier, we also see that increased η (the relative weighting 
put on non-genetic vs. genetic effects in males) results in increased receptivity length (since females have more 
incentive to mate outside their fertility window with higher non-genetic effects) and decreased visible ovulation 
signs (since attracting high-genetic quality males becomes less important).

We also compared these results to the case when receptivity is assumed to be continuous (i.e., females are 
willing and able to mate on every day of their cycle). The continuous receptivity results are displayed as the white 
bars in Fig. 3, and the evolvable receptivity results as the black bars in Fig. 3. In general, introducing evolvable 
receptivity strongly decreases m∗ and ℓ∗ in the case of no infanticide, and increases m∗ and slightly decreases ℓ∗ in 
the case of with infanticide. With evolvable receptivity, females are able to concentrate paternity by having a short 
length both of receptivity and of visible ovulation signs, a pattern we see when infanticide is not present. Then 
considering the effects of infanticide, paternity confusion becomes increasingly important to females in addition 
to paternity concentration, leading to those longer lengths of visible ovulation signs. In addition, since infanticide 
increases the stakes of the female–female competition, females are now able to devote more resources towards 
strong ovulation signs magnitude for those fewer days of their receptivity, the precise pattern we see in Fig. 3b.

Given the large number of parameters, visual inspection of graphs is not enough. Therefore, for both with 
and without infanticide in Set 3, we also run an analysis of variance (ANOVA) to determine which of receptivity 
length r, ovulation magnitude m, and ovulation length ℓ are affected most by which parameters. Full results of 
these tests can be found in the SI.

In general, what we find in the without infanticide case, is that (intuitively) costs of receptivity cr mainly 
affects r. Conversely, costs of having visible ovulation signs c only affects m and ℓ . We also find that the benefit 
of male quality b strongly increases both m and ℓ , while having no effect on r. Group size N increases m, but has 
no effect on r or ℓ . Increasing η (the relative weighting of male non-genetic effects) increases each of r,m, ℓ , but 
has the largest effect on r. Finally, ρ has very little effect on any of r,m, ℓ.

In general for the with infanticide case, we find that β has little effect. When β does have an effect, such an 
effect is always positive. On the other hand, α positively affects each of r,m, ℓ , although α affects m, ℓ more so 
than r. κ strongly increases m and strongly decreases both ℓ and r. Note that all of these results reaffirm the pat-
terns discussed above.

With regards to the reproductive stochasticity parameters ǫm and ǫf  , we find no general effects on receptivity 
length r. As in Rooker and Gavrilets36, increasing ǫm will result in decreased m∗, ℓ∗ (since increasing ǫm makes 
the ‘prize’ for females of winning the female–female competition less valuable).

Discussion
It was our goal here to investigate theoretically the evolutionary forces regarding female primate sexual recep-
tivity. In particular, we were interested in under what conditions were continuous receptivity and/or very short 
lengths of receptivity able to evolve. We were also interested in the effects infanticide could have on the evolution 
of receptivity, as well as how the evolution of sexual attractiveness (visual ovulation signs vs. concealed ovulation) 
could affect the evolution of receptivity. Our model has produced four main results of interest in answering our 
research questions. Note these results can vary between allowing only receptivity to evolve (i.e., with concealed 
ovulation or fixed visible ovulation signs assumed) or allowing both receptivity and ovulation signs to evolve.

First, how does length of receptivity contribute to female reproductive success? Female reproductive success 
here can be thought of as a trade-off between paternity concentration and paternity confusion19. A female con-
centrating paternity in high-quality males allows her offspring to have higher genetic quality, and hence increases 
the female’s fitness. Conversely, a female mating with multiple males during one cycle will confuse paternity, i.e., 
make multiple males think they may be the father of her subsequent offspring. Paternity confusion can increase 
a female’s fitness, for example by reducing her offspring’s risk of infanticide. Mating with multiple males could 
also increase a female’s fitness via other non-genetic benefits, such as protection or provisionings.

Our modeling work shows this trade-off is manifested in females’ length of receptivity. For example, con-
sider the results from Set 2 (evolution of receptivity, assuming fixed visible ovulation signs). In situations where 
paternity concentration is favored (e.g., fewer male non-genetic benefits), short lengths of receptivity are seen. 
Conversely, in situations where paternity confusion is favored (e.g., when effects of infanticide are strong), longer 
lengths of receptivity are seen. Short lengths of receptivity allow females to only mate on days where they have 
strong visual ovulation signals, meaning on those days where they are able to attract the highest-quality mates. 
By only mating on those few days of peak signal, such females are able to concentrate paternity of their offspring 
in high-quality males. On the other hand, long lengths of receptivity give females ample time to mate with as 
many males as possible, thus allowing them to confuse paternity or gain increased non-genetic benefits. It is in 
this way that receptivity is able to contribute to both paternity concentration and paternity confusion, and hence 
also female reproductive success.
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However, see the SI for examples where this may not be the case. Under certain parameters (namely have a 
positive correlation between the male genetic and non-genetic components of fitness), decreasing ǫm can result 
in increased lengths of receptivity. Note this is in line with Surbeck et al.’s18 conclusion that male bonobos have 
a higher reproductive skew (represented in our model with decreased ǫm ) than chimpanzees, despite female 
bonobos having the longer periods of receptivity.

Second, what role could infanticide have in the evolution of receptivity? When infanticide is introduced, 
our model shows that receptivity increases as the effects of infanticide get stronger (i.e., larger α,β ), across all 
three sets of results. Introducing the threat of infanticide increases the importance of paternity confusion, and 
as explained above, longer lengths of receptivity allow for more matings with multiple males, meaning increased 
paternity confusion. Thus, increasing the effects of infanticide increases the equilibria length of receptivity.

Under conditions of infanticide, we also find that increasing the importance for males estimating their pater-
nity of the female having signs present when mating leads to decreased receptivity length. Note this is equivalent 
to increasing the parameter κ , i.e., moving away from males estimating their paternity from simply mating with 
a female. Increasing κ increases the weight males put on a female’s ovulation signs when evaluating their esti-
mated paternity. This means with increased κ , males are putting more weight on females having visual ovulation 
signs present, which means simply mating with more males may not benefit the female at all; it may only be of 
benefit to mate when she does have strong ovulation signs visible, leading to increasing κ decreasing equilibria 
receptivity length.

Third, what factors facilitate the evolution of continuous receptivity? Our model shows three situations which 
can easily lead to continuous receptivity: (1) decreased costs of receptivity ( cr ), (2) increased weighting of non-
genetic male effects ( η ), and (3) decreased weighting of ovulation signs when males estimate their paternity ( κ ). 
Note the first two can happen even without infanticide present at all.

Without infanticide, the only benefit to females from mating is coming from the quality (genetic or otherwise) 
of the males with whom she mates. In particular, continuous receptivity is more likely to evolve under these 
conditions with lower costs of receptivity ( cr ) and increased weighting of male non-genetic effects ( η ). The influ-
ence of cr is quite intuitive (i.e., lower costs make its evolution more likely), as is η (i.e., increased weighting on 
male non-genetic benefits means females can mate outside of their fertile window and still receive such benefits).

Continuous receptivity can also evolve under conditions of infanticide, regardless of whether ovulation signs 
are visible or not. As explained earlier, κ is an important parameter influencing receptivity length. At its extreme, 
κ = 0 , males are not putting any weight on a female’s visual ovulation signs; rather, the male when estimating 
his paternity of an offspring takes into account only the number of matings with its mother during that cycle. In 
this case, with κ = 0 , a female is able to confuse paternity throughout her entire length of receptivity, regardless 
of when, if, or how many visual ovulation signs she has present. Hence, when κ = 0 , as expected we can see 
continuous receptivity evolve.

Fourth, how is receptivity linked to the evolution of sexual attractiveness? Recall that in the case of fixed 
visible ovulation signs (i.e., with only r evolving, see Fig. 2), we postulated visible ovulation signs to have a fixed 
length of 4. Other than the continuous receptivity cases discussed above, we do indeed see receptivity length 
equilibria less than or equal to 4. When ovulation signs are instead allowed to evolve, receptivity is evolving to 
mirror the ovulation signs length, when infanticide is present. Conversely, without infanticide present, there is 
no benefit to females of paternity confusion, meaning it is now in females’ best interests to concentrate paternity 
by only mating for a very short portion of their cycle (i.e., those 1–2 days).

In general, with small η , we do not see receptivity length longer than a female’s fertility length. This makes 
sense since outside of the continuous receptivity cases discussed earlier, with a large enough cost ( cr ) associated 
with being receptive, females should only be receptive during the portion of their cycle where they are actually 
able to conceive. In turn, we also typically see a female’s ovulation signs length equilibria match her receptivity 
length equilibria, meaning both receptivity and a female’s length of ovulation signs being visible will typically 
not be longer than her length of fertility. Such continuity between receptivity length and ovulation signs length 
is intuitive, since again, females are generally expected to only spend energy on advertising their fertility when 
they are indeed receptive to mating. However, with a large enough η , it becomes in females’ best interest to 
instead have very long lengths of receptivity, in order to extend the amount of time in which they can receive all 
the non-genetic benefits from mating with males (even if not conceiving).

Finally, there also appears to be a trade-off between receptivity length and ovulation signs magnitude (see 
Fig. 3). When each of receptivity (r), ovulation signs magnitude (m), and ovulation signs length ( ℓ ) are allowed 
to evolve, we find that with long lengths of receptivity (i.e., at or near being continuously receptive), ovulation 
signs magnitude (m) is very small. This is suggestive of the possible relationship between concealed ovulation and 
continuous receptivity, as is the case in humans. Such a result is most likely to occur with large η , small cr , small 
ρ , and/or κ = 0 . This means the most favorable conditions for concealed ovulation and continuous receptivity 
to evolve together are: (1) Large non-genetic benefits from males, (2) Small costs to females of being sexually 
receptive, (3) Negative correlation between genetic and non-genetic benefits from males, and/or (4) When males 
estimate paternity of an offspring only by the number of matings with its mother during that cycle. In contrast, 
we also see cases where short lengths of receptivity evolve with very strong visible ovulation signs. This is most 
likely to occur when infanticide is present with κ very large, meaning males are estimating their paternity using 
the amount of ovulation signs visible during their matings with any females.

Our approach comes with several limitations. Many of these limitations are simplifications meant to isolate 
the model’s effects related to female sexual receptivity. However, we acknowledge the many complexities within 
primate genetics, as well as the many unknowns regarding what the model’s exact parameter values would be 
for various primate species. While many of the model’s conclusions have been shown to be resilient to chang-
ing model parameters, below we describe assumptions of the model that differ from, or are variable between, 
real-world primate species.
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Like many models, we assume discrete generations for mathematical simplicity. We also assume an additive 
fitness function. Explicitly accounting for the female cycle has made obtaining informative analytical results 
not feasible, leading to us relying on agent-based simulations. We also only consider multi-male, multi-female 
mating systems, excluding other mating systems from direct consideration in our model. In addition, we require 
the number of males and females in each group to be the same. Relaxing this assumption would mean the fewer 
the number of females present (compared to the number of males present), the higher the competition among 
males for mates. This could increase the likelihood of infanticide, an outcome which is covered by our current 
modeling approach.

In our model, we did not impose female cycle synchrony. Assuming so would increase female–female com-
petition and hence ovulation signaling and receptivity. Despite many primate females mating with multiple 
males in a day, females in the model are assumed to mate with at most one male in a day. The female strategy 
of increasing sexual receptivity by mating with more males per day is also effective in confusing paternity, and 
could be investigated as a different research question. We do not explicitly allow for variation in signal reli-
ability, instead assuming a female’s peak day of fertility and day of peak visible ovulation signs to line up. We 
assume female behavioral freedom, and do not consider the possibility of coerced mating by males. We also do 
not allow for females to have genetically-inherited tendencies to personalities; females are not able to display 
state-dependent sexual behavior.

Our model only allows for female-expressed traits to evolve. If male-expressed trait(s) were allowed to evolve 
(e.g., the strength of male preference), male/female coevolution could be considered, an extension left for future 
work. In addition, our description of ‘male quality’ is purposefully general; we do not explicitly take into account 
male age, rank, or any other similar known factor in primate mating. We also assume male traits to come from a 
normal distribution. Such male ‘quality’ may not be normally distributed in primate species, so one future exten-
sion could be to look at how our model results change when varying this distribution. We do not consider the 
effects of any extended mate-guarding (i.e., mate-guarding lasting longer than our one discrete unit of time). We 
also do not consider the source of takeover when considering infanticide (i.e., is the threat of infanticide from an 
outsider male or a previously-subordinate male?). However, this source could matter, for instance in the case of 
a female benefiting from confusing paternity. Finally, we assume that males have perfect memory (i.e., for every 
cycle, every male can remember precisely which females he mated with, and how often). While our model did 
not allow for imperfect male memory, we believe that relaxing this assumption would make it harder for any of 
r,m, ℓ to evolve (since, for example, if a female is trying to avoid infanticide by mating with a particular male 
but that male forgets he mated with her recently, then the female may still suffer the evolutionary consequences 
of that male committing infanticide against her infant).

While the literature is currently limited and much work still needs to go into understanding the evolution of 
sexual receptivity in female primates, our modeling work suggests several pathways by which longer receptivity 
could have evolved or diminished. While it was our hope to test our model’s predictions on the limited data avail-
able on female primate sexual receptivity length4,19,35, such data turned out to be too sparse, especially when only 
considering polygynandrous mating systems as does our model, and also at times variable between sources. In 
addition, there can be intraspecific variation in receptivity length as well, which our model does not specifically 
address (for example, receptivity lengthening when a new male takes over a group)19. More empirical data and 
further detailed information on fitness components and ecological factors would be needed in order to do an 
effective comparative empirical analysis, which we hope our work to have inspired.

Although this model describes any primate species with multi-male, multi-female groups, in particular there 
is always interest in the question of why do human females have continuous receptivity?6,29,41 Is this related to 
some larger ‘adaptive suite’ in human evolution?29 Indeed, our model makes predictions about evolutionary 
dynamics which lead to several hypotheses for why continuous receptivity may have evolved in our ancestors. 
In particular, such causes for the evolution of continuous receptivity could include: (1) human females having 
decreased costs of receptivity, (2) human males being able to provide increased non-genetic benefit to human 
females, and (3) increased effects of infanticide, particularly if human males estimated their paternity less via 
ovulation signs. Future work could extend this model more directly to the case of human evolution.

Finally, it is worth noting the large variety seen in female sexual receptivity periods across primates. For exam-
ple, humans and bonobos have continuous receptivity, while chimpanzees are receptive for up to half their cycle. 
Even more extreme species include the mountain gorilla, only receptive for 1–3 days out of a 28-day cycle, and 
the ring-tailed lemur, receptive for a mere 2–10 h out of a 39-day cycle4. Our model was able to produce as much 
variety, showing that multiple factors may be involved in determining a species’ female sexual receptivity length. 
Indeed, our model produced many testable hypotheses regarding these various factors, with which we hope 
to inspire biologists to conduct future experiments and continue furthering empirical knowledge in this area.

Data availability
The numerical code used is available from https​://githu​b.com/kelly​rooke​r.
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