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Abstract

This study demonstrates the functional importance of the Surround context relayed laterally

in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical

response to the feedforward visual drive. We report here four main findings: 1) a centripetal

apparent motion sequence results in a shortening of the spiking latency of V1 cells, when

the orientation of the local inducer and the global motion axis are both co-aligned with the

RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at

150–250˚/s when it matches the propagation speed of horizontal connectivity (0.15–0.25

mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90˚ to become

co-aligned with the orientation preference axis; 4) the strength of modulation by the sur-

round context correlates with the spatiotemporal coherence of the apparent motion flow.

Our results suggest an internally-generated binding process, linking local (orientation /posi-

tion) and global (motion/direction) features as early as V1. This long-range diffusion process

constitutes a plausible substrate in V1 of the human psychophysical bias in speed estima-

tion for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of

contextual control of the cortical gain and phase is a built-in property in V1, whose expres-

sion does not require behavioral attention and top-down control from higher cortical areas.

We propose that horizontal connectivity participates in the propagation of an internal “pre-

diction” wave, shaped by visual experience, which links contour co-alignment and global

axial motion at an apparent speed in the range of saccade-like eye movements.

Introduction

Low-level visual perception is often described as a “pop-out” holistic process, elevated at the

state of awareness, independently of behaviorally directed attention. At the perceptual level,

Gestalt rules link stimuli according to feature similarity, spatial proximity or common fate [1,
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2]. Their neural implementation is thought to occur at various stages of visual cortical process-

ing [3] and best captured, in terms of receptive field (RF) computation, as the combination of

smooth “association field” operators in space [4, 5] and in time [6]. However, the detailed syn-

aptic implementation and the cortical regionalization of this dual space-time mechanism

remain largely unknown (review in [7]). An unsolved issue, which is central to this study, is to

determine to which degree “horizontal” connections, intrinsic to the primary visual cortex

(V1), are instrumental to the neural implementation of Gestalt laws.

Classically, the consensus is that binding in space and time are processed in separate corti-

cal areas, respectively in V1 for local attributes of form and contour integration, and in MT for

global motion [8–10]. Although the functional expression of contour-related responses in V1

has been shown to depend on the behavioral attention context and to be task-specific [11], it

requires the triggering of a stimulus-driven bottom-up process already detectable in the anes-

thetized brain [12–14]. Local circuits intrinsic to primary visual cortex such as the long-range

horizontal connections, are involved in contour integration, but the final binding process is

gated and tuned in strength by selective top-down signals conveyed by re-entrant cortico-cor-

tical pathways ([11, 15]; review in [16]). In contrast, in terms of hypothetical cortical circuitry

contribution, neural correlates of motion binding appear well established in MT [17–19] but

far less documented in V1 (but see [20]).

In spite of many intracellular receptive field (RF) studies in cat V1 [21–24], only a few have

directly measured the synaptic nature of contextual influence originating from the “silent sur-

round” [25–30]. A striking feature from our own observations is that the strength of distal syn-

aptic echoes exponentially decreases, while their latency linearly increases with the relative

eccentricity of the stimulus from the RF center. If intracellular studies quantify synaptic con-

vergence of lateral input, optical imaging, in a converse way, monitors the full network depo-

larization pattern and dynamics in response to a local stimulus. Intrinsic imaging reveals the

spatial extent of the diffusive pattern of intracortical activity, spread across several hypercol-

umns (up to 6˚ in cat, in [31]). Mesoscopic dynamic imaging, using voltage sensitive dyes with

a temporal activation precision in the millisecond range, report depolarizing wavefronts prop-

agating across the superficial layers of V1, observed both in the ongoing and visually driven

states (non human primate (NHP) [32–36]; cat [37–40]; rat [41]). Their speed range is compa-

rable across mammalian species and matches remarkably closely that inferred from our intra-

cellular recordings in the cat (between 0.05 to 0.50 mm/ms in [26]).

Intracellular recordings provide a unique way to dissect out the diversity of synaptic input

connectivity pattern across individual V1 cells. Through selective averaging, they allow to infer

the mean functional kernels of feedforward and lateral synaptic inputs composing the V1

receptive field. A prior study in our laboratory [29] proposed a new feature-specific averaging

method, while keeping the mapping stimulus geometry invariant across cells in a receptive-

field-centric framework. This was done by realigning each of the individual subthreshold

maps relatively to a common origin and “0˚” reference axis, corresponding respectively to the

center and the preferred orientation/direction of each recorded RF. The averaging of 25 RF

maps demonstrated that, irrespective of single cell RF diversity, the mean synaptic connectivity

kernel of V1 neurons receives predominantly iso-oriented inputs from neighboring collinear

V1 hypercolumns. A remarkable feature is that its spatial organization pattern exactly mirrors

the perceptual “Association Field” for collinear contours in human psychophysics [4, 42].

The extensive intracellular study on dynamic Center-Surround interaction we present here

—on a larger cell sample (n = 65)—is based on the same premise. It seeks to maximize the

paired neighbor-to-neighbor interactions between Surround and Center and quantify a novel

form of contextual control on the spiking responsiveness of V1 cells. For this purpose, we have

designed here a variety of multi-stroke apparent motion (AM) sequences of specific speed and
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spatial anisotropy, which, under precise timing and local feature co-alignment conditions,

allowed us to control the temporal phase between horizontal and feedforward inputs (Fig 1A).

Two sets of visual protocols were applied separately in two distinct sets of cells with comple-

mentary objectives. The “cardinal” protocol (Fig 1B), was designed to: i) optimize the visibility

of synaptic inputs originating laterally from the “Near” RF surround, outside the spiking “min-

imal discharge field” (MDF), but potentially overlapping with the subthreshold depolarizing

receptive field (SRF); ii) probe for a possible axial bias in the preferred recruitment of contex-

tual Surround information integration, using 2–3 stroke AM sequences along the two main

(length/width) axes of the RF). The second series of protocols, termed “radial” (Fig 1C), was

designed to minimize the risk of spurious feedforward contamination when probing the loca-

tions closest to the RF borders (position D1 in Fig 1A). Accordingly, the synaptic feedforward

cortical imprint was no longer limited to the spiking discharge field (MDF), but included as

well the surrounding depolarizing SRF evoked by point-like stimuli during sparse noise map-

ping. Conversely, this new requirement restricted the Surround stimulation to “Far” regions

outside the SRF. To compensate for potentially weaker Surround responses, we increased the

number of AM strokes and imposed radial symmetry in order to recruit simultaneously more

sources in the RF periphery at the same relative Surround eccentricity.

Our working hypothesis posits that the spatio-temporal optimization of the control of corti-

cal responsiveness should be reached where, in space, the local orientation of each Surround

GP matches that of the recorded RF (as expected from the “Association Field” profile), and

when, in time, the phase of the stimulation of each surround node compensates for the lag of

the postsynaptic response. This lag is due to the dependency of the PSP latency on the eccen-

tricity relative to the RF center (Fig 1A, “latency basin” in Fig 2A). Our functional prediction is

that a latency shortening and an overall cortical gain amplification of the composite evoked

PSP should be observed when the global flow speed of the AM sequence synchronizes the

respective synaptic impacts of the lateral and feedforward drives onto the intracellularly

recorded cell.

This study addresses the importance of the Surround context dynamics relayed laterally in

V1 by the horizontal connectivity, in controlling the timing and the responsiveness gain of the

cortical response. It also gives evidence for neural correlates of “filling-in” responses at the ear-

liest stage of visual cortical processing, i.e. the primary visual cortex. Remarkably, these

responses are shown to be specific of co-alignment, and their timing anticipates the occurrence

of the same orientation feature in the RF center, even in the absence of feedforward activation.

We infer, from a detailed contextual synaptic interaction analysis, a conceptual framework

which accounts for the neural correlates in V1 of specific Gestalt-like visual configurations,

linking local (orientation) and global (contour integration, motion) features.

Material and methods

1. Animal preparation and electrophysiological recordings

All experiments were performed in anesthetized (alfaxalone, Alfaxan1, 2.5 mg/kg/hr) and

paralyzed (pancuronium Pavulon1 (0.1 ml/kg/hr) or rocuronium Esmeron1, 4 mg/kg/hr)

adult cats of either sex, in accordance with the American Physiological Society’s Guiding Prin-

ciples for the Care and Use of animals. This study was performed in institutionally approved

animal breeding and experimental facilities (CNRS Gif Campus: Central Animal Care facili-

ties; authorization # D91-272-105). The scientific project was approved by the French Ministry

of Higher Education and Research (MESR) (# 3414-201603111-3088501) and monitored by

the local governmentally approved CNREEA Ethics Committee (CEEA– 059: Comité d’éthique
en matière d’expérimentation animale, Region Paris Centre et Sud). Experiments where
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Fig 1. Working hypothesis and visual stimulation protocols. (A): Working Hypothesis: the AM sequence is

designed so as to synchronize the synaptic activation time of horizontal volleys, evoked by the sequential presentation

of 2 to 5 Gabor patches (GP) in the Surround, with the feedforward activation of the RF Center (shaded rectangle in

the D0 position). The Surround GPs, regularly spaced from “Far” (D5) to “Near” (D1) periphery along the apparent

motion path (horizontal axis), are flashed in succession at high contrast. The test reference GP, terminating the AM

sequence, is flashed at low/medium contrast in the RF center (D0). Each orange arrow represents the lateral

propagation of the presynaptic volley elicited by each distal GP. Other synaptic recruitment paths potentially also

contribute also to Surround-Center modulation, in particular cascades of proximal neighbor-to-neighbor links (grey

arrows). (B) “Cardinal” Protocol: the two columns illustrate the exploration of the two cardinal axes (horizontal for

the RF orientation preference; vertical for the RF width axis) with 2 or 3-stroke AM sequences of ISO-oriented stimuli

(“collinear”, first row; “parallel”, second row) or CROSS-oriented stimuli (two bottom rows, same motion paths but

the local inducer orientation is now orthogonal to the RF orientation preference). (C): “Radial” Protocol: the two

columns illustrate the various AM flow patterns (individual rows), either funnelled along a given motion axis

(SECTOR, left), radially contracting (CP: centripetal) or expanding (CF:centrifugal), or across the full Surround

(FULL, right). In the SECTOR condition, two opposite motion axes are symmetrically explored, aligned either with the

RF orientation preference (horizontal axis (± 30˚) in rows 1, 2 and 4) or with its width axis (vertical axis (± 30˚), row

3). In the FULL condition, all directional motion axes (discretized by 30˚ steps) are stimulated concurrently and

intersect the RF center (horizontal grey icon). From top to bottom, each row illustrates one specific configuration of

AM flow: 1) centripetal collinear flow (CP-ISO) from Surround to Center (red, 1st row); 2) centrifugal collinear flow

(CF-ISO) from Center to Surround (green, 2nd row), 3) centripetal cross-oriented flow (CP-CROSS) across the RF

width axis (gold, 3rd row); 4) randomized collinear pattern (RND-ISO) where each successive GP location has been

randomized in space and time (blue, bottom row). Note that in all the conditions other than CF-ISO, the last GP of the

sequence is flashed with the optimal orientation in the RF center (D0). See Text for details.

https://doi.org/10.1371/journal.pone.0268351.g001
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continuously supervised by a veterinary DVM. Every effort was made to minimize stress and

suffering. Anesthesia depth, analgesia level and the general physiological state stability were

continuously monitored from the recording and analysis of EKG and extradural ECoG signals.

End-tidal CO2 was maintained between 3.5 and 4.5%, and body temperature was regulated

around 38˚C throughout the experiment. Once the animal’s head was fixed to the stereotaxic

frame, and the craniotomy performed, we checked again the presence of a slit pupillary state,

indicative of adequate anesthesia during the surgery phase. Then, atropine (1%) and phenyl-

ephrine (5%) were applied to both eyes to dilate pupils, block the accommodation and with-

draw nictitating membranes. Artificial pupils and corrective lenses were used to protect the

eyes and focus the backprojection of the eye fundus on the stimulation screen. At the end of

the recording session (48 to 80 hours), the animal was sacrificed using either an overdosage of

Fig 2. A synaptic view of visual V1 receptive fields. (A): Latency basin of synaptic responses relative to the RF
Center: Top left, spatial maps of the ON- and OFF- Depolarizing Fields latencies using sparse noise (SN) mapping.

Heat scale: color code for latency values (from 0 (black) to 200 ms (yellow)). Bottom left, 1D-mapping of ON- and

OFF- PSP responses in the same cell, evoked by long bars (7.1˚ x 0.7˚) flashed at the optimal orientation and

positioned at different eccentricities (ordinates, ranging from -4˚ (bottom) to +6˚ (top)) across the RF width axis.

Thick boxes (along the left ordinate axis) designate the positions which are in overlap with the SRF mapping using SN

(above, top left). Red (ON) and blue (OFF) linear regressions illustrate the 1D-latency basin profiles of Surround-Only

subthreshold responses. The linear fits of latency versus eccentricity give apparent horizontal speeds of propagation

estimates of 0.18–0.38 mm/ms for ON- (red, left) and OFF- (blue, right) responses. (B) Dependency on spatial
summation (adapted from [26]): From top to bottom, phase-reversal (2 Hz) responses to disk (1) and annular gratings

(2 & 3), for increasing inner border eccentricities from the RF center (5.6˚ in (2) and 10.3˚ in (3)). Note the decay in

response strength and the increase of onset latency in Surround-Only responses (2 & 3) with eccentricity (reaching 32

ms for the “Far” Surround annulus). (C) Apparent Speed of Horizontal Propagation (ASHP) distribution: Stacked

data histograms from [26] using long bars (1D-mapping, blue) or sparse noise (green), and from this study (Gabor

patch maping, light green). Note that, independently of the probe stimulus, most AHSP values inferred from Surround

latency basin slopes range between 0.05 and 0.60 mm/ms.

https://doi.org/10.1371/journal.pone.0268351.g002
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pentobarbital (180 mg/kg, iv) or an intra-cardiac perfusion performed after alfaxalone injec-

tion rate was increased high enough to induce a flat EEG.

In vivo intracellular recordings of cortical cells were performed in the primary visual cortex

(area 17) using sharp Glass electrodes pulled from 1.5-mm-thick borosilicate capillaries

(World Precision Instruments Inc.). Electrodes were filled with a 2M potassium methyl sulfate

(pH ranging from 7.2 to 7.4), 4 mM KCl solution for compensating the tip potential, and 1.5%

biocytin. Electrode resistances before impalement ranged between 70 and 130 MO. Cells were

recorded in current clamp bridge mode using an Axoclamp 2A (Axon Instrument inc.) or a

SEC-05X (NPI inc.). The average resting potential was between -62 to -78 mV (mean ± σ =

-66,8 ± 8,3 mV) with no or a slight holding current (< = -0.5 nA) when needed. Signals were

filtered and amplified with a CyberAmp380 (Axon Instrument inc.) and digitized at 10 kHz by

an ITC-1600 (InstruTECH1) card. Based on recording depth and the laminar location and

morphological identification of fourteen biocytin labeled cells, the overall sampling was dis-

tributed from supra- to infra-granular layers. However, in view of the limited number of

labelled cells (experimentally constrained by gliolysis increase with the length of recording)

and a slight bias for recordings in deep layers, no laminar study was done in this reduced

sample.

2. Visual stimulation

For the “cardinal” protocols, visual stimuli were generated, using the ELPHY in-house soft-

ware (G. Sadoc, UNIC-CNRS), on a CRT P31 green monochrome monitor positioned at 57

cm (1 cm = 1˚ of visual angle) at refresh rate of 60 Hz (19 inches, 640 x 480 pixels). For the

“radial” protocols, we used gamma-corrected LCD green monitor (27 inches screen, 1920 x

1080 pixels) at 28.5 cm from the cat’s retinal plane (0.5 cm = 1˚ of visual angle) at a refresh rate

of 144 Hz.

2.1. Initial quantification of RF optimal features. The receptive field (RF) position of

each recorded neuron and its ocular dominance were initially established using moving light

bars. Stimulation was done through the dominant eye for the rest of the experiment. Sub-

threshold ON and OFF (SRF) sub-regions and spike minimal discharge fields (MDF) were

then mapped by forward correlation of visual responses to a random “sparse noise” (SN) pro-

tocol: white (40 cd/m2) and dark (1 cd/m2) non-overlapping squares were presented one at a

time for 16–34 ms against a grey background (20 cd/m2) in each position of the exploration

grid (8x8 or 20x20 pixels) centered over the coarse RF region. In some cells, an additional 1D

mapping was done with an optimally oriented thin long bar, flashed randomly at various

eccentricities across the RF width (Fig 2A).

Once the RF location defined, the preferred orientation, phase and spatial frequency of the

cell were determined using a dense Gabor Noise (GN) stimulation protocol [43]: flashed (16–

34 ms) Gabor patches (GPs, adjusted in size to the s-DF extent) were randomly presented at

six different orientations (with 30˚ steps), four phases (0o, 90o, 180o and 270o) and five spatial

periods (ranging from 0.1 to 4.9 cycles per degree of visual angle). For each cell, the parameters

of the Gabor patch eliciting the strongest response in the RF center were retained to compose

a template of preferred features of the inducer (independently of its position) in the subsequent

apparent motion (AM) sequences. In order to evoke a sizeable synaptic “horizontal” response,

the GP flashed in the Surround were always presented at high contrast (mean ± σ =

92.5 ± 11.5%; range 75–100%), whereas the feedforward central stimulus was flashed in the

MDF either at low or medium contrast (mean ± σ = 40,6 ± 24,5%; range (25–100%)).

2.2. “Cardinal” Apparent Motion (AM) protocol. In order to assess the dependency of

the center-surround interaction on local orientation and global motion, we first designed two/
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three-stroke center-surround AM protocols for which the Gabor patches were flashed along

the two “cardinal” RF axes defined by the RF preferred orientation and width (Fig 1B). We

looked at the modulatory effect that a two-stroke activation of the “silent” surround would

produce (along each of these axis) on the response to a test stimulus flashed within the MDF

(the third stroke). Randomly interleaved three-stroke stimulation sequences were applied

moving away from the receptive field center (“centrifugal” (CF) condition, green arrows in Fig

1B), or from the surround to the center (“centripetal” (CP) condition, red arrows) from one

side of the RF at a time.

The size of the Gabor patch mask was set at 150% of the length of the spiking discharge

field while the standard deviation of its Gaussian envelope was set at 20%. The stimulus inter-

node distance was of 120% of its length, often leading the more proximal GP to partially

encroach on the border of the impulse SRF. The orientation of the local inducer could be

defined two ways, either in relation with the RF orientation preference, or in relation with the

AM motion axis. These two analysis contexts will be considered separately in the Results.

Here, by sake of uniformity with the “radial” protocol, the ISO- and CROSS- conditions are

defined relative to the chosen AM axis. The complete set of Surround-Only stimulations (Fig

1B, left column) included 8 conditions (CP-ISO_main_axis (red arrows), CP-ISO_width_axis

(magenta), CP-CROSS_main_axis (cyan), CP-CROSS_width_axis (gold), CF-ISO_main_axis

(green), CF-ISO_width_axis, CF-CROSS_main_axis, CF-CROSS_width axis (brown)) X 2

direction conditions (one side at a time)), to which 2 control conditions (1 Center-Only + 1

Blank trial, where no stimulus was presented) were added. Hence a total of 18 conditions was

completed in 13 cells. Center-Surround interactions were tested in 23 cells with full AM

sequences terminating in the RF center (Fig 1B, right column), under 10 conditions (4 condi-

tions (CP-ISO_main-axis, CP-CROSS_width-axis, CF-ISO_main-axis, CF-CROSS_width-

axis) X 2 directions (one side of the RF at a time) + Center-Only stimulation + 1 blank). For

each study (Surround-Only; Surround-Center), the different stimulus conditions were inter-

leaved randomly in each trial block. Recordings lasted for 20 blocks.

Given the constraint of the monitor distance (57 cms), its refreshing rate (60 Hz), and the

fixed duration of the static Gabor inducer presentation (16 ms), individual cell AM speed val-

ues only depended on the size of the recorded RF which was used to define the sequential

interstimulus step distance. Accordingly, AM speeds were preset in the suitable range of values

to compensate for the dependency of visual PSP latency with relative eccentricity [26, 29].

2.3. “Radial” Apparent Motion (AM) protocol. This series of protocols was done with a

larger (27 inches) and faster screen (144 Hz), using a shortened viewing distance (28.5 cms),

which allowed a more extensive exploration of the “Far” surround. The visual field was paved

with a grid composed of 5 concentric rings of increasing eccentricity centered on the RF cover-

ing up to 25˚ in the surround (Fig 1C). To the difference of the “cardinal” protocol, where

stimulus size and spacing were defined relatively to the spiking MDF size, the distance between

each outer ring and the patch size were adjusted in this new protocol to the full extent of the

subthreshold depolarizing receptive field (SRF) mapped with impulse stimuli. This change in

the RF core definition, from that used in the “cardinal” protocol condition, was done to pre-

vent, on a cell-by-cell basis, a direct feedforward contamination by the stimulation of the most

proximal Surround location (position D1 in Fig 1A).

Additionally, in the “radial” protocol, we designed Apparent Motion sequences whose spa-

tio-temporal coherence was parametrized to dissect the dependency of the inducer orientation

relative to the motion path, as well as the spatio-temporal congruency within the AM flow (see

Results). For each recorded cell, the AM sequence of interest was the centripetal iso-oriented

configuration (CP-ISO, top “red” row in Fig 1C), where the local inducer orientation was

either co-aligned along the preferred orientation axis of the recorded RF (SECTOR
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configuration, left column in panel 1C) or along the global motion axes (FULL configuration,

right column).

Three supplementary visual AM configurations were tested, in which the spatio-temporal

structure of the local Gabor patch (GP, local inducer) sequence was altered, while keeping the

overall stimulus energy distribution unchanged: i) in the first control condition, namely the

centrifugal iso-oriented AM sequence (CF-ISO, second “green” row from the top, Fig 1C), the

temporal order of the sequential presentation of the co-aligned GPs was reversed, resulting in

a centrifugal (CF) flow from Center to “Far” Surround locations; ii) the second control was

designed to study the contextual impact of the local GP orientation relative to the motion axis.

In the centripetal cross-oriented AM condition, the local orientation of the inducer was

orthogonal to the motion axis (CP-CROSS, third “yellow” row from the top, Fig 1C); iii) in the

third control condition, the same retinal space (SECTOR or FULL) as in the CP-ISO condition

of interest was stimulated with the same GPs (i.e., with the same number, features, and energy

distribution at each step of the AM) but the coherence of the flows was randomized both in

space and time (RND-ISO, bottom “blue” row). For each block, each stimulus location was

visited only once, and the last stimulus location was the RF center. Apart from the RND-ISO

condition (Fig 1C, 4th row), the repeated sequences were identical across blocks (pseudo-

randomization).

The stimulus set in the “radial” protocol—where all contextual conditions were explored–

was composed of 16 dynamic apparent motion sequences (4 conditions (CP-ISO (red arrows),

CF-ISO (green), CP-CROSS (gold), RND-ISO (blue)) X 2 trajectories (with or without Center

stimulation) X 2 configurations (SECTOR and FULL), and 21 stimulation types where Gabor

Patches were flashed in isolation (5 peripheral locations X 2 conditions X 2 configurations + 1

GP flashed in the Center). In each block of trials, each stimulus was presented only once. Addi-

tionally, 6 “blank” trials were also included in each block. The resulting set of 43 stimulations

was presented in random order in each block. Recordings lasted for 19–50 blocks (median 50).

In order to optimize synaptic summation between Surround and Center stimulation, the

AM sequence speed was function of the spatial extent of the SRF and of the stroke duration of

Gabor patches and adjusted cell-by-cell in order to fit the latency basin of “Far” surround

response latencies. In the “radial” protocol where AM speed and stroke duration could be

independently parametrized, the stroke duration was in the 30 ms range (± 9 ms). It was 16.6

ms in the “cardinal” protocol.

3. Intracellular data analysis

3.1. Data formatting. Spikes were threshold-detected in the raw traces and replaced by

alpha functions in the membrane potential (Vm) traces (α(t) = a�t�exp(-t/τ)), where “a” is the

slope at the peak of the second derivative of the rising phase, and τ is the half-width of the

spike), as done in previous studies [29]. Resulting traces were band-pass filtered (0.1–300 Hz)

and peristimulus triggered waveform (PSTW) were averaged across trials and conditions.

Prior to any statistical analysis, all traces were down-sampled to 1 kHz and smoothed using a

sliding average window of 7 ms. For spikes, individual peristimulus time histograms were

smoothed using a Gaussian window (σ = 3 ms). For a given trial block containing all condi-

tions, the corresponding mean activity (average Vm and Spiking discharge rate) was sub-

tracted from the raw PSTWs and PSTHs.

3.2. Response quantification and statistical significance. For the “cardinal” protocol, the

control Z-statistics for Vm (mean and standard deviation) were computed with a 4 kHz sam-

pling rate over a 100-ms sample of ongoing activity preceding the stimulation. The response

waveforms were thresholded in amplitude above the 95% one-sided confidence interval. The
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“integral response” was defined as the integral value of the thresholded depolarizing wave-

forms over a predefined response integration window (0–250 ms). For each cell, Wilcoxon

paired signed rank (WPSR) tests were applied to compare cell-specific responses (n = 23)

evoked for two distinct contextual conditions. The contextual modulation was quantified by a

facilitation/depression index given by the ratio between the significant integral responses

observed in the center-surround vs. center-only conditions (or between two different contex-

tual conditions of interest). Similar processing was applied at the spike rate level. Twenty-three

cells constitute the population used for the Results section for the “cardinal” protocol.

For the “radial” protocol, since a larger spectrum of stimulus conditions was used, more

extensive statistical analyses were done on the individual cell’s responses, without or with

selection criteria. All significance tests fell into two categories: quantifying the significance of a

response to a stimulus or comparing data statistics between two conditions. To do the former,

we relied on the activity during blank trials, which provides the null distribution for visual

responses (i.e., the activity that would occur should the cell not respond to the stimulus, which

was our “null” hypothesis). Consequently, for each cell, the average ongoing synaptic or spik-

ing activity recorded during “blank” trials was subtracted point by point from each evoked

PSTW/PSTH trial activity. This was done to remove, on a cell-by-cell basis, any experimental

artifact or activity change common to the blank and stimulations, while avoiding a loss of

information on the Vm distribution statistics. This preprocessing explains why the confidence

intervals obtained from the permutation test are centered on 0 when evaluating significance

regarding spontaneous activity (and why there are negative spikes). For studying the depen-

dency on the stimulus context, we used cell-by-cell paired comparison between distinct tested

conditions. Statistical analysis was then done using a randomization permutation test with 104

repetitions.

From these computations, we extracted the null hypothesis waveform envelope for a given

confidence interval at each point in time. Only cells with a response to the Center-Only condi-

tion significantly larger than the blank (p< 0.01) in the interval 0-to-120 ms (“0” being the

onset of the last stimulation in the center when the RF was actually stimulated, “120”ms inte-

grating most of the feedforward onset and offset responses) were considered for further analy-

sis. For PSTW and PSTHs, respectively thirty-seven and twenty-two cells were retained after

this initial screening and constitute the population used for the Results section for the “radial”

protocol. In the remaining fifteen “nonspiking” cells, analysis was restricted to subthreshold

activity.

3.3. Quantification of the contextual change in response gain and phase. The concept

of “gain control”, dominant in cortical physiology or psychophysics, tends to reduce informa-

tion transfer functions to simple scalar static”gain” measurements. It consequently ignores the

kinetic aspects of cortical transmission modulation. The intracellular approach developed here

allows to compare both the gain and the phase (or advance/delay as analyzed here) of the

impulse response (e.g. the transfer function in linear system theory) in various contextual con-

ditions. When using this engineering terminology, we make the simplifying assumption that

the test stimulus presentation is short enough in duration and localized enough in space, so

that the feedforward test stimulus response gives an approximation of an impulse response in

space and time.

We quantified the time-course and the strength of the contextual control of the cortical

transfer function by measuring the changes in i) subthreshold latency (i.e. the “phase”) and ii)

the integral value of the depolarizing postsynaptic potential (PSP) response to the complete

AM sequence terminating in the recorded cell’s receptive field (i.e. the “gain”). For the “cardi-

nal” protocol, the latency measure was defined by the onset of the mean PSP reaching signifi-

cance (Z-test, p<0.05). For the “radial” protocol, we chose to use a more conservative measure
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to avoid spurious detections of fluctuations in the ongoing synaptic noise. Accordingly, the

latency change (Δ latency) was measured at half-height of the Center-Only response amplitude

peak, separately for Vm and spikes. For the response gain (Δ response), we measured the

change in the PSP depolarizing envelope integral (and, eventually, spiking integral), relative to

the Center-Only response, over the whole time-course of the test-response. Here, the rationale

was to integrate differences in evoked responses for all possible time relationships between

feedforward and lateral input. The same statistical analysis (randomization test, 104 repeti-

tions; p<0.05) was repeated for PSTWs and PSTHs for both criteria. The paired-analysis was

replicated across conditions to measure statistical significance between the main condition of

interest (CP-ISO) and the other contextual conditions.

3.4. Surround-Only responses. For the “cardinal” protocol, statistical significance was

assessed using Z-test statistics on response integrals (p<0.05). For the “radial” protocol, we

used a permutation test (104 repetitions; p<0.01). Due to the noisy nature and the weak ampli-

tude of purely lateral responses, we only retained Vm waveforms for which the statistical sig-

nificance threshold was trespassed for at least 1 consecutive milliseconds in the interval 0–120

ms.

3.5. Linear predictions and dynamic non-linearities. For the “radial” protocol, we deter-

mined in each individual case whether the actual Surround-Only responses to dynamic

sequences were larger than (or equal to) the sum of the temporally shifted responses to each

GP flashed in isolation at each location (reproducing the spatial and temporal ordering of a

virtual AM sequence). This linear predictor was in a first step compared to the actual AM

dynamic sequences before they reached the RF Center. A non-linearity was detected in cells

where the actual build-up of anticipatory activity during AM sequences deviated significantly

from the linear predictor. Because GPs, when flashed in isolation in the close vicinity of the

SDF, already induced significant depolarizing responses [29], we considered Surround-Only

synaptic waveforms as significantly larger than their “static” linear predictor, if they crossed

the upper limit of the confidence interval for a minimum duration of 7 consecutive ms in the

interval 0–120 (permutation test, 104 repetitions, p< 0.05). A second predictor was calculated

by subtracting the Center-Only response from the complete AM “Surround-then-Center”

response. Note that the Surround-Only component potentially included the synergetic effect

arising from the interaction between the successively recruited distal input sources in the Sur-

round. This two-term (Center/Surround) linear predictor was compared to the observed “Sur-

round-Only” AM response t test for non-linear interactions between the integration of the

AM contextual information in the “Near” Surround and the flashed feedforward drive.

3.6. Population analysis. In order to compare responses between cells, each individual

flow pattern’s specific geometry–defined on a cell-by-cell basis according to the preferred ori-

entation and direction of each cell–was realigned on a common “0˚” reference axis (visualized

by the semi-horizontal axis pointing to the right, in all Figures), regardless of the absolute ori-

entation preference of each cell. No normalization of responses was used in the “cardinal” pro-

tocol. In the “radial” protocol, the amplitude of the PSTWs and PSTHs of each cell were first

normalized to the peak of the Center-Only response. Before averaging, PSTWs and PSTHs of

all the cells were also realigned with respect to the onset latency of their individual Center-

Only response. This common origin was defined as the time abscissa of the first point (blue

dot) of the average Center-Only response departing from the “blank” response mean by more

than 3σ. This process, replicated independently for subthreshold (Vm) and spiking responses,

allowed a realignment of all normalized cell-by cell profiles and the calculus of the mean popu-

lation response profile. Note that the peak value of the average population PSP can be less than

the norm (1.0) when the onset-to-peak rise time varies across cells.
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Results

This intracellular study (65 cells) of Center-Surround interactions in V1 of the anesthetized cat

is based on two distinct visual protocols, applied in two different sets of cells (see Methods).

The first protocol, termed “cardinal” (Fig 1B), recruiting both “Near” and “Far” RF surround,

was applied to a first batch of 23 cells. The second series of protocols, termed “radial” (Fig 1C),

limiting the Surround stimulation to “Far” regions outside the SRF only, was performed on a

second batch of 42 cells. Accordingly, response averages were done separately for the two

visual stimulation protocols.

1. Probing synaptic responses from the “silent” Surround

1.1. Spatial summation. The “silent Surround” is classically defined as the region outside

the minimal discharge field (MDF), where impulse stimuli do not evoke a significant spiking

response. However, the intracellular mapping of synaptic responses with sparse or dense noise

(SN or DN), devoid of spatial summation, shows a broader subthreshold (non-spiking) recep-

tive field (SRF) extending beyond the border of the MDF, and often invading the opponent

contrast discharge field, even in Simple cells [43, 44]. This defines a Near-Surround domain,

connex to the MDF, where the contribution of purely lateral synaptic input cannot be unam-

biguously disentangled from subthreshold feedforward activation [25]. The mapping of the

minimal discharge field (MDF) with small light or dark squares (0.2–0.9˚) showed on average

a spiking core field of 1–3˚ of visual angle. Overall, the size of the impulse subthreshold depo-

larizing receptive field (SRF) of the cortical neurons recorded in this study ranged from 2.5˚ to

7.5˚ (5,1±1,6˚), for eccentricities from the area centralis between 1.1˚ and 8.3˚ (4.0 ±1.6˚). This

initial mapping was used to define, in a conservative way in each cell, the retinotopic imprint

of the feedforward input, whether it produced a spike (MDF) or only a depolarizing subthresh-

old response (SRF).

In contrast, elongated light bars (5–12˚ length) flashed across the RF width axis, which

increases input spatial summation, elicited synaptic responses, in the same cell, originating

much further away from the RF center (7.1˚ for bars against 2.5˚ for SN in the example cell in

Fig 2A). Using annular gratings at the optimal phase and orientation, with still larger spatial

summation, our lab previously demonstrated distal synaptic responses originating beyond 10˚

of relative eccentricity (Fig 2B, taken from [26]). Pooling these different observations together

establishes that the recruitment efficacy of lateral connectivity evoking Surround responses,

hence their recording detectability, strongly depends on the level of spatial summation, and is

selective to the orientation feature of the stimulus flashed in the periphery [26, 27, 45].

1.2. Latency dependency of Surround responses with relative eccentricity. In addition

to the spatial extent of the RF, a pivotal observation, on which our working hypothesis is

grounded, is that the further away from the MDF center, the latency of subthreshold surround

responses progressively increases in a linear fashion with relative eccentricity. Fig 2A illustrates

the spatio-temporal latency maps of depolarizing and spiking responses of a V1 cell for sparse

noise (top panel) and of synaptic subthreshold PSPs for optimally oriented long bars flashed at

different eccentricities across the RF width axis (bottom panel). In this example, because spa-

tial summation is more efficient for optimal lines than squares, surround responses become

detectable on a much larger spatial extent. By measuring the onset response latencies at each

tested eccentricity in the 1D-plots of ON- and OFF-responses, and applying linear regressions

between the paired sets of values, one can infer estimates of the apparent speed of horizontal

propagation (ASHP), ranging between 0.18 and 0.38 mm/ms. A similar observation can be

done using optimally oriented and phased isotropic annular gratings centered on the RF. In

the example illustrated in Fig 2B, spatial summation and response detectability still increase
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and the resulting latency shifts can reach up to 20–50 ms for relative eccentricity values as

large as 11˚.

On the whole, by comparing past and present studies using a variety of stimuli (light/dark

squares, long edges, Gabor patches), we conclude that the dependency of “Surround-Only”

responses with relative eccentricity from the RF center remains a hallmark of lateral process-

ing. As shown in Fig 2C, whatever probe stimulus used, the inferred apparent speed of hori-

zontal propagation (ASHP) remains qualitatively the same (SN in green; 1D mapping in blue,

Gabor patch mapping in light green, in spite of the fact that the detectability of “Surround-

Only” responses depends strongly on spatial summation.

1.3. Apparent motion axial sensitivity and orientation tuning. Once the Gabor template

optimizing the Center response was determined (see Methods), each RF and/or its Surround

were tested with 2-stroke (Surround-Only) or 3-stroke apparent motion (AM) sequences

along the cardinal RF axes (Fig 1B). These “cardinals” axes, extending symmetrically around

the RF center, correspond, one, to the “main” orientation preference axis (represented arbi-

trarily by the horizontal, in all the figures) and the other, to the RF width axis (vertical). For

each of these axes, the orientation of the local Gabor inducer stimuli could be either the same,

“ISO-RF”, or orthogonal, “CROSS-RF” to that of the RF orientation preference axis.

Examples of Surround-Only AM responses of the “cardinal” protocol are illustrated in Fig

3A. Their magnitude can reach the size of the response to a low contrast input in the center:

compare Surround-Only CP-ISO AM responses (red waveform) along the preferred orienta-

tion axis with the Center-Only response (black waveform). As a reference, the center insert in

Fig 3A illustrates the mapping of the SRF border (white contour) and the ON- and OFF-dis-

charge fields (respectively, filled in red and blue). The surround source locations of GPs used

in the AM sequence partially encroach on the SRF border, but not on the MDF. The AM

evoked synaptic responses are much stronger than the impulse SN response, as shown by the

absence of depolarizing responses to light (lower dark red trace) and dark (blue trace) pixel

stimulations, presented in the center of the lesser eccentricity peripheral Gabor location. In

this example, as in most recorded RFs, the centripetal Surround-Only AM response along the

preferred orientation axis (CP-ISO, left and right red waveforms) is the strongest among the

responses evoked by the Surround stimulation alone: compare it with the CP-CROSS condi-

tions along the RF width axis (top and bottom, gold waveforms), for which responses are

much weaker.

A complete study of the dependency of the Surround-Only AM responses on the GP

inducer orientation relative to the RF preferred orientation was replicated in 13 cells. The aver-

age responses of this population have been computed by realigning arbitrarily the orientation

and direction preference of each recorded cell respectively with the horizontal and right pole

axes. The mean population tuning responses are illustrated in Fig 3B, where the different AM

flow conditions are schematized by color-coded arrows in the two right inserts. The top insert

regroups the specific centripetal AM flows where the inducer is either “collinear” (red) or “par-

allel” (gold)) with the RF preferred orientation (ISO-RF condition). The bottom inset details

the stimulation cases where the inducer is orthogonal with the RF preferred orientation

(CROSS-RF: cyan along the main axis, magenta along the RF width axis).

This reveals two effects of the Surround contribution. The first one is a non-specific depo-

larization component found for all AM configurations, regardless of the orientation of the

inducers relative to that of the RF. Globally, the recruitment of the “Near” periphery signifi-

cantly rose the level of excitability of the recorded cells (Wilcoxon paired signed rank test on

integral activity values between the condition of interest and the resting state, n = 13,

p<0.001). At the single cell level, a significant depolarization compared to the resting state

(one sided z-score, p<0.05) was evoked in 76% of cells for the CP-ISO “collinear” (red)
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condition, and in 55% in the “parallel” (gold) condition at high AM speed. Pooling together,

for each cell, responses to all CP configurations, significant spiking responses were observed in

59% of the cases. Since the classical MDF center location was kept unstimulated, the most

Fig 3. Spatio-temporal and axial selectivity of “Surround-Only” responses to centripetal AM flow. (A) Single Cell
example: Central inset cartoon: ON and OFF discharge fields, respectively in red and blue. White contour delineates

the subthreshold receptive field (SRF). For comparison, respective positions of the Gabor inducer stimuli flashed in the

surround are overlaid on the RF map. Two-stroke “Surround-Only” AM responses: comparison of “collinear” (red)

and “parallel” (gold) responses evoked respectively along the orientation preference axis and across the width axis of

the RF, with the Center-only response (black waveform). Bottom left corner, Vm subthreshold responses for sparse

noise (ON (dark red) and OFF (dark blue) waveforms). (B) Dependency of Surround-Only responses on the
orientation of the inducer: Right, top and bottom panels illustrate the Gabor inducer features and the color codes for

the motion axis explored respectively in the ISO-and CROSS-configurations. The color code conventions are: ISO-RF:

red for “collinear” along the orientation preference axis; gold for “parallel” across the RF width axis; CROSS-RF: cyan

for “parallel” across the orientation preference axis; magenta for “collinear” along the RF width axis. See Text for

details.

https://doi.org/10.1371/journal.pone.0268351.g003
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likely explanation is that, in the “cardinal” protocol, all centripetal Surround-Only flows still

recruit synaptic input originating from the feedforward SRF in addition to the proximal hori-

zontal input.

The second component of the surround contribution is orientation selective and its impact

can be seen in Fig 3B, riding on the top of the non-specific component. It reflects the dominance

of Surround responses evoked by centripetal flows of Gabor elements “co-aligned” with the RF

preferred orientation (horizontal axis in Fig 3B): the evoked depolarizing Surround-Only sub-

threshold response elicited by CP-ISO collinear flow along the main RF axis (red trace, horizontal

axis in all figures) is, on average (n = 13), 2.6 times larger than that evoked by CP-ISO- (magenta)

or CP-CROSS- (gold) flows along the RF width axis, and that evoked by CP-CROSS- flows (cyan)

across the RF main axis. A strong axial response heterogeneity is indeed noticeable in the polar

representation of Fig 3B, when considering separately the main and the RF width axes. On the

one hand, the comparison of the CP-ISO and CP-CROSS mean subthreshold response profiles

shows a clear orientation and axial bias of the “Surround-only” responses for Gabors co-aligned

along the orientation preference axis (red waveforms). On the other hand, an absence of local fea-

ture selectivity was found for AM along the RF width axis (magenta and gold traces).

Globally, the comparative analysis between each configuration of Surround-Only stimula-

tion validates the prediction of the "Dynamic Association Field" hypothesis, a concept defined

in our previous study [29]: the collinear configuration promotes input collection along the ori-

entation preference axis, resulting in the emergence of centripetal axial direction selectivity for

high-speed co-aligned stimuli.

2. Specificity of the interaction between “local” (inducer) and “global” (AM

motion) features

2.1. Inducer co-alignment with the RF orientation promotes centripetal synaptic inte-

gration along the global motion axis. The following contextual analysis focuses now on the

modulatory effect that a two-stroke activation of the silent Surround (along each of the cardi-

nal axes) can produce on the response to a subsequent test Gabor stimulus (the third stroke),

flashed at the preferred orientation within the MDF (right column in Fig 1B). In addition to

stimulations restricted to the Surround, the contextual impact of the Surround was measured

(in an interleaved way) by comparing the response to the full apparent motion sequence termi-

nating in, or departing from the RF (3-stroke AM, centripetal (CP) “Surround-then-Center”

and centrifugal (CF) “Center-Then-Surround” conditions) to the response to the test stimulus

in the RF (“Center-Only” condition).

The complete set of CP- and CF-configurations, with Gabor inducers either co-aligned

with the motion axis along the RF preferred orientation (“collinear”), or orthogonal to the RF

width axis (“parallel”), was tested in 23 cells. As expected from the study of Surround-Only

responses (section 1.3), both centripetal “collinear” and “parallel” centripetal AM flows invad-

ing the RF elicited a significant facilitating effect on the Center test response (WPSR, n = 23, 2

conditions: AM Center+Surround vs. Center-only; p<0.001) both at the subthreshold (Vm)

and spiking levels. Fig 4 illustrates the case of a highly selective dependency of contextual con-

trol on the flow direction, emphasizing the functional facilitatory impact of centripetal collin-

ear (CP-ISO) flows (red profile, upper panel): in addition to the change in response integral, a

significant shortening is observed both at the subthreshold (upper waveforms) and spiking

(lower filled PSTHs) levels (compare with black profiles of the Center-Only response) (WPSR

test, n = 23, 2 conditions, p<0.01). In contrast, a late change in the PSTW waveform integral,

but not of its latency, is observed when the AM flow is centrifugal (CF) and proceeds from

Center to Surround (green and brown, bottom panel of Fig 4).
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Fig 4. Example of contextual modulation of the Center-response by centripetal and centrifugal AM (“cardinal”

protocol). Example of Center-Surround AM responses, compared to the Center-Only condition. The comparison, in

the same cell, between centripetal (CP: top panel) and centrifugal (CF: bottom panel) motion flows illustrates the

importance of the Surround-then-Center timing in the associative effect. For each configuration, a polar

representation of PSTWs (top) and PSTHs (bottom) is shown for the four AM axes. In each central inset, the relative

positions of the GP inducers are indicated in relation with the receptive field (rectangle, horizontal for the preferred

orientation. The contextual responses are overlaid on the Center-Only stimulation (black). Note that the contextual

latency shortening and the spike discharge rate increase of the Center response are observed only in the collinear

Centripetal condition (top, red). Color code conventions for AM flow (arrow): CP-ISO-RF: red for centripetal

“collinear” along the orientation preference axis; CP-CROSS-RF: gold for centripetal “parallel” across the RF width

axis; CF-ISO-RF: green for centrifugal “collinear” along the RF main axis, CF-CROSS-RF: brown for centrifugal

“parallel” across the RF width axis. See Text for details.

https://doi.org/10.1371/journal.pone.0268351.g004
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This example illustrates our main findings at the population level: First, at the Vm level, a

stronger facilitatory impact was found for centripetal (CP) over centrifugal (CF) sequences

(WPSR, n = 23, 2 conditions, p<0.005). By calculating the ratio between the “significant”

response integral (one sided Z-score, p<0.05) of centripetal vs. centrigugal AM sequences, the

CP/CF bias in responsiveness had a median value close to 2.0 (median ± MAD: 1.82 ± 0.42).

Second, the centripetal modulatory effect of the test response was also selective of the motion

axis and was stronger for collinear activation along the RF main axis (ISO-RF) than along the

width axis (CROSS-RF) (WPSR, n = 23; 2 conditions for each cell; p<0.001). By calculating

the ratio between the “significant” response integral (one sided Z-score, p<0.05) of CP AM

sequences and the Center-Only test response, a facilitation by the Surround of the test sub-

threshold (Vm) response was observed respectively in 95% of occurrences for “collinear” and

69% for “parallel” conditions. A similar finding was also found at the spiking level, with respec-

tively 84% of facilitatory effects for “collinear” and 66% for “parallel” conditions. The ISO--

CROSS feature bias in responsiveness (median ± MAD) was respectively equal to 1.45 ± 0.28

for Vm and 1.36 ± 0.37 for the spiking activity. Finally, collinear centripetal AM sequences was

found to be the only condition which induced a significant positive phase advance compared

to the test response (paired statistics at the Vm level, WPSR test, n = 23, 2 conditions, p<0.01).

These differential contextual kinetic changes, modulating both response integral and PSP

onset latency, fit qualitatively with those expected from a simple summation model, recapitu-

lating the respective timing in the recruitment order of feedforward and lateral inputs: CP-AM

sequences tend to impact the early phase of the response when the stimulation of the Surround

precedes that of the Center, whereas CF-AM sequences tend to affect the late phase of the

response when stimulation of the Center precedes that of the Surround.

2.2. Differential impact of “Near” and “Far” Surround recruitment. In order to better

delineate the contribution of the “Far” periphery, we designed a more conservative stimulation

protocol (the “radial” protocol, Fig 1C) where the Surround stimulation was allowed only out-

side the impulse SRF (and not only the MDF, as done previously in the “cardinal” protocol).

The spacing between GP inducers was increased from 120% of the MDF to 100% of the SRF.

The absence of overlap between the nearest Surround stimulus and the SRF was checked for

each of the recorded cells. Stimulation was no longer restricted to the main and cardinal axes

but extended to angular SECTORS surrounding the original cardinal axes by two neighboring

(± 30˚) stimulation axes, so as to match the spatial sensitivity of the synaptic association field

[29]. We also dropped, from the stimulation set, the AM configurations used in the “cardinal”

protocol for which non-specific component responses were evoked (when co-varying the local

inducer orientation and the motion axis).

This enabled us to focus on our main conditions of interest with GP elements ISO-oriented

with the motion axis always presented along the RF preferred orientation axis (CP-ISO and

CF-ISO). Elements cross-oriented to the motion axis only referred to stimulations along the

width axis of each recorded cell (CP-CROSS). Note here the terminology change in ISO and

CROSS conditions—imposed by the radial symmetry—from that used in the formal (“cardi-

nal”) protocol, where collinearity and cross-orientation the ISO-were defined relative to the

RF preferred orientation axis (and not the motion axis). In addition, in the “radial” protocol,

each of the 37 cells recorded was stimulated with an extended benchmark of contextual 5- to

6-stroke AM flows, richer than in the “cardinal” protocol. The parametric systematization of

the various flows of ISO-axis or CROSS-axis GP sequences is detailed in each row of Fig 1C.

Fig 5 illustrates important spatial differences in the Surround periphery recruitment

between the two protocols (“cardinal” in 5A; “radial” in 5B), by comparing the respective

time-course profiles of the intracellular responses, evoked by the sole stimulation of the sur-

round (Surround-Only, dotted traces) and by the complete AM sequence terminating in the
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RF center (Surround-then-Center, continuous traces). The top row in Fig 5 illustrates the RF

maps of the spiking discharge fields (ON (red) and OFF (blue)) and of the subthreshold SRF

(topological union of ON and OFF depolarizing receptive fields) delimited by a white contour.

In order to focus the comparison on the stimulation axes used in the “cardinal” protocol, we

illustrate, for the “radial” protocol cell (5B, right panel), only the CP-ISO and CP-CROSS Sec-

tor AM configurations (first and third row, in the left column of Fig 1C, red and gold schemes)

along respectively the RF main and width axes. A straightforward observation directly emerges

from the comparison of the visual field paving with Surround GPs applied in each protocol:

for the same spatial viewing field size centered on each RF (20˚x20˚), the two Surround sources

of stimulation are visible for the “cardinal” protocol, while only one—the most proximal (to

the RF center)—appears for the “radial” protocol. The closest GP location in the periphery (D1

position in Fig 1A) partially encroaches on the border of the SRF in the “cardinal” protocol,

while this is not the case (by design) for any surround sources in the “radial” protocol.

Fig 5. Differential recruitment of “Near” vs “Far” Surround between the “cardinal” vs. “radial” protocols. (A):

“cardinal” protocol (left panel), and (B): “radial” protocol (right panel). Top row, receptive field maps. Same

convention as in Fig 3A. Only the Surround GPs on the RF main (horizontal) and width (vertical) axis (common to

both protocols) are represented within the same viewing field (20˚x20˚). Note the encroachment of the most proximal

GPs in the “cardinal” protocol over the SRF (white contour), whereas no spatial overlap is seen in the “radial” protocol.

Bottom rows, the CP-ISO (red) and CP-CROSS (gold waveforms) are overlaid for the “Surround-Only” (dotted) and

the “Surround-then-Center” (continuous trace) conditions and compared to the “Center-Only” test condition (black).

Insets show respectively an expanded version of the PSPs onset on a 30 ms time window (dotted grey rectangle). For

each protocol, arrows indicate the change in PSP slope due to the feedforward synaptic drive triggered by the Center

test stimulus in the D0 location. Note that the CP-ISO and CP-CROSS (gold) response latencies are the same for the

“cardinal” protocol, suggestive of a common non-specific input. In contrast, the phase advance is seen only for the

CP-ISO configuration in the “radial” protocol. See Text for details.

https://doi.org/10.1371/journal.pone.0268351.g005
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This difference in the spatial overlap between the most proximal “surround” stimuli and

the SRF accounts for the differences in intracellular response magnitudes observed in each

protocol. In the “cardinal” case (Fig 5A), the “Near” Surround-Only stimulation evokes size-

able depolarizing responses, both for CP-ISO and CP-CROSS stimulations (dotted red and

gold waveforms). Both types of CP Surround-then-Center AM flows strongly amplify the

evoked PSP amplitude, although the peak amplitude gain is the largest in the CP-ISO condi-

tion. In contrast, the typical behaviour observed in the “radial” protocol (Fig 5B) shows a dif-

ferent profile. For a comparable magnitude of the Center only response (8.0 mV (“radial”) vs.

7.4 mv (“cardinal”)), the purely modulatory influence of the CP- ISO AM flow restricted to the

“Far” Surround was generally much weaker (2–3 times) than that seen for the “cardinal” proto-

col (here, 3.9 mV against 9.8 mV). In contrast to the CP-ISO condition, the CP-CROSS Sur-

round-Only stimulation almost did not induce a contextual response (compare the dotted red

and gold traces in the bottom right panel in Fig 5B). As a consequence, in the “radial” protocol,

the complete CP-ISO AM sequence (terminating in the RF center) is the only configuration

inducing a phase advance and a significant amplification of the early Center-only response.

A mechanistic difference between the two protocols is further attested by the comparison of

the rising slopes of the time-profiles of the AM responses with that of the feedforward response

(Center-Only). In the “cardinal” example cell (bottom left panel in Fig 5A), both the CP-ISO

Surround- Only and the CP-ISO Surround-then-Center evoked PSPs have the same initial ris-

ing slope as the Center-Only response. The latencies, when corrected for the 16 ms ISI interval,

are the same in D1 and D0, thus suggestive of a direct synaptic feedforward input signature

even for the D1 position (thus overlapping with the RF). Furthermore, both the CP-ISO and

CP-CROSS synaptic responses start to rise simultaneously in the “cardinal” case, which indi-

cates that the “Near” stimulated periphery recruits feedforward synaptic drive (common to D0

and D1). In contrast, in the case of the “radial” example (bottom right inset in Fig 5B), the

early phase of the CP-CROSS waveform is indistinguishable from that of the Center-Only

(gold and black) waveform. The initial rising slope of the CP-ISO response (red) occurs much

earlier (15–20 ms ahead) and is initially much slower than the fast rise seen for the Center-

Only response (black). These latter features are suggestive of a graded spatio-temporal diffu-

sion process compatible with horizontal activity propagation. This qualitative comparison

clearly emphasizes that, by preventing the closest surround-location from encroaching on the

SRF border, the non-specific tonic component of the boosting of cortical responsiveness seen

in the “cardinal” protocol is no longer recruited in the “radial” protocol.

Remarkably enough, on the whole population, the “radial” protocol led to a drastic decrease

of the proportion of cells showing “Surround-Only” responses (32% (“radial”: point by point

permutation test regarding spontaneous activity for a minimum of 15 consecutive ms, 104 rep-

etitions, p<0.01)), vs. 100% (“cardinal”: Z-test above background activity, p< 0.05)). Com-

pared to the “cardinal” protocol, it also produced weaker Surround responses, that never

reached the peak amplitude of the Center-Only test response, and, accordingly, to a smaller—

although significant—facilitatory modulation of the Center-response. We conclude that, in

contrast to the “cardinal” protocol, the “radial” stimulation of the Surround no longer recruits

as efficiently the “Near” periphery, which seems to integrate both lateral and feedforward

input. Consequently, the “radial” protocol appears best tailored to detect the selective contri-

bution of purely lateral recruitment of the “Far” periphery.

2.3. Anticipatory “filling-in” responses (“radial” protocol). To highlight the emergence of

a lateral anticipatory wave due the sole recruitment of the distal periphery (Surround-Only wave)

and quantify its functional role in the contextual gain control of the response evoked by the feed-

forward drive, we determined—in the “radial” protocol—the individual significance of each cell

response to the Surround-Only condition, using a point-by-point randomization test (104
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repetitions, p< 0.01). The largest proportion of cells showing significant Surround-Only

responses was found for the CP-ISO condition (12 cells (32% of the population)). A single cell

example is illustrated in the left column of Fig 6. A complete CP-ISO sequence invading the RF

Center reveals a clear boosting effect (compare continuous red (AM) and black (Center-Only)

traces, top and bottom panels). In spite of the fact that the closest surround location was sparing

the SN-mapped SRF, a sizeable significant change in membrane potential was still observed in the

AM sequence restricted to the surround, from D5 to D1 locations, in the absence of D0 stimula-

tion (bottom left graph in Fig 6, dashed red trace). For this cell, the combined dynamic recruit-

ment of the GP sources along the AM motion axis shows a progressive build-up signal which

anticipates, by ten milliseconds, the onset of the feedforward signal evoked by the Center-

Fig 6. “Filling-in” responses evoked by Surround-Only AM (“radial” protocol). The analysis here is restricted to

cells where Surround-Only CP-ISO stimulation evoked a significant response (n = 12, see Text for criteria). Trace

color code: black for Center-only, red for Surround-then-Center, dashed red for Surround-Only, dotted green for

Surround Linear Predictor (SLP). The left middle horizontal insets respectively show the chronograms of the stroke-

by-stroke stimulation sequences for Center-Only (1 stroke, filled black box, upper line), Surround-Then-Center (6

strokes, filled red, middle line) and Surround-Only (5 strokes, filled pale red, bottom line) protocols. Empty boxes

indicate omitted stimuli. The time onset of each GP stroke is labeled by a thin dotted vertical line. In this figure and the

following ones, the blue dot and vertical dotted blue bar on the y-axis indicate the “threshold” amplitude change of the

Center-Only control curve from rest, above which statistical significance of the response is reached (p<0.01) for each

individual cell. Their abscissa serves as a reference for the temporal realignment of the different contextual responses.

Left: Single cell example. Top left: The confidence intervals (permutation test; 104 repetitions, p<0.01) for Center-

Only and Surround-then-Center compared to Blank are represented respectively by gray and pale red envelopes. The

complete CP-ISO AM sequence (D5 to D0) evokes a significant facilitation of the Center-Only Vm response. Bottom

Left: The red and black curves represent the response averages across trials (shaded area: ± SEM). When omitting the

D0 stroke, the recruitment by the CP-ISO AM flow, although limited to the silent surround (D5 to D1), still induces a

significant depolarizing activation (Surround-Only: dashed red). The temporal profile of the lateral wave of activity

matches the "predicted" invasion of the RF Center (black), had it been stimulated. The build-up of the Surround

response during AM departs significantly from the sum of the static responses evoked by each distal GP stroke in

isolation (Surround linear predictor (SLP): dashed green, confidence interval of a significant difference between SLP

(predicted) and Surround-Only (observed) waveform, p<0.05). Right, top panel: Average response profiles for

Surround-then-Center, Center-Only and Surround-Only conditions (n = 12). Right, bottom panel: the CP-ISO

Surround-Only response (mean: dotted red ± SEM: shaded area) is compared (with a different ordinate scale than in

the top right panel) with the “expectation” (dashed black trace) obtained by subtracting the Center-Only (black trace,

top right) from the complete CP-ISO AM response (red trace, Top right).

https://doi.org/10.1371/journal.pone.0268351.g006
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stimulus. In contrast, the amplitude of the linear predictor waveform—based on individual static

responses to GPs in isolation—remains close to the resting state, even at the onset of the Center-

Only response (green curve, bottom left panel in Fig 6). Note that the Surround-Only trace (in

red) trespasses the upper limit of the confidence interval (shaded green envelope) tested by point

by point permutation between the Surround Linear Predictor (SLP) and the actually recorded

response to the Surround-Only sequence (104 repetitions, (p<0.01)). Thus, in this particular sin-

gle cell example, the AM sequence recruits a non-linear summation process of subliminal sur-

round sources. The significant deviation from the linear prediction attests for the role of spatio-

temporal synergy in maximizing the functional impact of horizontal propagation.

In the subpopulation of cells showing significant CP-ISO Surround-Only responses (point

by point permutation test, 104 repetitions, p< 0.01), paired comparison between responses to

Surround-only sequences and their Surround linear predictor revealed that 6/12 cells (50% of

significant cases; 16% of the entire population (n = 37)) showed significant anticipatory

responses in the CP-ISO condition larger than that predicted by the linear summation of indi-

vidual GP responses. For the remaining cells, observed responses were indistinguishable from

their Surround linear predictor. Note also that the slight difference between the dotted black

and red curves in the Fig 6 right bottom panel—potentially indicative of a sublinear center/sur-

round summation—could simply be due to a shift in reversal potential during depolarization.

When pooling altogether Surround-Only significant cases and realigning individual cell

responses on the onset time of their respective Center-Only responses, the population average

shows a mean depolarizing wave riding clearly above the noise level. This wave, depicted in

the top right panel of Fig 6, peaks at an average value corresponding to a third of the Center-

Only test response peak amplitude. It corresponds to absolute values ranging between 1 to 4

mV (0.35 of normalized amplitude for the dotted red average trace vs. 0.85 for the black trace).

Remarkably, for the optimized AM speed, the Surround-Only average response reaches its

maximum at the time of expectation of the Center-Only response. These findings strongly sug-

gest a causal relationship between purely contextual lateral presynaptic information and its

postsynaptic integration during complete apparent motion terminating in the RF center.

This observation does not reflect simply a trivial non-specific summation effect: i) the gain

control effect is non-linear in half of the cases (Fig 6, left); ii) the process is shown to be selec-

tive not only of the timing of the Gabor stroke sequence (optimal speed) but also of the local

feature (orientation) of the Gabor inducer (CP-ISO). In spite of similar timing sequence of

presentation of Gabor patches in CP-ISO and CP-CROSS configurations, the two contextual

responses are actually different.

3. Dependency of contextual cortical control on the spatio-temporal

coherence of the AM flow

We have attempted to systematically identify and quantify the key spatial and temporal factors

of the CP-ISO AM sequence which condition the effectiveness of the contextual control of the

cortical gain. For this purpose, we compared for each of the 37 cells, the CP-ISO configuration

with AM sequences in which the spatio-temporal structure of the GP presentation was altered

(Fig 1C). The statistical significance of the measures extracted from the mean Vm responses of

individual cells (top panel in Fig 7) was assessed by comparing each AM condition to the same

reference (Center-Only). Two selection criteria were used independently, based on a signifi-

cant change, either i) in the onset latency, or ii) change in response strength (integral). In addi-

tion, we also used a less stringent requirement, combining one or the other or both criteria

(randomization test, 104 repetitions, p< 0.05). Both congruent and complementary trends

were found across the three statistical criteria we used.
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The impact of each AM configuration is expressed in Fig 7A by ranked amplitude distribu-

tions of latency changes (left column) and response integral changes (right column), relative to

the Center-Only condition. The proportions of significant facilitatory effects correspond to the

number of occurrences where significant positive modulations relative to this common refer-

ence were observed. Paired comparisons between each condition (condition of interest and

other controls) were also done but not illustrated for sake of clarity. The left histogram in Fig

7B represents the proportion of “significant” latency advance cases (upwards filled bars in the

left column of Fig 7A). It is three times larger for the CP-ISO condition (30%, red column)

than for the other conditions. The right histogram in Fig 7B represents the proportion of “sig-

nificant” response integral changes. The facilitation effect (positive Δ Integral) is less selective

across conditions, but remains specific of the collinear configuration, since most significant

cases are found in both CP-ISO and CF-ISO conditions (respectively red and green). The mid-

dle histogram inset in Fig 7B shows the impact of pooling both change criteria in a non-exclu-

sive way (logical “OR”): the proportion of significant facilitation cases (latency shortening OR

Response Integral increase) peaks for the CP-ISO condition (41%, red histogram bar in the

bottom center inset), while remaining two times larger than for the CF-ISO condition (19%,

Fig 7. Statistical significance of contextual response changes. Color code, same as in Fig 1C, schematized by icons in

the middle column. SECTOR configuration: red for CP-ISO, green for CF-ISO, gold for CP-CROSS; dark blue for

RND; FULL configuration: pale blue for RND-ISO. (A): Top left panel, ranked amplitude distributions (n = 37) of

changes in latency (ms, left column) and in response integral value (normalized ratio, right column) of subthreshold

responses (Vm), for each SECTOR AM condition of interest (first three rows). The fourth row corresponds to the

FULL-RND condition (see Text for justification). Ordinates: latency shortening and integral response increase are

plotted upward. Abscissa: cell rank (1 to 37) ordered independently for each AM condition. Filled bars represent

“significant” individual cases (one-sided permutation test, 104 repetitions, p< 0.05). Ordinates: left column, latency

change (“Δ Latency”) measured at half-height of the Center-Only peak response; right column, change in the integral

value of “significant” depolarizing responses (± 3σ from mean Vrest), integrated to the point of return to baseline of

the Center-only test control. The integral value change (“Δ Response“) is expressed as a normalized ratio relative to the

Center-Only test response. (B): Bottom left panel, each of the three histograms represents the proportions of

significant cases for each AM flow condition. Left, "Δ latency" criteria. Right: “Δ Response”criteria. Center inset

(BOTH): all cases showing either a significant latency advance, or response integral increase, or both. (C): Right panel:

Bihistogram of the Δ(response_integral) in ordinate vs. Δ(latency_change) in abscissa, averaged across conditions.

Numbers and SEM correspond to values calculated across the whole population (upper plot) or restricted to the pool

of “significant” cells (lower plot). Note that the global separability between CP-ISO and all other test conditions

increases when restricting the pooling to the “significant” cells.

https://doi.org/10.1371/journal.pone.0268351.g007
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green bar) and three times larger than the other conditions (11%, gold bar for CP- CROSS;

14%, blue bar for RND-ISO). These different analyses show that the CP-ISO AM flow is by far

the most effective configuration to promote the visibility of Surround-Center interactions.

For the CF-ISO condition, no consistent latency change was observed at the PSP population

level (n = 37), since the rising phase of the CF-induced Vm response, as expected, was gener-

ally indistinguishable from the Center-Only response. Only 8% of the cells showed a signifi-

cant latency advance of a modest magnitude in the CF-ISO condition compared to the 30%

found in the CP-ISO condition (green bar vs red in the left histogram, Fig 7B). Conversely,

contextual facilitation of the Center response integral was present in a slightly larger propor-

tion of cells (14%, green bar in the right histogram of Fig 7B). Those observations concord

with those of the “cardinal” protocol, sinc the rising phase of the CF-induced response, as

expected, was indistinguishable from the Center-Only response. On the other hand, the

increase in response integral value concords with a lasting depolarization following the center-

only test peak response, as more and more Gabor patches flashed at increasing eccentricity

from the RF center evoke a series of lagged desynchronized lateral inputs of exponentially

decreasing amplitude. The centrifugal control demonstrates that the spatial coalignment of

GPs is not enough in itself to induce the observed boosting effect. Some form of spatio-tempo-

ral ordering is required such that an anticipatory flow from the periphery is generated, which,

in fine, will boost sensory responsiveness at the time when the test stimulus hits the RF Center.

Since it is well established in most V1 cells that moving cross-oriented stimuli across the

orientation preference axis of the recorded RF are ineffective in firing the cell, we focused our

study of CP-CROSS AM sequences along an angular sector restricted around the width axis

(Fig 1C: left column “SECTOR”; gold condition). This choice however implies in the SECTOR

configuration that the analysis relies on the comparison of response flows (CP-ISO vs.

CP-CROSS) sweeping across different surround subregions, while maintaining the orientation

of all GPs the same. Nevertheless, the absence of an orientation-selective component for cen-

tripetal flows of CROSS-oriented GPs along the main axis of the RF (CP-CROSS_main-axis,

cyan traces in Fig 3) justifies this simplification choice. In spite of these subtle protocol differ-

ences, only 11% of the cells showed a significant positive latency advance to the CP-CROSS

stimulation, while none displayed any significant positive change in the response integral,

when compared to the Center-Only test response (bottom panel, respectively left and right

gold histogram bars in Fig 7). Overall, the weak changes in latency advance or amplification of

the Center-Only response found in individual cells during CP-CROSS AM flows was washed

out completely when averaging across cells (right panel in Fig 8, compare gold and black

traces). A similar conclusion is reached whether the surround was partially (SECTOR) or uni-

formly (FULL) recruited: in both conditions (SECTOR and FULL), the contextual mean

CP-CROSS responses were almost indistinguishable from the Center-Only test response.

In a third control condition, the same retinal SECTOR space as in our CP-ISO condition of

interest was stimulated with the same GPs (i.e., with the same number, features, and stimulus

energy distribution) but the coherence of the flows was pseudo-randomized both in space and

time. Such RND-ISO condition induced a slight facilitation effect on average, although signifi-

cantly smaller than the one seen in the CP-ISO condition. We explored the possibility that this

partial effect could be of residual nature and come from an insufficient level of randomization

achievable in the SECTOR stimulation. Indeed, the number of visited nodes (i.e. GPs) is rather

low (n = 26), with the additional constraint that the last Gabor patch in the sequence had to be

the one flashed in the Center. Note that, in contrast to coherent-AM sequences, GPs flashed

during each step of the RND-ISO AM sequence could belong to any ring of eccentricity,

thereby increasing at each step of the AM sequence the probability to find D1- (or D2-) to cen-

ter stimulations (see Methods). Close examination of individual cell recordings showed that
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the slight facilitation most likely reflected the fact that in some RND-ISO trials, the penulti-

mate GPs were presented occasionally by chance at the D1, or even D2 eccentricity (Fig 1A),

just one stroke ahead of the RF center stimulation. We concluded that the Sector RND-ISO

sequence often recruited facilitating two-stroke AM Surround-Center pairs whose effect has

already been reported (see Fig 7 in [29]).

To dilute the remnant impact of proximal-to-center interactions seen in the RND SECTOR

condition, we used, as a more randomized control, the FULL stimulation configuration in

which the probability to find such co-aligned D1 (or D2) GP followed by the RF center stimu-

lation during the entire stimulation protocol was lowered. This was achieved by doubling the

number of possible peripheral node locations (from n = 26 to n = 52), thereby increasing the

level of randomization of the AM sequence. In the RND FULL mode, the stimulation was not

Fig 8. Contextual gain control induced by centripetal-ISO AM flow (“radial” protocol). Top row, subthreshold response (Vm); Bottom row, firing rate

response (spikes/s). The first three columns, from the left illustrate the boosting effect produced by a CP-ISO AM sequence (red curve, Surround-then-

Center) when compared to the response to the test GP inducer flashed in the RF Center (black curve, Center-Only). The local orientation of the GP inducers

in the Surround and the global AM axis are co-aligned with the RF orientation preference. The last (right) column focuses on contextual dependency of the

effect. From left to right, first column: Single cell example, where the vertical dotted gray lines indicate the respective timing of each peripheral stoke

stimulation at successive eccentricities (from D5 to D1), whereas the continuous vertical gray line indicates the onset of the “Center-Only” test stimulation

(D0). The blue dot and corresponding dotted line give the latency of the first point in time where the Center-Only response departs significantly from the

resting state (p< 0.01). Second column from the left, population averages for the CP-ISO (red) and the Center-Only (black) conditions. Averaging is done

in two steps, first across trials for each cell for the same context condition, then across cells after realigning individual mean waveforms around a common

onset latency, that of their Centre-Only response (“0” mark of the “Relative Time” abscissa, blue points in left panels). Response amplitudes are normalized

relatively to the peak of the “Center-Only” response. The third column illustrates the population average profile of individual cells showing either significant

positive latency advance, response integral increase, or both, compared to the center-only test control (permutation test, 104 repetitions, p<0.05). The

difference in rising phases and onset latencies between the CP-ISO (red) and Center-Only (black) responses are shown on an expanded time basis. The

mean ± SEM value envelopes are respectively illustrated by a continuous curve and a shaded area. Right column, the statistical significance analysis is

extended to cells which showed significant “Surround-only” responses (subthreshold: n = 20; spiking: n = 10). Color code, same as in Fig 1: For the SECTOR

configuration, red for CP-ISO, green for CF-ISO, gold for CP-CROSS. For the FULL configuration, blue for CP-RND-ISO. The contextual averages show

that CP-ISO (red) is the only condition where a change in onset latency is observed, both at the Vm (top) and spiking levels.

https://doi.org/10.1371/journal.pone.0268351.g008
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restricted to retinal sectors on both sides of the RF but was extended isotropically to its entire

Surround (bottom right blue icon in Fig 1C). The bi-histograms in Fig 7C illustrate the obser-

vation that the full randomization (pale blue for FULL-RND) produces changes in latency and

response strength much weaker than the partial randomization limited to the SECTOR config-

uration (dark blue). However, still a limited fraction of the cells response to the FULL RND

stimulation displayed a slight facilitatory effect (11% for latency change and 3% for response

gain) compared to the Center-Only test response (blue columns, in respectively the left and

right histogram bars in the bottom panel of Fig 7B). This mild effect disappears when averag-

ing across cells (compare average blue and black waveforms in the right column in Fig 8). We

conclude that the contextual boosting of the cortical response was largely washed out by the

reduced probability of observing collinear proximal activation in the FULL RND sequences,

resulting from the more extensive randomization of the flow’s spatio-temporal coherence than

in the SECTOR RND condition.

Let us focus more in depth on the CP-ISO condition. The left column in Fig 8 illustrates the

typical contextual behaviour observed for Vm and spiking responses at the single cell level for

the CP-ISO configuration in the “radial” protocol, when compared to the Center-Only condi-

tion: the AM CP-ISO sequence produces an anticipatory depolarizing wave that shortens the

onset latencies of both the rising phases of the PSP (upper row) and the spiking response (bot-

tom row), by respectively 14.7 and 16.3 ms. For that particular example, both a progressive

build-up of a subthreshold depolarization and an anticipatory firing response are observed at

early latencies, but this ramp-up feature was not systematically observed in all cells. At the pop-

ulation level, we found that centripetal flows composed of Gabor elements co-aligned with the

global motion path along the RF main axis (CP-ISO) resulted in an overall boosting of the neu-

ral response compared to that evoked by the test Center stimulus alone.

This finding is illustrated in the second column (from the left) of Fig 8. Note here that the

PSTW and PSTHs realignments (see Fig 6 legend) are done separately for the averaging, since

a few millisecond integration lag is found between the absolute measurements of significant

onset times for Vm and spikes for the Center-Only responses (see the causal shift in the verti-

cal dotted blue lines in the single cell example). On average (n = 37), the CP-ISO stimulation,

in the SECTOR condition, resulted in an overall latency shortening and a slight amplification

of the depolarizing subthreshold response envelope (Vm, upper row). It also led to a reduction

in latency of the spiking discharge (bottom panel) in cells where spiking activity evoked in the

Center-Only condition was significant (permutation test, 104 repetitions, p<0.05; n = 22).

In order to refine the statistical significance of the effect, we first restricted the averaging to

all the cells for which, individually, the CP-ISO sequence presentation led to a significant

change in the response latency and/or response integral (when compared to center-only

response), whatever its sign (Fig 7A). Note here that even if the dominating effect induced by

the CP-ISO stimulation was an overall clear bias toward a latency reduction, it occasionally led

to a latency lengthening (negative Δ latency as illustrated in Fig 7A). We observed more glob-

ally that 1) the proportion and amplitude of positive Δ-latency and Δ-response integral was

much larger than the proportion of negative ones for the CP-ISO condition of interest and 2)

the proportion of significant positive modulatory effects was larger in the CP-ISO condition

than in all other conditions. This led us to focus on (one-sided) significant positive contextual

subthreshold (Vm) changes in onset latencies and/or response integral values. For this subpop-

ulation, the CP-ISO condition produced significantly facilitated responses in 41% of the cells

(permutation test, 104 repetitions, p<0.05, for 15 cells out of 37). The third column in Fig 8

illustrates the selected population average profile. Note that the quenching around the “0” time

abscissa, seen for the Center-Only responses, results from the realignment process applied

before averaging (see Methods).
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To further demonstrate the contextual boosting specificity concomitantly at the synaptic

and the firing levels, we tried to maximize the population size. For this last analysis, we added

—to the pool of CP-ISO “significant” cells—the contingent of cells for which significant

responses could be elicited by an AM flow stimulation limited to the Surround (permutation

test, 104 repetitions, p < 0.01; see Methods). This pooling increased the number of significant

cases from 15 to 20 cells for subthreshold analysis, and from 6 to 10 for spiking analysis (one of

the additional cells was not spiking). Once again, in congruence with the statistical analysis of

Fig 7, the largest proportion of significant Surround-Only responses was found for the CP-ISO

condition (CP-ISO: 12/37 cells, 32%; CF-ISO: 22%; CP-CROSS; 8%; RND-FULL: 11%). The

right column in Fig 8 shows that the phase advance effect is selective of the CP-ISO condition:

the response onset of the mean Vm waveform (n = 20) was shortened by 8 ms and the PSP

integral increased by 31%. A similar contextual phase shift is observed at the spiking level

(bottom).

Altogether, our intracellular results demonstrate that a build-up of anticipatory synaptic

activity is observed by sequentially recruiting local inducers co-aligned with the RF orientation

axis in a centripetal way. The efficiency with which the closest surround location is recruited

impacts the strength of the contextual modulation. In particular, the “Near” periphery recruit-

ment of the “cardinal” protocol points to a bias for CP-ISO AM flows along the RF preferred

orientation axis, superimposed over a non-specific facilitation component observed, at both

Vm and Spiking levels for all contextual stimulation conditions. Conversely, the more precise

recruitment of the “Far” Surround, achieved in the “radial” protocol, points to the selective

control of the cortical gain by the CP-ISO context. This specificity truly highlights a spatio-

temporal requirement in Surround recruitment in order to boost sensory responsiveness. This

further emphasizes the critical need of spatial and temporal synergy between each distal sur-

round source synaptic impact with the synaptic feedforward volley corresponding to the Cen-

ter-Only drive (Fig 1A).

4. Timing specificity in predictive “filling-in” responses and Surround-

then-Center interactions

4.1. Synaptic mechanisms involved in predictive filling-in responses (“radial” proto-

col). The central issue addressed here is to delineate how the temporal specificity of each

purely contextual surround component accounts for the contextual differences in cortical gain

control when lateral input is finally combined with the feedforward flow originating from the

RF center. This can be studied only in cells which displayed significant responses to the sole

stimulation of the Surround (point by point permutation test, 104 repetitions, p<0.01). In

these 12 cells, we first checked that the global contextual impact of surround and center inter-

action is the same as in the global population. Fig 9 allows the straightforward comparison of

the impact of the CP-ISO AM SECTOR configuration (red trace) with the three other flow

configurations (light green for CF-ISO, gold for CP-CROSS and blue for FULL RND-ISO).

The top left panel confirms the leftward shift advance of the Vm response by about 7 ms (top

left panel, Fig 9), selective of the CP-IS0 condition. Note that the population size is too small to

warrant further statistical analysis. At the spiking level, peak values are indistinguishable, but a

clear 15 ms advance only appears in spike initiation of the CP-ISO condition.

Let us focus now on the timing specificity of the Surround-Only component as a function

of its mode of spatio-temporal recruitment. An elementary mechanistic approach is to com-

pare, independently for each AM configuration (CP-ISO, CF-ISO, CROSS-ISO, RND), the

temporal profile of the average Surround-only response (top right panel) to the linear predic-

tion (“Surround-then-Center” minus “Center-Only”, bottom right panel)) obtained from the
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15 cells showing significant Center-Surround modulation (top panel, third column, Fig 8).

The detailed comparison of the relative time-course of “filling-in” subthreshold responses (Fig

9, top right panel) shows that the synaptic (Vm) contribution of the “silent” periphery is the

largest for the CP-ISO condition (red). Most remarkably, the Surround-only component is

temporally highly selective and peaks precisely at the expected time of occurrence of the Cen-

ter-Only response onset, had the RF Center been stimulated (“zero” relative time; see the dot-

ted red trace in top right panel of Fig 6).

This, of course, does not mean that the other contextual flows are not effective in modifying

the subthreshold baseline, such as the random (RND-FULL) configuration, which shows a

depolarizing plateau (blue trace) preceding the onset of the expected Center-Only response.

This initial bump is compatible with the cumulative invasion (across randomized strokes) of

lateral activity and corresponds to a non-null probability of stimulation by chance of the proxi-

mal periphery of the subthreshold SRF. However, in contrast to the CP-ISO AM sequence, it

collapses towards the baseline before the expected onset of the Center-Only response.

For the CF-ISO condition (green trace, top right panel in Fig 9), a mirror activation pattern

regarding the Center-Only onset response is observed: starting from rest, the transient CF-ISO

Surround-Only contribution growth appears only after a delay (30–35 ms), slightly after the

Fig 9. Mechanistic analysis of the “Filling-in” contribution to contextual gain control. Left, contextual gain control

analysis, restricted to the population of cells (n = 12) showing significant “filling-in” responses. Mean responses,

averaged for each AM flow pattern (CP-ISO (red), CF-ISO (light green), CP-CROSS (gold) and RND-ISO (blue)) are

represented at the Vm (top panel) and spiking levels (bottom) with their (shaded) S.E.M. envelopes. Same color code

as in Fig 1C. The selective latency advance and amplification of the subthreshold response induced specifically by the

CP-ISO condition (top, n = 12) translate at the spiking level in cells displaying spiking activity (bottom, n = 7). Right,

comparison of the contextual time course of Surround- Only responses with the predicted contribution of the

Surround, according to an additive model. Top, observed traces (n = 12); Bottom, linear predictors of the Surround-

Only responses obtained by subtracting the “Center- Only” trace from the “Surround-Then-Center” response. The

predicted profiles were calculated independently for each contextual condition (same color code). The averaging

process was extended to all cells showing a significant contextual change in latency and/or response integral (n = 15,

see Text for detailed criteria). The expected occurrence of the response evoked by the omitted Center stimulus is

indicated by a grey shaded temporal window. The time abscissa of the peak of the “Center-Only” stimulus response is

indicated by a thin vertical bar.

https://doi.org/10.1371/journal.pone.0268351.g009
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peak of the Center-Only response had the test stimulus been presented, before displaying a

progressive depolarization decay lasting up to 250 ms. This decay phase is interpreted as indic-

ative of distal input weakening and desynchronization, the further away from the RF center (as

expected from the stimulus design).

In contrast, the CP-CROSS AM sequence synaptic integration is almost ineffective (gold

traces). The magnitude of its peak amplitude is several folds lower than that observed in the

“cardinal” protocol, reaching a peak value of roughly 10% of the Center-Only peak response:

compare gold traces in Fig 5A, where the CP-CROSS peak magnitude of the surround-only

response reaches 4.4 mV, hence 59% of the 7.4 mV center-only control peak response in the

cardinal protocol vs the 1.3 mV of the Surround-Only CP-CROSS response, hence 16% of the

8 mV of the center-only peak response. This argues once again for a “non-specific” component

of the response, best seen in the “cardinal” protocol, that crucially depends on whether the

most proximal peripheral Gabor patch encroaches on the SRF border or not.

An important point in this analysis is that predictors of the Surround modulatory effect,

obtained by subtracting the feedforward (FF) response to the contextual response (“Surround-

then-Center” minus “Center-Only”, shown in the bottom right panel of Figs 6 and 9), are com-

puted even in cells which did not show significant AM “Surround-Only” responses. In spite of

the fact that the two populations used for averaging differ, a striking similarity is apparent in

the overall time-courses of recorded (top) and predicted (bottom) waveforms (right panel, Fig

9). This isomorphism globally supports qualitatively a linear (additive) synaptic integration of

the dynamic AM Surround lateral contribution and the flashed Center drive.

In summary, the CP-ISO condition is the only stimulation context where the temporal pro-

file of the Surround-Only contribution matches precisely the time-course required to interact

with the feed-forward activation window (shaded area, bottom right panel in Fig 9) and define

an effective modulatory “spiking opportunity window”. In contrast, in all other flow condi-

tions, Surround-Only contribution is out of synchrony with the feedforward drive and cannot

exert mechanistically some form of additive gain control of the test feedforward response. Cru-

cially, the CP-ISO exclusivity of this precise time-localized concentration in depolarizing activ-

ity power of purely contextual information actually explains the selectivity of the contextual

gain during complete sequences terminating in the RF center.

Our data clearly support the selective dependency of a Surround-only activation wave on

both spatial and temporal features of the AM stimulation. Co-alignment of local features in the

surround with the preferred orientation of the test RF and appropriate timing in the sequential

surround recruitment are both needed. If both conditions are fulfilled, the diffusion waveform,

responsible for generating subthreshold synaptic responses “at the right place, at the right

time”, predicts the spatio-temporal profile of the next stimulus to come (in the RF center). We

therefore interpret those waves as neuronal correlates of a “filling-in” process, indicative of an

anticipatory activity build-up in the cortical retinotopic region for which the “expected” visual

feedforward synaptic volley is missing.

4.2. Dependency of the spiking latency advance on the temporal phase between the

Feedforward and Horizontal input waves (“cardinal” protocol). The timing constraints of

our protocols have a dual source: i) the synaptic activation from the surround displays a tem-

porally constrained profile in latency basin (Fig 2), and ii) the order of the sequential stimula-

tion (centripetal & centrifugal) in the Surround (Fig 4). In order to better quantify these issues,

the onset latencies of the postsynaptic potentials evoked independently in the Center-Only

and Surround-Only conditions were measured in the “cardinal” protocol. They were then tem-

porally realigned on a common reference, defined as the time at which the Center-stimulus

should have been shown in the Surround-only 2-stroke AM sequence. The subtraction

between the two input onset latencies will be referred in the rest of the text as the phase
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between feedforward and horizontal inputs. In spite of its weaker specificity, since the “cardi-

nal” protocol almost systematically induced significant responses for sequences limited to the

surround and strong tonic responses at both sub- and suprathreshold levels during complete

sequences stimulating the center, we used the measured onset latencies of this protocol to max-

imize the number of cells for this analysis. This calculus was however restricted to instances

where both “Surround-Only” and “Surround-Then- Center” responses were tested for each

condition, in the same cells. The interest of such quantification is to give an objective measure

which allows the direct comparison of the effects of different associative sequences realized for

a given cell as well as across various cells (Fig 10).

When pooling all cells (n = 23 cells, 67 measures), the distribution of input phase relation-

ships ranged from +25 ms of phase advance to -50 ms of phase lag between horizontal and

feedforward input waves at the subthreshold level (abscissa in the bottom-right scatter plot of

Fig 10). As expected, a strong bias in the distribution was observed in favor of phase advance

of the Surround input for the centripetal sequences (gold “x” (CP-CROSS) and red “+”

(CP-ISO) symbols) and delayed activation for the centrifugal sequences (brown “�”

(CF-CROSS-parallel) and green diamond (CF-ISO-coaligned) symbols). At the spiking level,

the latency shortening of the contextual (Surround +Center) output, compared to the Center-

Only condition, appears crucially dependent on this input phase relationship: it was only

observed for centripetal condition, i.e. when the Surround response onset (the horizontal

input), preceded in time the Center-only response onset (the feedforward (FF) input). The

intercept of the grey bi-linear fit, shown in the scatter plot of Fig 10, has been optimized by

Fig 10. Causal impact of the temporal phase between feedforward and horizontal input on the spiking latency

change (“cardinal” protocol). Left panel: Pooled data from the “radial” (red), and “cardinal” (orange) dynamic AM

protocols (this study). Note that most apparent speed of horizontal propagation (ASHP) values, extracted from

intracellular latency basin slopes with relative eccentricity, range between 0.05 and 0.60 mm/ms (with a peak between

0.10 and 0.30 mm/ms). Mirror histogram (pointing downwards): pooled data using flashed long bars (1D-mapping,

blue), sparse noise mapping (green) from [26), or Gabor patches (light green). Right panel: For each individual cell

recorded in the “cardinal” protocol, the latencies of Center-Only and Surround-Only Vm responses are measured and

subtracted, defining the temporal phase between the “horizontal” and “feedforward (FF)” inputs. The scatter plot

shows the relationship between the input phase and the resulting change in spiking latency of the recorded cell

produced by the AM modulation (ordinate axis). Symbols for the centripetal conditions: “x” in gold color (CP-CROSS-

parallel) and “+” symbol in red color (CP-ISO-coaligned). Symbols for the centrifugal conditions: “�” brown star

(CF-CROSS-parallel) and green diamond (CF-CROSS-coaligned). In grey, bilinear fits. See Text for details. Note a

significant reduction in spiking latency when the horizontal input is integrated post-synaptically ahead of the

feedforward drive by 5–25 ms (phase advance, rightwards). The scatter plot data are projected on the x-axis (top row)

or on the y-axis (right column) as Gaussian kernel density estimators (KDE). The color of each KDE distribution

follows the convention of the “cardinal” visual stimulation protocol (Fig 1B).

https://doi.org/10.1371/journal.pone.0268351.g010
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two half-regression lines independently of the stimulus conditions (taking all the data points

together). The optimization of explained variance by a bi-linear regression composed of two

connex linear segments results in a partition of the data cloud in two abscissa regions on each

side of the zero phase axis: one (on the left side) where the horizontal input lags in phase the

feedforward drive, and for which no significant trend is observed (r2 = 0.01; n = 32, p>0.5);

the other (on the right side), where the horizontal input is postsynaptically integrated ahead of

the feedforward drive by 5–25 ms (r2 = 0.356; n = 37; p<10–5). In this latter regression

domain, the observed reduction in spiking latency (latency advance pointing upwards on the

y-axis, reflects in an almost linear way the phase advance of the synaptic echo of the horizontal

input relative to that of the feedforward drive (“0” abscissa).

The Gaussian kernel density estimator (KDE) of the input phase distribution (along the x-

axis, above the scatter plot) clearly shows that the depolarizing input wave evoked by a collin-

ear pair of stimuli flashed in a centripetal sequence in the “Near” periphery (CP-ISO, in red)

was arriving earlier (17 ms from the scatter plot projections; 9 ms for paired data with

CP-CROSS, in gold) than when the stimuli were oriented orthogonally to the width axis path

(CP-CROSS, in gold) (Wilcoxon WPSR test on latencies, n = 39, 2 conditions, p<0.01). Note

that, in some cells, the latency advance at both Vm and Spiking levels of the CP-CROSS stimu-

lation (gold symbols) is non-null. However, the average 9 ms difference in subthreshold

responses of CP-ISO and CP-CROSS conditions of the “cardinal” protocol corresponds to the

8 ms latency advance (between CP-ISO and Center-Only response), found for the CP-ISO sig-

nificant subpopulation of “significant” cells in the “radial” protocol. Note that, for this precise

contingent of cells, the latency values of the CP-CROSS response were indistinguishable from

the Center-Only reference condition (Figs 8 and 9).

Only centripetal collinear CP-ISO sequences could induce significant shortening in output

spiking latency, by an advance as large as 30 ms. As shown by the KDE distribution on the y-

axis (right of the scatter plot), the median latency reduction observed for the collinear axis dur-

ing a centripetal stimulation (red line on the shaded red envelope) was 11 ms. In the other con-

ditions, either centrifugal or centripetal “parallel” along the RF width axis, no significant

latency advance could be seen: the three other distribution fits are all centered on a null latency

change. At the spiking level, the median difference between the onset latency of CP- and CF-

conditions is of 13 ms (respectively, red and green lines).

4.3. Synergy depends on the relative match between apparent motion and intracortical

horizontal propagation speed. A subtle difference between the two types of protocols is that

the AM speeds used in the “radial” protocol depended on the GP duration and on the size of

the SRF, and not only on the size of the MDF (as this was the case for the “cardinal” case). This

finer speed tuning was adjusted to the characteristics of each individual cell since the response

latency and strength of evoked responses both depend on the stroke duration and the distance

between strokes. For the 37 cells of the “radial” protocol, the average AM speed was of

189 ± 47˚/sec, (ranging from 72 to 312˚/s), hence below the average speed of 329 ± 101˚/s

(range 175–500˚/s) used in the “cardinal” protocol. Note that despite this difference, the global

ASHP distributions reported in the “radial” and “cardinal” protocols overlap closely with the

overall range of distributions reported in [26, 29] (mirror histograms in left panel of Fig 10). A

detailed comparison shows that the inferred speed of laterally conveyed activity is slightly

accelerated for “dynamic” sequences of AM flows recruiting the periphery (top of the histo-

gram) than for “static” flashed stimuli measures (bottom), peaking respectively at 0.175

(n = 60) and 0.125 mm/ms (n = 168). The slight shift in the ASHP distribution reflects a

change in the median values (0.225 vs 0.175 mm/ms) rather than in the mean values which

remain similar (0.231 and 0.251 mm/ms). Those results point to the notion that the speed of

laterally conveyed activity is not completely hard-wired but depends partly on the type of
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visual stimulus used. Therefore, higher levels of spatio-temporal coherence along the motion

path slightly increases the speed of response onset latency at each updated locus of stimulation

of the AM path in the cortex, a phenomenology already reproduced in simulations of nested

horizontal propagation [46].

Functionally, a critical prediction of our “working hypothesis” is that the visibility of the lat-

eral contextual modulation of the feedforward input should therefore increase when the speed of

the AM-evoked wave in cortex grows closer to horizontal propagation speed. Focusing on the

SECTOR configuration of the “radial” protocol, we studied more in depth the impact of the

CP-ISO AM kinetic effects on synaptic integration in V1 in a subset of twelve cells, by comparing,

in each of these cells, the impact of AM sequences of various speeds. The speed of lateral connec-

tivity recruitment was controlled in a graded way by introducing temporal delays between GPs

strokes (detailed in the chronograms in the bottom panel of Fig 11). We first determined indepen-

dently for each cell the “optimal” AM speed of surround recruitment, which set the 100% nomina-

tive reference speed value (ASHP). In addition, for each of these cells, similar AM sequences were

replayed at 70%, 50% and 30% of their nominal speed value, and interleaved in a pseudo random

fashion. In spite of cell-by-cell differences in their absolute optimal ASHP values (varying between

150˚/s to 250˚/s), population averages shown in Fig 11 were done by grouping across cells

responses obtained at 100%, 70%, 50% and 30% of their respective “optimal” ASHP.

The comparison of the average contextual PSP response profiles of this subpopulation for

incremental AM speeds (30%, 50%, 70% and 100% of the “optimal” value) highlights a cumu-

lative speed-dependent anticipatory recruitment of the periphery, with a bumpy stairway-like

profile preceding the main response peak (top panel in Fig 11). Crucially, the overlay of

response profiles for different speeds suggests a progressive merging of lateral inputs imping-

ing on the central target RF, from weaker amplitude and asynchronous early responses at

lower speed to larger amplitude and synchronous “in-phase”-summation with the feedforward

drive (Center-Only, black curve in Fig 11) when approaching the “optimal” AM speed. As

speed value grows (from 30% (light orange) to 100% (red) of the optimal speed), lateral influ-

ence gets progressively synchronized when it reaches the RF center. This is attested by the

presence of dissociated bumps (preceding the Center response) at slower speed, which likely

reflects sequences of asynchronous activation by the distal surround sources. In contrast, at

the “optimal” speed, the precise time-concentration increase in depolarizing activity power

enables a more efficient interaction with the center-only response, thereby boosting in a causal

way the feedforward PSP. Once more, this result clearly emphasizes the crucial timing of syn-

aptic recruitment in the Surround, which controls the emergence of synergy between long-dis-

tance (orange arrows in Fig 1A) and cascades of shorter neighbor-to-neighbor links (grey

arrows in Fig 1A) along the AM path. We conclude that “in-phase” summation of lateral

inputs with the predicted time of the feedforward drive produces the shortening of latency and

amplitude amplification reported during CP-ISO flow at high AM speed.

Altogether, our results show that facilitatory contextual control of V1 responses is opti-

mized along the orientation preference axis when the global motion speed lies within the

range of visual flow speed predicted from the apparent conduction velocity of horizontal con-

nectivity. For slower motion, the horizontally-driven facilitation effect disappears and stimuli

cross-oriented to the motion path, presented across the width axis, remain the best drivers of

cortical cells. We conclude that the axial preference of V1 cells shifts abruptly by an angle of

90˚ when the motion speed switches from 2–20˚/s to 100–250˚/s.

In summary, the spatial congruence of the elements regarding the preferred orientation

axis, the spatio-temporal coherence of the flows regarding the RF center (centripetal), the

speed of recruitment of the periphery and the precise timing selectivity of Surround-only

responses, all suggest that some form of peripheral subthreshold “prediction” is generated
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internally in V1, to interact, within the proper spatio-temporal window, with the feedforward

Center-Only synaptic volley. These highly selective features justify, to our view, the qualifica-

tion for the existence of neural correlate of “predictive filling-in” in V1, to be distinguished

from a non-specific anticipatory depolarizing spread.

Discussion

Most studies of contextual modulation in the early visual system are based on synchronous

Surround and Center stimulation, pointing to mixed suppressive and facilitatory effects [13,

Fig 11. Dependency of the contextual effect on the speed of the AM flow. Bottom, the chronograms depict the 4

inter-stroke interval conditions used in each cell to probe the temporal dependency of the interaction between the

horizontal and the feedforward synaptic waves (color code reddens with speed value). The exact value of the “optimal”

reference speed (100%) is defined on a cell-by-cell basis. Mean speed values, averaged across cells (n = 12), are given

left of each chronogram. Top, population averages for the CP-ISO SECTOR condition. All individual responses are

realigned with the Center-Only response onset. The color-coded overlaid waveforms, averaged across cells, allow the

comparison of the time-course of the response for the optimal speed value (red) and its S.E.M. envelope (shaded red)

with that observed for various proportional reductions of the AM flow speed (from top to bottom: 70% (dark orange),

50% (orange) and 30% (light orange)). The contextual response modulation amplitude decreases proportionally to the

AM speed reduction from its optimal value.

https://doi.org/10.1371/journal.pone.0268351.g011
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14, 47–52]. We document here a dynamic regime of asynchronous Surround-Center activa-

tions, of specific speed and spatial anisotropy, which, under precise timing and co-alignment

conditions, reveals a facilitatory form of contextual cortical gain control. This effect, which

links global motion direction and local orientation, is strong enough in the anesthetized brain

to shorten spiking response latency by a few tens of milliseconds. Remarkably, it also shifts the

axial preference of V1 cells by 90˚ for saccade-like speed, favoring contour integration along

the orientation preference axis.

1. Orientation anisotropy, motion streaks and speed sensitivity

The dependency on co-alignment and motion along the RF preferred orientation axis reported

here correlates with the anatomical bias for iso-oriented long range connections described in

higher mammalian visual cortex (cat: [53–55]; tree shrew: [56–58]; macaque: [59, 60]; squirrel
monkey: [61]). At the functional level, it is consistent with the concepts of the perceptual

“Association Field” in humans [4], the neural “facilitation field” in the behaving NHP [11, 62]

and the synaptic “Dynamic Association Field” in cat V1 [29]. In terms of modulatory effi-

ciency, the requirement of maximizing the spatio-temporal synergy from the Surround cor-

roborates the stimulus dependency in the recruitment of long-distance iso-tuned interactions

reported with imaging techniques at the mesoscopic level [40].

Importantly in V1 neurons, the integration axis (the RF preferred orientation) for which

the strongest responsiveness modulation by fast (150–250˚/s) apparent motion is observed, is

orthogonal to the preferred directional axis of V1 neurons (the RF width axis) when probed

with slowly moving bars and full field gratings. Classically, cat area 17 (V1) receptive fields are

best activated by slow motion across the RF width axis (1–2˚/s in [63]; 3–10˚/s in [64], but

quantitative studies reveal however a zoo of speed tuning selectivities in V1 ([65–67]; review in

[68]). Among these, “parallel motion direction selective” neurons could provide a potential

substrate for the effects reported here. However such trigger features are classically found in

higher visual cortical areas dedicated to global motion (type II MT cells [69]), but not in V1. In

contrast, Geisler and colleagues hypothesized, then described, a specific class of cells in V1

responding to Gaussian blobs, named “streak” detectors, oriented in the direction of motion

[70, 71]. To account for disambiguation of motion direction, Geisler introduced a hypothetical

multiplier circuit between direction selective and “parallel” detectors, whose existence needs

still to be demonstrated [70]. Realistic estimates for the speed threshold above which “motion

streak” operates point to medium range values, around 20–60˚/s for cat and 10–20˚/s for mon-

key (inferred from [72]). This “streak” effect, however, depends on the test stimulus, i.e. small

isotropic Gaussian blobs, critical to avoid recruiting side-inhibition, and is absent for oriented

plaid patterns [71]. Other studies reported related findings: Orban and colleagues showed that

spot directional tuning shifted by 60–90˚ above a speed threshold, whereas bar tuning

remained invariant [68, 73]. Intrinsic optical imaging experiments—combining textures tiled

with small bars and independent motion components—point to a complex dependency of ori-

entation domains recruitment on local motif length and motion speed [74]. Similarly, 90˚

shifts in orientation domains were described for moving dot noise above 14.5˚/s in cat area 17

[75].

In contrast, the 90˚ shift in axial motion sensitivity reported here is found at much faster

(saccade-like) AM speeds (>50˚/s), and relies on the same local inducer (oriented Gabor)

shifted in space and time. It is the precise time-lagged recruitment of Surround-then-Center

synaptic inputs, that conditions the contextual amplification and the phase advance of the

Center response. Both the binding specificity of the local (orientation) and global (motion

axis) features of the AM flow, on the one hand, and the match between the optimal AM speed
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and ASHP values, on the other hand, support the view that the main player is long-range hori-

zontal connectivity intrinsic to V1.

2. Novelty of the study

The novelty of our findings is several fold: 1) these lateral diffusion effects recorded in the

anesthetized, hence non-attentive, animal are likely to be intrinsic to V1 and do not require

behavioral attention and top-down control from higher cortical areas (weakened by anesthe-

sia); 2) they depend on the spatiotemporal coherence of the AM sequence and grow with flow

speed until matching the apparent speed of horizontal propagation (ASHP) in V1; 3) in that

range of speed, they produce a shift by 90˚ of axial motion sensitivity, which becomes co-

aligned with the preferred orientation RF axis; 4) they provide evidence for an internally-gen-

erated propagation process, binding local (orientation and position) and global (motion and

direction) features; 5) they constitute a plausible neural substrate of psychophysical effects in

humans reporting a perceptual bias in speed estimation for collinear motion [76].

2.1. Intra-V1 horizontal diffusion vs. cortico-cortical feedback. Conventional models of

visual cortical processing assume that complex computations, such as motion direction disam-

biguation, are encoded only at higher levels in the visual cortical area hierarchy, and are absent

in V1 [9, 10, 77–81]). Most electrophysiological studies in the behaving primate point to the

late retroaction in V1 of a top-down signal gated by attention [82–85]. They attribute the delay

of several tens of milliseconds of the change in firing of V1 cells after response onset, to the

late action of the cortico-cortical feedback [86–90], rather than to the slow horizontal propaga-

tion in V1. However, puzzlingly enough, axonal feedback transmission from higher areas is

10–100 times faster than intrinsic diffusion in V1 (see also [91] for the parallel recruitment of

dual lateral-feedback kinetics).

The challenging view presented here is that, as early as V1, horizontal connections play

already an important role in the early perception of retinal flow and global motion. The visibil-

ity and spatial spread of their functional dominance in cats & ferrets vs non-human primates

(NHP) may reflect species-specific differences in retino-cortical magnification factor. Hori-

zontal axon length (4–8 mm) is the same across species, but covers up to 8˚ of visual angle in

cat-ferret (cat: [53, 54, 92]; ferret: [58] whereas it remains within a radius of 1.5 hypercolumn

(2–3˚) in primates [93], which matches the spatial extent of collinear facilitation observed in

human psychophysics [42, 94–96].

The multi-stroke AM protocols (“cardinal” and “radial”) were both designed to promote

the in-phase synchronization of the synaptic impacts produced by the sequential stimulation

of each GP flashed along the motion path with the central feedforward drive (orange arrows in

Fig 1A). Our prediction was that this synchronization would be optimized for a flow speed in

the range of the apparent propagation speed of horizontal connectivity (ASHP in [26]). This

view is confirmed by the speed-dependency tuning study reported here (see Results). How-

ever, the variability of the intracellular anticipatory Vm profile across cells suggests that other

synaptic recruitment paths are likely to contribute, in particular the neighbor-to-neighbor

links (grey arrows in Fig 1A). It is thus likely that the “horizontal” drive efficiency results from

a combination of the asynchronous visual activation of two classes of synaptic sources: 1)

long-range monosynaptic inputs recruited at different eccentricities, whose distributed and

delayed impact is integrated in phase by the target cell; 2) polysynaptic short-range input,

reflecting chains of next-to-next neighbor activation (studied in our previous 2-stroke AM

[29]). This second effect is amplified by the re-ignition process, imposed at each GP locus by

the next feedforward input recruited on the apparent motion trajectory. Note that this rolling

wave effect is not seen for single stroke stimuli, since, otherwise, the spiking discharge field of
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the recorded cell would extend far beyond the spatial region defined by the core thalamo-corti-

cal projection.

Since the reverberation delay imposed by cortico-cortical loops is in the order of a few milli-

seconds only [97], it is plausible that most long-range interactions in the primate may operate

by nested polysynaptic feedback afferents from higher cortical areas through chains of neigh-

bor-to-neighbor lateral relays, whereas in the cat and ferret, a substantial part would remain

encapsulated monosynaptically within V1 [7]. Our results may provide new insights on the

evolutionary complexification of cortico-cortical computation. They could also spark interest

in AI and deep learning in artificial vision, where the diffusion effects of horizontal connectiv-

ity in a single V1-like terminal layer can be confronted with the backpropagation of “network

belief” implemented by nested feedback connections in a multi-layer hierarchical cortical-like

architecture [98].

2.2. Dependency on spatiotemporal coherence and visual flow speed. Since 2-stroke AM

provided evidence mostly for subthreshold synaptic amplification [29], we aimed here at pro-

moting the efficiency of centripetal AM CP-ISO sequences to produce a spiking discharge.

This was achieved by increasing the number of elementary strokes in the AM sequence, from 3

to 6 from the “cardinal” to the “radial” protocols. In the “radial” protocol, the comparison

between FULL-RND, SECTOR-RND and SECTOR-CP-ISO conditions (Fig 7 right panel)

provides evidence that the boosting of sensory responsiveness grows with the level of spatio-

temporal coherence. The speed dependency of the effect demonstrates unambiguously that the

efficiency of the contextual control of the cortical response gain and phase is optimized when a

causal coherence is reached, i.e. when the horizontal wave predicts the arrival of the feedfor-

ward wave.

The optimal range of speed (150–250˚/s) reported here contrasts with a recent study of

anticipatory responses in the fixating monkey, best seen for stimuli cross-oriented to the

motion path, in continuous slow motion across the RF width axis (6.6–13.2˚/s) [99]. The

authors propose a complex mechanism, based on the interplay of the “feedforward” trace

imposed by the continuous motion of the stimulus and a medium range isotropic horizontal

propagation wave. This activity bump still allows a suboptimal slight interaction with the feed-

forward drive when it propagates faster than the stimulus. Their interplay would cause a pre-

activation of the cells, facilitating in turn the feedforward reactivation. This proposed mecha-

nism is highly dependent on the retino-cortical magnification factor and does not account for

the global dynamics of the anticipatory wave for distances beyond monosynaptic connection

lateral extent. The propagation speed across long trajectories (> 3˚ from the Spiking discharge

field center), well beyond the spatial extent of monosynaptic links observed in NHP (<2˚), is

indeed ten times slower (< = 0.02 mm/ms) than the apparent speed of horizontal propagation

(0.05–0.50 mm/ms; see [26, 32]). The global kinetics are more in line with a slower “rolling

wave” diffusion mechanism (see also in vitro [100]). The speed range of this anticipatory wave

reported in awake macaque (<15˚/s) is lower than in the anesthetized cat area 17 (15–40˚/s in

[39]), where it has been shown that a moving square is more rapidly processed than a flashed

one. These different effects share some similarities with those reported here, but differ signifi-

cantly in their speed range (by a factor of 10–20) and preferred axial sensitivities (CROSS-par-

allel vs ISO-Collinear). Furthermore, they do not require collinearity, a hallmark of

horizontally-mediated V1 computation.

2.3. Binding of global and local features as early as V1. The current consensus concern-

ing cortical correlates of low-level perception mixes hierarchical processing and cortico-corti-

cal recurrency: V1 plays a pivotal role in synchronization dynamics back and forth with high-

order cortical areas [16, 101]. Intra-V1 synchronization and inhibitory interactions are

hypothesized to interact through a form of “competitive coding”, before the output is further
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processed downstream in the cortical hierarchy. A non-exclusive alternative is that reverberat-

ing activity in V1 already participates in non-attentive “pop-out” perception. We propose that

horizontal connections, intrinsic to V1, are instrumental to the neural implementation of low-

level perceptual Gestalt laws, in parallel or before information is broadcasted to the mosaic of

higher cortical areas. Our data suggest that, in Gestalt-like configurations, horizontal connec-

tivity propagates some kind of “network belief” (built-up on past activity ignition and shared

input statistics in the Surround) to the connex V1 neighborhood, the most likely to be next

stimulated [102].

Remarkably enough, the “prediction” wave, seen for “Surround-Only” AM CP-ISO

sequences, binds local information acquired along the motion path. This observation, although

recorded in the anesthetized brain, globally fits with Bayesian theoretical frameworks, where

omission of the next- to-come stimulus in repetitive and predictive activation sequences

unmasks an intracortically generated “expectation” signal mediated by horizontal connectivity.

This finding has to be distinguished from the classical “predictive coding” schema [103],

where what is propagated is the “residual error” from the expectation generated in higher cor-

tical areas rather than the diffusion of the network belief context [98]. At optimized speed, the

self-generated “Surround-Only” wave is shown here to exhibit the same timing as the feedfor-

ward (FF) input onset evoked by the next stimulus to come, had it been presented. More explo-

ration, outside the scope of this paper, would be needed to test how center-surround

interaction is affected by the contrast (low/high) and the orientation (same/mismatch) of the

test Center stimulus, and how possible sub-linearities can be interpreted in the context of the

principle of redundancy reduction framework [104].

Our results suggest that V1 may solve the motion extrapolation problem just through selec-

tive internal diffusion. Our interpretation is supported by theoretical studies of motion extrap-

olation (ability to continue to predict accurately the position/speed of a moving object in the

sudden absence of visual input): Kaplan and colleagues implemented a realistic spiking recur-

rent neural network simulation of V1/MT [105], and studied cortical dynamics relaxation,

when the coherent motion of a dot was abruptly interrupted by a “blank” period for three dif-

ferent lateral connectivity distributions (random, isotropic and anisotropic). The main finding,

in agreement with this study, was that anisotropy was required to allow an efficient diffusion

of motion information and achieve accurate motion/position extrapolation in the absence of

FF validation (Fig 4 in [105]).

2.4. A neural correlate of perceptual bias in speed estimate for collinear motion. It is

well established that “pop-out” and feature binding in Gestalt psychology do not depend

invariably on attentive behavior, although they can be trained during perceptual learning and

enhanced by top-down cognitive processes [11, 15, 16]. The neural mechanisms, studied here

in the anesthetized animal, can participate in automatic bottom-up attention, a form of sen-

sory- driven selection that facilitates perception in the behaving state of a subset of the stimu-

lus. Our working hypothesis is that the built-in bias in synaptic integration we report in

primary visual cortex reflects lateral connectivity anisotropies engrammed during visuomotor

development. This view is strongly supported at the functional level by the similarities in the

visual cortical “association fields” found at the synaptic receptive field level in the anesthetized

brain (our work), at the spiking discharge field level in the awake behaving state [11, 15, 16]

and at the behavioral and perceptual level [4, 5]. We report here elementary changes at the sub-

threshold and spiking levels in V1 detectable at the intracellular level in the anesthetized state,

that may not be strong enough to mediate an attention-guided behavior, but are efficient

enough to produce an “automatic” pop-out effect.

Our electrophysiological findings constitute a potential correlate, as early as V1, of the

human psychophysical speed-up bias in motion flow integration [46, 76]. These previous
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psychophysical and computational studies from our lab showed that collinear AM sequences

—composed of co-aligned ISO-Gabor patches along the global motion axis—are perceived by

humans as moving “faster” than AM sequences composed by “parallel” CROSS-oriented ele-

ments, of the same exact physical speed. The speed bias decreased as the angle between the

local GP inducer and the global motion axis increased. This bias was highly dependent on the

orientation selectivity of the inducer and disappeared for blobs, which suggests a cortical ori-

gin. All reported features show a close link with the synaptic association field of V1 neurons

[29] and the reported data.

Crucially, the speed for which the speed-up effect is the strongest in humans is 64˚/s.

Assuming a parafoveal retino-cortical magnification factor ratio of 3 between human and cat

(human: [106]; cat: [107]), the optimal speed-up range of 40–96˚/s seen in human would cor-

respond to 120–288˚/s in cat, which fits remarkably well the 100–312˚/s reported here. The

64˚/s optimal velocity for humans corresponds for the cat to a speed of 192˚/s on the retina,

and an apparent propagation speed of 0.19 mm/ms in cortex, in agreement with the inference

made from our intracellular recordings. Most remarkably, the boosting mechanism revealed

in this study confirms the prediction of an earlier computational model of our laboratory [46],

which provided a simple conceptual framework where synaptic summation between feedfor-

ward and lateral AM inputs results in amplification and latency advance in V1 spiking

responses.

Our intracellular study allows to go one step beyond this spike-based modeling. In [46], the

composite synaptic summation is linear and the non-linearity of the functional effect is simply

due to that of spike initiation. However, the intracellular study of the timing dependency of

the association process suggests a non-linearity in the interaction process between feedforward

(FF) and horizontal input, which becomes supra-linear when FF input lags by more than 5.5

ms the contextual signal (Fig 7C in [29]; see also here Fig 10, right pane)). It remains plausible

that a minimal integration time is needed to recruit non-linear voltage-dependent mechanisms

recruited by horizontal connectivity, such as the persistent sodium current or NMDA receptor

activation [25, 108].

3. Concluding statements

In conclusion, the view presented here differs significantly from classical studies/models of

top-down gain control of V1 processing which ignore the contribution per se of horizontal

connectivity [11, 15, 16] or attribute the late enhancement of visual responses in V1 to the sole

feedback from higher cortical areas [83]. We do not argue here against the consensus that top-

down signals are required, during attentive wakefulness, to express and/or amplify an integra-

tive process intrinsic to V1. However, our recent demonstration of a “synaptic association

field” in the anesthetized preparation demonstrates a preexisting structural bias intrinsic to

V1, which could constitute the synaptic footprint of the neural architecture needed to imple-

ment Gestalt laws [29]. This finding is further strengthened by a multiscale imaging study

[40], suggesting that a critical threshold of spatial summation has to be passed in order to

make these long-range interactions detectable, while temporal synergy conditions the effective

binding of those spatial interactions [39]. A likely interpretation is that some kind of resonance

regime, such as produced here by the multiple stroke reafferent drive, is needed in the anesthe-

tized state to propagate at the spiking level a functional bias already present in the subthreshold

impact of horizontal connectivity.

The novel conceptual focus here is on the temporal features of horizontal propagation and

on intra-V1 broadcasting. State-of-the-art modeling generally ignores the propagation dis-

tance-dependent delay component, whose impact compromises greatly the analytical solving
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of mean-field equations ([109]; but see [110]). Interestingly, recent large-scale network simula-

tions with topographically-organized horizontal monosynaptic connectivity and distance-

dependent axonal conduction delays (0.10–0.60 m/s) demonstrate the consistency of sponta-

neous subthreshold waves with the asynchronous-irregular regime. The multiplexing of both

processes defines a sparse-wave regime, more in line with a realistic view of a functional V1

[36]. Although our interpretation of the present results seems in agreement with some of the

computational literature on predictive coding applied to contour-through-motion extrapola-

tion and trajectory extraction, they still remain to be confronted with alternative models which

do not require propagation of a prediction. Other classes of probabilistic and static models

[71] do not depend on propagation at finite speed and apply primarily to isotropic stimuli

which are known to be suboptimal in activating V1.

Overall, our recordings suggest that fast collinear flow facilitates the refinement of anisot-

ropy integration, distributed over the mesoscopic representation of trajectories across the

“horizontal” layer plane of V1. The Surround-only CP-ISO anticipatory wave, captured “at the

right position, at the right time” in a subset of our intracellular recordings, is compatible with

a progressive topological refinement of activity diffusion in cortical space. In cat visual cortex,

using annular stimuli and voltage sensitive dye imaging, Chavane et al reported correlates of

“filling-in” responses [40], which fit with our subthreshold membrane potential recordings.

Using intrinsic optical imaging (which might reflect more spiking than subthreshold activity),

Chisum et al reported in the anesthetized tree shrew that ISO-oriented collinear Gabor arrays

flashed simultaneously did enhance locally V1 sensory responsiveness [111]. This latter study,

which used a static input pattern of 2 second duration, activating simultaneously all the Sur-

round sites, detected some activity strengthening in the areas directly (FF) activated by co-

aligned local inducers. However, it failed to observe any spatial expansion of lateral activity in

the cortical regions representing stimulus gaps. In contrast, our study predicts that the

dynamic apparent motion animation of the same array, activating in succession the co-aligned

local oriented inducers, would generate a continuous anisotropic propagation wave, most visi-

ble for AM speed faster than 50˚/s. This diffusion process would, in turn, fill the gaps between

local feedforward activation zones and promote the extraction of a motion trajectory riding on

an expanding collinear contour. Evidence in V1 for an expansive “filling-in” process during

apparent motion finds some support in fMRI imaging studies in humans [112]. It could be

tested spatio-temporally with more precision in cat and NHP, using voltage sensitive dye

imaging and fast AM sequences. Irrespective of the species-dependency of the visual spatial

coverage of horizontal connections (7–8˚ in cats vs 1–2˚ in NHPs, in spite of similar axonal

length), multiple stroke AM sequences appear best suited to dynamically recruit overlapping

“lateral connectional fields” along the motion trajectory [90]. The optimal separation in the

visual field between the GP inducers might however be still species-specific, since the orienta-

tion selectivity of the horizontal facilitation process seems most prominent when co-stimulat-

ing the “Far” surround of GP-driven RFs.

This intriguing propagation of self-generated and propagated prediction at an early stage of

visual cortical processing may underlie a more profound functional role. The classically

reported “edge-detector” property of V1 neurons, as initially described by Hubel and Wiesel

[63], highlights the fact that the strongest discharge is evoked by “parallel” oriented elements

swept towards the RF center orthogonally across its width axis. In contrast, at high AM speed

(100–500˚/s), the synaptic integration of the “silent” periphery was found to depend on the

motion axis. This dynamic process unveils a spatial selectivity and anisotropy not present in

the MDF mapped with static flashed light/dark impulses. This suggests that fast retinal flow

produced by eye-movements could change radically contour integration selectivity of V1 neu-

rons. The dynamic reconfiguration by fast retinal slip of the RF main axis could account for
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the peculiar geometry of saccadic scanpaths of human observers during the viewing of other

human faces. Indeed, Alfred Lioukianovitch Yarbus long ago reported a striking similarity

between the topographic layout of the saccadic scanpaths with the most salient long collinear

contours outlining the perceptual skeleton of the face viewed by the observer ([27, 113, 114];

review in [115]).
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Software: Xoana G. Troncoso, Christophe Desbois, Pierre Baudot, Cyril Monier.

Supervision: Yves Frégnac.
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26. Bringuier V, Chavane F, Glaeser L, Frégnac Y. Horizontal propagation of visual activity in the synaptic

integration field of area 17 neurons. Science. 1999; 283:695–9. https://doi.org/10.1126/science.283.

5402.695 PMID: 9924031

27. Baudot P. Nature is the code: high temporal precision and low noise in V1. Paris: University Paris VI;

2006.

28. Haider B, Krause MR, Duque A, Yu Y, Touryan J, Mazer JA, et al. Synaptic and network mechanisms

of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron.

2010; 65(1):107–21. https://doi.org/10.1016/j.neuron.2009.12.005 PMID: 20152117

PLOS ONE Horizontal propagation of “network belief” in V1

PLOS ONE | https://doi.org/10.1371/journal.pone.0268351 July 8, 2022 39 / 44

https://doi.org/10.1016/j.neuron.2015.09.041
http://www.ncbi.nlm.nih.gov/pubmed/26447576
https://doi.org/10.1093/cercor/1.1.1-a
http://www.ncbi.nlm.nih.gov/pubmed/1822724
https://doi.org/10.1073/pnas.93.2.623
http://www.ncbi.nlm.nih.gov/pubmed/8570605
https://doi.org/10.1073/pnas.0700622104
https://doi.org/10.1073/pnas.0700622104
http://www.ncbi.nlm.nih.gov/pubmed/17404214
https://doi.org/10.1016/j.neuron.2006.04.035
https://doi.org/10.1016/j.neuron.2006.04.035
http://www.ncbi.nlm.nih.gov/pubmed/16772175
https://doi.org/10.1038/35372
http://www.ncbi.nlm.nih.gov/pubmed/9468134
https://doi.org/10.1017/s0952523801183045
http://www.ncbi.nlm.nih.gov/pubmed/11497414
https://doi.org/10.1007/s00221-009-2057-1
https://doi.org/10.1007/s00221-009-2057-1
http://www.ncbi.nlm.nih.gov/pubmed/19888567
https://doi.org/10.1016/j.neuron.2007.12.011
https://doi.org/10.1016/j.neuron.2007.12.011
http://www.ncbi.nlm.nih.gov/pubmed/18255036
https://doi.org/10.1038/nrn3476
http://www.ncbi.nlm.nih.gov/pubmed/23595013
https://doi.org/10.1073/pnas.202049999
https://doi.org/10.1073/pnas.202049999
http://www.ncbi.nlm.nih.gov/pubmed/12368476
https://doi.org/10.1016/j.brainres.2011.05.051
https://doi.org/10.1016/j.brainres.2011.05.051
http://www.ncbi.nlm.nih.gov/pubmed/21782159
https://doi.org/10.1523/JNEUROSCI.18-22-09517.1998
http://www.ncbi.nlm.nih.gov/pubmed/9801388
https://doi.org/10.1146/annurev.neuro.23.1.441
http://www.ncbi.nlm.nih.gov/pubmed/10845071
https://doi.org/10.1146/annurev.neuro.27.070203.144152
http://www.ncbi.nlm.nih.gov/pubmed/15217339
https://doi.org/10.1016/j.neuron.2012.06.011
http://www.ncbi.nlm.nih.gov/pubmed/22841306
https://doi.org/10.1126/science.283.5402.695
https://doi.org/10.1126/science.283.5402.695
http://www.ncbi.nlm.nih.gov/pubmed/9924031
https://doi.org/10.1016/j.neuron.2009.12.005
http://www.ncbi.nlm.nih.gov/pubmed/20152117
https://doi.org/10.1371/journal.pone.0268351


29. Gerard-Mercier F, Carelli PV, Pananceau M, Troncoso XG, Frégnac Y. Synaptic Correlates of Low-
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