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Most neurological disorders are caused by abnormal gene translation. Generally,
dysregulation of elements involved in the translational process disrupts homeostasis
in neurons and neuroglia. Better understanding of how the gene translation process
occurs requires detailed analysis of transcriptomic and proteomic profile data. However,
a lack of strictly direct correlations between mRNA and protein levels limits translational
investigation by combining transcriptomic and proteomic profiling. The much better
correlation between proteins and translated mRNAs than total mRNAs in abundance
and insufficiently sensitive proteomics approach promote the requirement of advances
in translatomics technology. Translatomics which capture and sequence the mRNAs
associated with ribosomes has been effective in identifying translational changes by
genetics or projections, ribosome stalling, local translation, and transcript isoforms
in the nervous system. Here, we place emphasis on the main three translatomics
methods currently used to profile mRNAs attached to ribosome-nascent chain complex
(RNC-mRNA). Their prominent applications in neurological diseases including glioma,
neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are
outlined. The content reviewed here expands our understanding on the contributions of
aberrant translation to neurological disease development.

Keywords: translatomics, RNC-mRNA, the nervous system, polysome profiling, ribosome profiling, translating
ribosome affinity purification

INTRODUCTION

Gene expression is a cellular process involving the transcription, post-transcription modification,
translation, messenger RNAs degradation, and protein turnover (Liu et al., 2016). Each step of
this cascade shapes and balances gene expression. How this balance is achieved and the extent to
which these processes contribute to protein synthesis is a long-standing open question. Although
transcriptomic and proteomic techniques have greatly improved our ability to understand gene
expression changes, significance is limited by a lack of strictly direct correlation between mRNA
and protein levels, with some abundant mRNAs being poorly translated and vice versa. However,
protein levels correlate better with mRNAs attached to ribosome-nascent chain complex (RNC-
mRNA) than with total mRNA levels, attaining a correlation of about 0.95 (Gygi et al., 1999;
Greenbaum et al., 2003; Wang et al., 2013). Gene expression patterns derived from transcriptomic
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analysis corresponding to steady-state mRNA levels do not
take translational control into consideration, which accounts
for a large part of all regulatory amplitudes. Collectively, these
observations highlight the importance of translational control.
Indeed, various neurological diseases, including neuropathic
pain (Colloca et al., 2017), neurodegenerative disorder (Poewe
et al., 2017), multiple sclerosis (Filippi et al., 2018), fragile X
syndrome (FXS) (Hagerman et al., 2017) depression (Aguilar-
Valles et al., 2018) result from aberrant translation. Multiple
studies have evaluated gene expression changes caused by
external stimuli (Floriou-Servou et al., 2018) and neurological
disorders (Shawahna et al., 2011; Donega et al., 2019)
combining transcriptomic and proteomic profiling. However,
their resolution is limited by high cellular heterogeneity (Sharma
et al., 2015), alternative splicing (Su et al., 2018), translational
regulation (Shigeoka et al., 2016), protein degradation (Daniele
et al., 2018), and protein localization (Holt et al., 2019) likely
causing the poor correlation seen between mRNAs and protein
levels in the nervous system. Besides, insufficient sensitivity
by proteomics limits detection of small amounts of newly
synthesized protein that may accumulate in extremely narrow
time windows, given that proteins are more stable (median half-
life of 46 h) than mRNAs (Schwanhäusser et al., 2011). In addition
to translation, protein levels are also influenced by degradation,
which is also tightly regulated. Consequently, it reinforces the
requirement for RNA analysis at a point closest to the protein,
then the translatome steps onto the stage to obtain more complete
information of neurological development and dysfunction.

Polysome profiling, the first translatomics technique, has
been valuable in translational studies – uncovering dynamics
of ribosome occupancy and density. Ribosome profiling is
another promising technique that can precisely determine mRNA
localization on loaded ribosomes. Translating ribosome affinity
purification (TRAP), which is widely used in nervous system
studies, is suited for examining translation in specific cell types
within complex brain tissues.

In this review, we discuss the generalized view of translatome,
which covers almost all elements involved in translation, and how
their dysregulation affects neurodevelopment. We then highlight
how the three main translatomics methods identify mRNAs
under translation and how they exert their functions in the
neurological diseases. Next, the other reported applications of
translatomics in the nervous system are concluded, which may
lead to new ideas to study translational changes of neurological
diseases. Finally, based on its application in other fields, we
speculate on future translatomics applications in neuroscience.

BROAD SENSE TRANSLATOMICS

mRNA translation is the process by which the “base sequence”
(nucleotide sequence) of mature mRNA molecules is used to
synthesize corresponding specific amino-acid sequences. This
highly dynamic process is divided into 4 crucial phases: initiation,
elongation, termination, and ribosome recycling (Rodnina,
2018). In each phase, the ribosome and auxiliary translation
factors form transient complexes that facilitate protein synthesis.

Figure 1 shows a schematic representation of translation (Kapur
et al., 2017). Initiation involves assembly of a ternary complex
(TC) including the 40S ribosomal small subunit (SSU), the
associated eukaryotic initiation factors (eIFs) and methionyl-
tRNA (Met-tRNAi

Met) near the mRNA 5′ cap; the SSU then scans
along the mRNA in the 3′ direction until the P-site-bound Met-
tRNA with anticodon is correctly paired with the mRNA start
codon. the SSU is joined by the 60S ribosomal large subunit
(LSU) to form the 80S ribosome. The incoming aminoacyl-
tRNA (aa-tRNA) with the complementary codon enters the
ribosome A site, and elongation commences. A peptide bond is
established between the incoming amino acid of the A site and
the adjacent amino acid of peptidyl-tRNA in the ribosomal P
site. Once a peptide bond is formed, the ribosome slides forward
relative to the mRNA triggering translocation of the tRNAs into
the canonical P- and E-sites. Translation termination occurs
when a stop codon enters the A site of ribosome. The nascent
polypeptide chains release, then the ribosome dissociates into
separate subunits and escapes from the mRNA.

The term translatome refers to the totality of elements
directly involved in translation, including ribosomes, RNC-
mRNA, tRNA, regulatory RNA (such as miRNA and lncRNA),
RNA binding proteins, and various translation factors (Zhao
et al., 2019). Impaired function by these elements is associated
with a range of pathophysiological changes in the nervous
system (Table 1).

Translation is executed by ribosomes (Peña et al., 2017),
which are comprised of a 60S subunit that possesses 3 ribosomal
RNAs (25S, 5.8S, 5S) and 47 proteins, and a 40S subunit
containing 18S ribosomal RNA and 33 ribosomal proteins.
Ribosomopathies are a diverse group of disorders associated
with aberrant ribosome production and function (Mills and
Green, 2017). Impaired expression of ribosomal genes in
the brain causes ribosome biogenesis abnormalities in mice
suffering from chronic social defeat stress (Smagin et al., 2016).
Using X-exome resequencing, a mutation affecting RPL10,
a 60S ribosomal protein, causes neurodevelopmental defects
and X-linked disorders (Zanni et al., 2015; Slomnicki et al.,
2016). Thus, dysregulation of ribosomal biogenesis and function
may disrupt neurodevelopment, leading to microcephaly and
cognitive impairment (Ingolia et al., 2009; Darnell, 2014;
Ishimura et al., 2014; Zanni et al., 2015; Slomnicki et al.,
2016). Using conventional biochemical methods, knockout or
knockdown of ribosome proteins in neurons could mimic the
observed impaired ribosomal biogenesis in neurodegenerative
diseases and study their pathogenic contributions (Slomnicki
et al., 2018). The structural biology method has also made
remarkable contributions to the ribosome field. Our current
understanding of ribosome structure and function has been
greatly expanded after the emerging of X-ray crystallography
and cryogenic electron microscopy (cryo-EM) (Wilson and
Doudna Cate, 2012; von Loeffelholz et al., 2017). High-resolution
features of cryo-EM has enabled the visualization of chemical
modifications of the ribosomal RNA and the ligand complexes
of the ribosome (Myasnikov et al., 2016; Javed et al., 2017;
von Loeffelholz et al., 2017). Cryo-EM has been used to
analyze the structure of receptors and ion channels in neurons
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FIGURE 1 | Four fundamental phases of translation:initiation, elongation, termination and ribosome recycle. Initiation: a ternary complex (TC) comprising a
GTP-bound eukaryotic translation initiation factor 2 (eIF2) and methionyl-tRNA (Met-tRNAi

Met ) interacts with the 40s ribosomal subunit and several initiation factors
including eukaryotic translation initiation factor 1 (eIF1), eukaryotic translation initiation factor 1A (eIF1A), eukaryotic translation initiation factor 5 (eIF5) and eukaryotic
translation initiation factor 3 (eIF3), forming an 43s preinitiation complex (43s PIC). The 43s PIC is recruited to the mRNA 5′ cap through the eukaryotic translation
initiation factor 4B (eIF4B) and eukaryotic translation initiation factor 4F (eIF4F) which is composed of eukaryotic translation initiation factor 4A (eIF4A), eukaryotic
translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4G (eIF4G). Poly(A)-binding protein (PABP) together with eIF4G acts as a bridging
factor which mediates “closed loop” mRNA conformation. The 43s PIC then scans along the mRNA until the P-site-bound Met-tRNA with anticodon is correctly
paired with the mRNA start codon. Subsequently the dissociation of eIF2 and other eukaryotic initiation factors trigger the combination of the 60S and the 40S
ribosomal subunit, forming a complete 80s ribosome and allowing the second codon to be decoded at the A site. Elongation: the incoming aminoacyl-tRNA
(aa-tRNA) with the complementary codon enters the ribosome A site, facilitated by eukaryotic translation elongation factor 1A (eEF1A) and eukaryotic translation
elongation factor 1B (eEF1B). A peptide bond is established between the incoming amino acid of the A site and the adjacent amino acid of peptidyl-tRNA in the
ribosomal P site. Subsequently, the nascent peptide of the P site leaves its tRNA and binds to the amino group of the A-site aminoacyl-tRNA. Once a peptide bond
is formed, the ribosome slides forward relative to the mRNA triggering translocation of the tRNAs into the canonical P- and E-sites. This is promoted by eukaryotic
translation elongation factor 2 (eEF2) with transposase activity at the cost of GTP hydrolysis. The release of E-site deacylated tRNA occurs before the next
aminoacyl-tRNA enters into the vacant A site. Termination and ribosome recycle: translation termination occurs when a stop codon enters the A site of ribosome. In
eukaryotes, eukaryotic release factor 1 (eRF1) and eukaryotic release factor 3 (eRF3) hydrolyze the ester bond of the peptidyl-tRNA, driving the translation
termination and ultimately triggering the release of nascent polypeptide chains. The ribosome dissociates into separate subunits and escapes from mRNA.
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TABLE 1 | Elements involved in translation and the application of translatomics in nervous system diseases.

Elements Conclusions References

Ribosome Dysregulation of ribosomal biogenesis Zanni et al., 2015; Slomnicki et al., 2016, 2018

disrupts neurodevelopment.

tRNA Interruption of tRNA maturation and modification Karaca et al., 2014; Ivanova et al., 2017; Lin et al., 2018;

drives nervous system dysfunctions. Ramos and Fu, 2019; Schaffer et al., 2019; Torres et al.,
2019

Auxiliary translation Initiation factors (e.g., eIF4E and eIF2α) and elongation factors Beckelman et al., 2016; Amorim et al., 2018;

factors (e.g., eEF1A and eEF2) are involved in neurodevelopment Jan et al., 2018; Tsai et al., 2018; Uttam et al., 2018b;

and maintenance of synaptic plasticity. Zyryanova et al., 2018

Regulatory RNAs Inhibit translation, mediated by microRNAs decreasing protein levels. Schratt et al., 2006; Murphy et al., 2017; Zhang H. et al.,
2018; Chen et al., 2020

IncRNAs and circRNAs function as competing endogenous RNAs

by sponging microRNAs in neuronal cells.

RNA binding proteins Some RNA binding proteins (e.g., FMRP and PUM2) repress Chen et al., 2014; D’Amico et al., 2019

the translation of their target mRNAs. Chen et al., 2014; D’Amico et al., 2019

Diseases Conclusions

RNC-mRNAs Glioma Polysome profiling gives the first insight into the
radiation and drug resistance of GBM cells at
the translation level.

Wahba et al., 2016, 2018; Bell et al., 2018

Neuropathic Pain Nav1.8-TRAP mice could achieve sensory
neuron-specific ribosome tagging with
enrichment in the nociceptor population and
facilitate the finding of new mechanisms
controlling nociceptor excitability.
Axon-TRAP is likely lead to important
breakthroughs in our understanding of which
mRNAs are translated locally in nociceptor
axons to modulate excitability.

Shigeoka et al., 2016; Megat et al., 2019a,b

Depression Astroglial-specific bacTRAP connects
perineuronal net, astroglial cells, and
depression. Similarly,
ePet-Cretg/−/RiboTagtg/−mice link FKBP5 and
serotonin with depression.

Simard et al., 2018; Lesiak et al., 2020

Fragile X syndrome Ribosome profiling can distinguish stalled and
active ribosomes, and uncovered the
contribution of ribosomal brake -FMRP to
fragile X syndrome.

Das Sharma et al., 2019; Shah et al., 2020

Neurodegenerative
diseases

TRAP method targeting cell types defined by
genetics or projections can effectively profile
translation regulation on memory consolidation
associated with Alzheimer’s disease.
Accurately interference with the translation
mechanism in specific cells of targeted regions
may be a novel therapeutic target for
neurodegenerative diseases.

Cho et al., 2015; Ostroff et al., 2019; Voskuhl et al., 2019;
Kim et al., 2020; Lim et al., 2020

(Dang et al., 2017; Laverty et al., 2019; Liu et al., 2019), but few
studies have reported ribosomopathies under cryo-EM.

Disruption in tRNA maturation and modification can alter
the amount of cellular tRNA, thereby damaging protein
folding and affecting neuronal homeostasis, which may result
in nervous system dysfunction (Blanco et al., 2014; Kapur
et al., 2017; Musier-Forsyth, 2019). tRNA aminoacylation by
tRNA synthetases is a critical quality control checkpoint for
maintaining translation fidelity. Mutations in aminoacyl-tRNA
synthetases are implicated in a wide range of nervous system
disorders (Meyer-Schuman and Antonellis, 2017; Ognjenović
and Simonović, 2018). Various factors have linked tRNA
dysfunction to neurological disorders, including a genomic

mutation that reduces the expression of isodecoder, which has
the same anticodon as tRNA but differs in the tRNA body
sequence (Torres et al., 2019), mutations affecting tRNA splicing
machinery (Karaca et al., 2014; Ivanova et al., 2017), aberrant
expression of tRNA metabolism genes (Schaffer et al., 2019),
and impaired tRNA modification (Lin et al., 2018; Ramos
and Fu, 2019) all point to an association between defective
tRNA function and neurological disorders. Recently, DM-tRNA-
seq (demethylase tRNA sequencing), modified charged DM-
tRNA-seq and ARM-seq (AlkB-facilitated RNA methylation
sequencing) have developed to identify and quantify tRNA base
modification (Cozen et al., 2015; Zheng et al., 2015; Evans et al.,
2017). These advances have not been applied to the neuronal field,
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but future applications of these technologies may provide a more
comprehensive explanation of the role of tRNA dysfunction in
nervous system diseases.

Eukaryotic translation initiation factor 4E (eIF4E)
phosphorylation by MNK (MAPK-interacting protein kinase)
modulates excitatory synaptic activity and depression-like
behavior (Amorim et al., 2018). Additionally, eIF4E integrates
inputs from ERK (extracellular regulated protein kinases) and
mTORC1 (mammalian target of rapamycin complex 1) signaling,
and has been shown to influence pain plasticity (Uttam et al.,
2018b). eIF2α (eukaryotic translation initiation factor 2α)
phosphorylation converts itself into a competitive inhibitor of
eIF2B (eukaryotic translation initiation factor 2B), a guanine
nucleotide exchange factor, thereby aggravating cognitive
deficits after traumatic brain injury (Tsai et al., 2018; Zyryanova
et al., 2018). Other translation initiation and elongation
factors, including eukaryotic elongation factor 1A (eEF1A),
and eukaryotic elongation factor 2 (eEF2), are involved in
neurodevelopment and long-term synaptic plasticity (Beckelman
et al., 2016; Jan et al., 2018). However, few studies have examined
the role of eukaryotic release factors in neurological disorders.

Non-coding RNAs and RNA binding proteins have emerged
as key regulators in the nervous system. miRNAs (micro
RNAs) modulate protein levels by typically binding to the 3′-
untranslated region of cytosolic mRNA targets, triggering mRNA
degradation (Germany et al., 2019). miR-134, a brain-specific
miRNA negatively modulates synapse development by inhibiting
LIM kinase 1 protein translation (Schratt et al., 2006). miR-144-
3p represses translation and is linked to the rescue of anxiety-like
behavior (Murphy et al., 2017). Mounting evidence indicate that
lnc-RNA (long non-coding RNAs) and circRNAs (circular RNAs)
act as competing endogenous RNAs by sponging microRNAs
in neuronal cells (Zhang H. et al., 2018; Chen et al., 2020).
FMRP (fragile X mental retardation protein), an RNA binding
protein, appears to directly bind to the 80S ribosome, thereby
repressing translation of target mRNAs, and has been linked
to autism (Darnell et al., 2011; Chen et al., 2014). The RNA-
binding protein, PUM2 (Pumilio2), inhibits translation of genes
involved in mitochondrial homeostasis and is induced in the
aging brain (D’Amico et al., 2019). Deletion of Lin28, an RNA
binding protein, is associated with brain developmental defects
(Herrlinger et al., 2019).

Ribosome-nascent chain complex, an intermediate product
of translation, will be discussed in detail under narrow
translatomics. Detailed analysis of mRNA translation, including
translation rates, can provide insight into the regulatory effects
of broad translatomic components in the nervous system
(Darnell et al., 2011). Collectively, the above evidences show
that orderly translation is essential for maintaining neuronal
homeostasis and aberrant translational elements contribute to
neurological diseases.

NARROW SENSE TRANSLATOMICS

In the narrow sense, translatomics refers to investigation
translating mRNA in order to elucidate translational changes.

Due to non-covalent interaction between ribosomes and mRNA,
ribosomal nascent-chain complexes are highly unstable and
tend to dissociate during cell lysis, increasing chances of
enzymatic degradation (Zhao et al., 2019). Multiple approaches,
including microarray-based sequencing and RNA sequencing
(RNA-Seq) have been developed for transcriptome identification
and quantification (Wang et al., 2009). Based on RNC
features and transcriptomics methods, multiple techniques have
been developed for analyzing translation, including polysome
profiling, ribosome profiling (Ribo-seq) and translating ribosome
affinity purification (TRAP-seq) (Figure 2; Zhao et al., 2019).
Here, we will review technical advances that have provided
insight into translational regulation in nervous system diseases.

Polysome Profiling
One or more ribosomes recruit identical mRNA with the
translation rate being limited by initiation rate. Thus, ribosome
density on a given mRNA reflects translational status. Polysome
profiling is a technique developed in the 1960s that relies on
sucrose density gradient ultracentrifugation and fractionation
(Drysdale and Munro, 1967). mRNAs bound to varying numbers
of ribosomes can be separated via centrifugation (King and
Gerber, 2016). Polysomes and monosomes are often separated
through a standard linear sucrose gradient (commonly 5–
50% sucrose) made by a gradient maker (Liang et al., 2018).
Gradients are collected into several fractions, some of which
are translating mRNAs associated with polysomes, monosomes
and the supernatant containing the free mRNAs, 60S and
40S ribosomal subunits (Figure 2). The height of polysome
peaks of the curve and the area under each peak indicate
ribosome translational activity (Figure 2). Northern blot, RT-
qPCR, as well as the high-throughput microarray or RNA-seq
approaches are then used to identify mRNAs in the separated
components (Figure 2). Initiation inhibition causes ribosome
“runoff,” leading to decomposition of polysome and elevated
levels of free ribosomal subunits. Elongation inhibition enhances
polysomal size. Detection of similarly sized polysomes in different
circumstances suggests that initiation and elongation have both
been affected or translation activity is unchanged (Gandin et al.,
2014). The unfeasibility of handling many samples in parallel
limits wide use of polysome profiling. Furthermore, it is difficult
to distinguish between stalled ribosomes and active polysome
whose distribution may change within the high fraction (Sivan
et al., 2007). These challenges can be partly surmounted by
ribosome profiling (see details below).

Ribosome Profiling
Previously, there have been no ways to directly quantify protein
synthesis rates. Thus, studies of translational regulation have
relied on comparing mRNA and protein levels. Although
polysome profiling may estimate protein synthesis, this approach
has low resolution and accuracy. Ingolia et al. developed the
ribosome profiling method in which the ribosome-nascent
peptide chain complex is nuclease-treated to destroy mRNA
fractions that are not occupied by ribosomes (Figure 2;
Ingolia et al., 2009). Ribosome-protected fractions (RPFs) are
then isolated by sucrose density gradient centrifugation or
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FIGURE 2 | Three major translatomic methods investigating RNC-mRNAs [modified from Figure 1 in Zhao et al. (2019)]. Polysome profiling: utilizing features of the
largest ribosome sedimentation coefficient in most cells and separating translating mRNAs with polyribosomes by sucrose density gradient ultracentrifugation and
fractionation. Ribosome profiling: treating the ribosome-nascent peptide chain complex with ribonuclease to degrade mRNA fragments that are not covered by
ribosomes, and isolating ribosomes protected fractions (RPFs). TRAP-seq: isolating RNC-mRNAs of specific cell type by affinity purification with corresponding
anti-tag beads, under the control of a cell-specific promoter and an affinity tag (such as His, Avi, GFP, etc.) which is fused into the large ribosomal subunit (such as
Rpl10a protein). The construction of transgenic cre mice expressing Rpl10a protein with affinity tag in specific cell in the nervous system is shown.

immunopurification of ribo-tag cells (Ingolia et al., 2012).
After ribosome and rRNA removal, high-throughput sequencing
is used to detect small, ribosome-protected, RNA fragments
of about 21–28 bp. This approach has multiple advantages.
High-resolution ribosome footprints (RFs) enable genome-wide
analysis of translation with codon resolution and can: (i) elucidate
translational efficiency of all individual mRNAs as calculated
from ribosome profiling paired with RNA-seq (Ingolia et al.,
2009), (ii) detect even relatively rare and subtle translation

events (Brar and Weissman, 2015), (iii) uncover rich and precise
ribosome positional information, such as translation initiation
at non-AUG codons (Spealman et al., 2018), identify upstream
ORFs (uORFs) translation (Rodriguez et al., 2019), as well as
elucidate codon usage bias (Paulet et al., 2017) and ribosome
pausing (Michel et al., 2012).

The availability of commercial kits has greatly simplified
ribosome profiling. However, its efficiency in accurately
measuring mRNA translation efficiency is limited by the
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following factors: (i) independent biases caused by ribonuclease
digestion (Gerashchenko and Gladyshev, 2017), (ii) biases
introduced by translation elongation inhibitors, for example,
anisomycin and cycloheximide favor 21 nt RPFs and 28 nt RPFs,
corresponding to ribosomes with open and occupied A sites,
respectively (Lareau et al., 2014; Wu et al., 2019), (iii) relatively
high false positive and negative rates due to bias toward analysis
of main coding sequences (CDS) and lack of rRNA probes
for complete rRNA depletion (Guttman et al., 2013; King and
Gerber, 2016).

TRAP-Seq
Isolation of full-length mRNAs associated with ribosomes has
been conventionally done via polysome profiling. However,
this approach is time-consuming and limited to handling
large numbers of samples in parallel. Alternatively, translating
ribosome affinity purification sequencing (TRAP-seq) based on
expressing tagged ribosomal proteins has been reported (Inada
et al., 2002). By using animals or cells in which activated cre-
recombinase under a cell-specific promoter drives expression of
an affinity tag (such as His, Avi, or GFP) fused to the large
ribosomal subunit, RNC-mRNAs of specific cell type may be
isolated by affinity purification with corresponding anti-tag beads
(Figure 2; Heiman et al., 2014). This approach is limited by
the need to generate stably transfected cell lines or transgenic
animals for cell type. The potential biases of this method are
that some ribosomal proteins including RPL10a preferentially
translate specific mRNAs (Xue and Barna, 2012), and that some
isolated mRNAs may be extraribosomal.

Translating ribosome affinity purification sequencing is
seldomly used in other fields. However, it is especially important
in the nervous system because it is relatively difficult to reliably
obtain translational descriptions of specific cells from the central
nervous system tissues due to its complex cellular heterogeneity
(Okada et al., 2011). Although Fluorescence Activated Cell
Sorting (FACS) method has been able to isolate specific cells
of brain and Schwann cells of the peripheral nervous system
(Rubio et al., 2016; Germany et al., 2019; Tomlinson et al.,
2020), it takes one whole day to dissociate the tissue and isolate
cells by FACS (Rubio et al., 2016). Thus, it may change gene
translational expression patterns and limit the utility of time-
consuming translatomics methods including polysome profiling
and ribosome profiling. In this case, TRAP-seq may be the
only practical way to investigate cell-type specific translation for
neuron cells and Schwann cells.

Other Translatomics Method
It is widely accepted that actively translating mRNAs bind
multiple ribosomes. However, this is contradicted by recent
findings that translation occurs also on mRNAs bound to
monosomes, and that translation is not directly proportional
to the number of ribosomes on mRNA (Requião et al.,
2017; Neidermyer and Whelan, 2019; Biever et al., 2020).
Relative to standard linear gradient of polysome profiling, non-
linear gradients of RNC-seq (full-length translating mRNA
sequencing) enable translating mRNAs elution at smaller
volumes to circumvent the limitations of polysome profiling

(Liang et al., 2018). In the RNC-seq approach, cell lysate is
transferred to the surface of 30% sucrose buffer and the
bottom pellet containing RNC-mRNAs collected from the
sucrose solution after ultracentrifugation (Liu et al., 2018;
Zhang M. et al., 2018). Although high-resolution ribosome
profiling defines elongating ribosomes along mRNA, it cannot
record intermediates of translation initiation, termination and
recycling. To address this, Stuart K. Archer et al. developed
translation complex profile sequencing (TCP-seq) method which
developed from ribosome profiling (Archer et al., 2016). The
yeast cells were crosslink with formaldehyde to stall ribosomes
and attach translation complex to mRNA at native positions.
Then translation complex subjected to RNase digestion. Next,
the ribosome and small subunit (SSU) were separated by sucrose
gradient ultracentrifugation, and the 250 nt-long RNA fragments
on these fragments were sequenced to obtain the naturally
distributed map at the initial, extension and termination stages of
translation, respectively. The method is capable of observing the
SSU footprint on the 5′ untranslated region (UTR) of mRNA and
capturing the position of any type of ribosome -mRNA complex
at various stages of translation. For valuable, limited amounts
of nervous system tissue, RNC-seq seems superior to polysome
profiling. However, RNC-seq and TCP-seq are seldomly used in
neurology field, probably because they are relatively new and not
known to most neurologists.

Applications of Translatomics for
Neurological Disease
Each method of translatomics has its own unique application and
advantages. Polysome profiling, the first translatomics technique,
can measure ribosome density and fractionate RNA based
on ribosome occupancy. Methods that provide precise mRNA
positional information of ribosome occupancy can accurately
estimate translation rate. TRAP, which is the most widely used
in nervous system studies can analyze translation in specific cell
types. To better show the role of translatomics in the nervous
system, we focused on the application of polysome profiling
in glioma disease, ribosome profiling in FXS and Parkinson’s
disease (PD) by virtue of ribosome stalling identification. TRAP
in neuropathic pain, depression, multiple sclerosis (MS), and
memory consolidation associated with Alzheimer’s disease (AD)
through targeting cell types defined by genetics or projections and
monitoring local translation.

Glioma
In polysome fractionation, the height of polysome peaks and the
area under each peak indicate ribosome translational activity.
Brain cancer such as Glioblastoma Multiforme (GBM) which is
an intrinsic and highly heterogeneous tumor of the brain has been
studied by the classic and affordable methodology of polysome
profiling due to having a variety of recognized tumor cell lines
(Westphal and Lamszus, 2011). Analysis of translational rate,
expressed as the ratio of area under the polysome and 80S peaks,
and analysis of total and translating mRNAs levels by combining
tanslatome and transcriptome methods, revealed for the first time
that translating mRNAs can act as biomarkers for glioblastoma
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and previously unappreciated GBM heterogeneity (Bernabò et al.,
2017; Lupinacci et al., 2019).

Glioblastoma stem cells (GSCs) within GBM can self-renew,
differentiate into distinct lineages and escape current therapeutic
approaches including radiotherapy and chemotherapy (Bayin
et al., 2014). Overcoming the escape mechanism could make
substantial progress toward an more effective treatment. As a
clonogenic subpopulation, the GSC lines are critical to study the
treatment response of glioblastomas, and thus polysome profiling
with high demand for sample size was widely used. Wahba
et al. analyzed radiation-induced translatomes and put forward
new molecular insights concerning GBM radiosensitization such
as Golgi dispersal and increased eIF4F-cap complex formation
detected after radiation (Wahba et al., 2016). Radiation primarily
modifies gene expression via translational control (Wahba et al.,
2016). Moreover, the nuclear export protein XPO1 in the
interacting network based on translatome data was identified
to serve as a key molecule for radiosensitization in GSCs
(Wahba et al., 2018). Of significance, in vitro and in vivo
experiment proved that the XPO1 inhibitor selinexor enhanced
the radiosensitivity of GSCs by inhibiting DNA repair. In
addition to radioresistance, drugresistance also needs to be
solved. Proneural (PN) and mesenchymal (MES) GSCs are two
mutually exclusive GSC populations with distinct dysregulated
signaling identified by genome-wide transcriptional analysis
(Nakano, 2015). The two subtypes drive therapeutic resistance
in glioblastoma. It has been showed that arsenic trioxide
(ATO) drug is more potent and inhibitory to PN GBM cells
than to MES GBM cells. ATO activates the MAPK-interacting
kinase 1 (MNK1)-eukaryotic translation initiation factor 4E
(eIF4E) signaling axil, and MNK activation associates with
ATO resistance (Bell et al., 2016). Given this information, Bell
et al. used polysomal fractionation to analyze an ATO-induced
translatome and found an enrichment of anti-apoptotic mRNAs,
suggesting translation-mediated resistance to ATO in MES GSCs
(Bell et al., 2018). Furthermore, in an apoptosis assay, inhibition
of MNK sensitized MES GSCs to ATO (Bell et al., 2018). This
finding raises a possibility that targeting MNK1 makes MES GSCs
sensitive to drugs such as arsenic trioxide. Collectively polysome
profiling gives insight into the radiation and drug resistance of
GBM cells at the translation level.

Neuropathic Pain
Neuropathic pain is a disorder that features spontaneous
persistent or shooting pain after nerve injury. Translational
regulation is key in nociceptive circuits and altered mRNA
translation is involved in the sensitization of nociceptors in
response to nerve injury (Khoutorsky and Price, 2018).

Dorsal root ganglion (DRG) and trigeminal ganglion (TG)
neurons are remarkably nociceptive. Which mRNAs translation
has been changed in nociceptors causing neuropathic pain is
unclear. Translatomics methods can help to solve this problem.
The most straightforward application of TRAP is the systematic
molecular characterization of target cell types in complex tissues,
including the brain, from which neurons are extremely difficult
to isolate. Doyle et al. used 16 transgenic mouse lines to compare
translational profiling of distinct cell types of the nervous system

(Doyle et al., 2008). This versatile strategy could molecularly
characterize specific cell types even in the most heterogeneous
cell populations in vivo. Thus, TRAP complements standard
cell sorting approaches that may be influenced by artifacts and
bias toward some subtypes (Haimon et al., 2018; Huang et al.,
2019). Regardless, droplet-sequencing (Drop-seq), like single-cell
approaches, have advanced enough to enable counting of specific
cell types (Saunders et al., 2018), and TRAP remains a convenient
way of investigating translational regulation.

A recent study used Nav1.8-TRAP mice to achieve sensory
neuron-specific ribosome tagging with enrichment in the
nociceptor population (Megat et al., 2019a). This unbiased
method demonstrated a novel translation regulation signaling
circuit causing chemotherapy-induced neuropathic pain (CIPN).
Mitogen-activated protein kinase interacting kinase (MNK) and
eukaryotic initiation factor (eIF) 4E activity acted on the target of
rapamycin complex 1 (mTORC1) via control of RagA translation
in Nav1.8-TRAP mice with CIPN (Megat et al., 2019a). In the
same mice, they observed higher enrichment in mechanistic
target of rapamycin (mTOR)-related genes in the TG-TRAP
dataset compared with DRG, whereas translational efficiency in
AMP-activated protein kinase related genes was higher in the
DGR. Moreover, capsaicin stimulation of the TG region caused
greater pain responses than stimulation of DRG-innervated
regions (Megat et al., 2019b). This finding is in line with the
fact that the mTORC1 signaling pathway plays a key role in
controlling nociceptor excitability and sensitization, and this
sensitization is strongly weakened by AMPK pathway activation
(Schmidt et al., 2016). The several published studies on pain
mechanisms and translatomics almost entirely limited to the
peripheral nervous system, and the only one targeting the central
nervous system was performed by Uttam et al. (2018a), who
adopted the ribosome profiling approach to identify mRNAs with
significantly changed translational efficiency in spinal cord dorsal
horn tissues after spared nerve injury (SNI).

Multiple studies have confirmed that translation also occurs at
decentralized local neuronal domains that are highly polarized,
such as in the peripheral nervous system (PNS) axonal and
central nervous system (CNS) dendritic compartments (Glock
et al., 2017). IL-6 and NGF in primary afferent neurons and
their axons cause nascent protein synthesis by enhancement of
the eIF4F complex formation to induce pain hypersensitivity
in vitro (Melemedjian et al., 2010). Inhibition of protein synthesis
with local administration of rapamycin in myelinated axons of
the rodent foot pad was shown to prevent capsaicin-induced
hyperalgesia (Jiménez-Díaz et al., 2008). The local translation
regulation mechanism has a key role in the establishment and
maintenance of chronic pain. Despite evidence indicating that
mature axons are capable of protein synthesis (Kalinski et al.,
2015; Rangaraju et al., 2017), the small size of axons and tight
connections with glia and post-synapses have made in vivo
transcriptome and translatome isolation extremely challenging.
Importantly, microdissection-based approaches are limited to
brain regions (e.g., the hippocampus; (Biever et al., 2020) where
axons are in separable lamina. While abundant transcriptome
analysis demonstrated that the mRNAs for cAMP-response
element binding protein (CREB), Nav1.8, and other ion channels
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localize to DRG axons in vitro (Thakor et al., 2009; Melemedjian
et al., 2014; Hirai et al., 2017), there are technological challenges
to research in which mRNAs are translated locally in nociceptor
axons in vivo. TRAP-seq has overcome this limitation. Because
the axons of retinal ganglion cells terminate in the superior
colliculus of the midbrain, Shigeoka et al. used axon-TRAP, in
which the cyclization recombination enzyme is only expressed in
retinal ganglion cells, and immunopurified mRNAs on ribosomes
in developing and mature axons from the dissected superior
colliculus (Shigeoka et al., 2016). Axon-TRAP may expand our
understanding of which mRNAs are locally translated to regulate
excitability in nociceptor axons.

Depression
According to the World Health Organization, at least 350
million people are affected by depression worldwide (Smith,
2014). Depression, one of the psychiatric disorders, has become
a growing health concern. Several studies have reported the
involvement of astroglial cells in depression, and significant
changes in astrocytes in response to antidepressants (Banasr and
Duman, 2008; Nagy et al., 2015; Peng et al., 2015). However,
the nature of these significant changes remains largely unknown.
Simard et al. employed astroglial-specific bacTRAP mice exposed
to chronic variable stress (CVS) to generate a translatomic
database of differentially expressed genes (DEGs). Analysis of
top DEGs indicated that CVS impaired perineuronal net (PNN)
degradation, resulting in neuroplastic dysfunction (Simard et al.,
2018). Subsequently, based on the same database, Coppola et al.
used bioinformatics analysis to further delineate key mediators
involved in the astroglial-PNN-depression relationship and
found important transcription factors in astroglial cells (Coppola
et al., 2019). In addition to PNN, the serotonin system plays
a critical role in the pathogenesis of stress, but therapies
that target the stress and depression associated genes such as
Tph2 and Slc6a4 (SERT) to modulate serotonin reuptake and
degradation have no obvious effect in clinical trials (Lalovic
and Turecki, 2002; Bellivier et al., 2004; Oquendo et al.,
2014). Directly targeting serotonin signaling is expected to
be an alternative therapeutic. A study of immunoprecipitated
mRNAs associated with ribosome of serotonin neurons in ePet-
Cretg/−/RiboTagtg/−mice (Scott et al., 2005) with conservative
sequencing analysis showed that Fkbp5 mRNA translation
decreased in the dorsal raphe brain region after repeated forced
swims (Lesiak et al., 2020). The results not only support previous
findings linking FKBP5 to depression, but also provide the first
evidence linking FKBP5 to serotonin. Translatomics connects the
three, and FKBP5 inhibitors are shown to have promise as potent
and novel antidepressant treatments.

Fragile X Syndrome
Fragile X syndrome is a neuro-developmental and monogenic
disease associated with autism spectrum disorder (ASD). FXS
results from the loss of FMRP encoded by fragile X mental
retardation 1 (FMR1). FMRP, a polyribosome-associated RNA
binding protein, has always been thought to be involved
in translational repression and in the maintenance of tuned
protein synthesis, but there has been little consensus regarding

the translational mechanism causing FXS before the use of
translatomics. A study by Darnell et al. using crosslinking
immunoprecipitation (HITS-CLIP) and polysome profiling to
assess correspondence between FMRP and mouse brain-specific
polyribosomal mRNAs, uncovered its role as a ribosomal
brake, and showed that loss of the translational brake
contributed to FXS (Darnell et al., 2011). However, stalled
and active ribosomes move to the high sucrose concentration
fraction during sucrose gradient centrifugation, implying that
polysome profiling does not provide a perfect demonstration of
translational activity (Sivan et al., 2007). Similarly, the TRAP
method immunoprecipitates all ribosome-bound mRNA, and
thus cannot differentiate between stalled and active ribosomes.
It is also unclear whether FMRP significantly represses both
initiation and elongation. Ribosome profiling yields insufficient
information on overall ribosome density and ribosome stalling
on each gene at high resolution. Supporting evidence has
come from studies that measured and compared ribosomal
occupancy, positioning, and translation efficiency (TE) in
Fmr1 knockout vs. wild-type mice. These studies uncovered
widespread decline of translational pausing but no significant
translation initiation changes in Fmr1 knockout mice (Das
Sharma et al., 2019). Translatomics, especially ribosome profiling,
dissects the nature of FMRP-mediated translational regulation.
However, ribosome profiling used by Sharma et al. may
not distinguish between translocating and stalled ribosomes,
suggesting that key events leading to FXS may be overlooked.
To circumvent this issue, Shah et al. discovered inhibited
elongation in Fmr1 knockout mice by virtue of reduced TE
and increased protein level. In order to distinguish between
transiting and stalled ribosomes, a modified procedure was
used. After blocking initiation of all hippocampal-cortical slices,
followed by translocation inhibition at different time points using
cycloheximide, ribosome profiling was then used for sample
analysis (Shah et al., 2020). This approach detects mRNA-specific
ribosome translocation dynamics in the nervous system, which is
a remarkable breakthrough.

Neurodegenerative Diseases
A range of neurodegenerative diseases such as Parkinson’s disease
(PD), Alzheimer’s disease (AD), and multiple sclerosis (MS) are
increasingly considered to have molecular mechanisms including
protein aggregation (Ross and Poirier, 2004). Parkinson’s
disease (PD) is the second most prevalent neurodegenerative
disorder, with motor and non-motor symptoms (Samii et al.,
2004). The most common genetic cause of Parkinson’s disease
is mutations in the LRRK2 gene. Kim et al. estimated
translation efficiency by comparing between the ribosome-
profiling and the RNA-seq expression changes, and translational
landscape demonstrated a global shift in G2019S LRRK2
human dopamine neurons (Kim et al., 2020). Of note,
differentially regulated genes had a common feature with
complex secondary structure in the 5′ untranslated region (UTR),
and Ingenuity Pathway Analysis (IPA) showed Ca2+ signaling,
which indicated elevated intracellular calcium levels (Kim et al.,
2020). Ribosome profiling associated dysregulated translation
control with intracellular Ca2+ homeostasis imbalance in G2019S
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LRRK2 human dopamine neurons. Alzheimer’s disease (AD)
is the leading cause of dementia, characterized by regression
of learning and memory. Thus, it is necessary to study
the translational regulatory mechanisms that affect memory
to inhibit the onset and progression of AD. Although the
importance of translational regulators in memory consolidation
has been shown, our understanding of target genes under
translational control in memory formation is limited by the
lack of accurate ways of quantifying translation rate (Costa-
Mattioli et al., 2005). Cho et al. analyzed translation efficiency
through temporal ribosome profiling and transcriptome profiling
of the mouse hippocampus during memory consolidation and
identified 3 different types of translationally repressive gene
regulations distributed in steady-state, early, and late-phase (Cho
et al., 2015). However, Mathew et al. pointed out that the probable
inclusion of choroid plexus mRNA in hippocampal samples used
by Cho et al. needs to be considered before drawing conclusions.
Regional differences may occur in the transcriptome of each cell
type during neurodegeneration. Thus, isolation of neurons from
entire brain tissue needs to be resolved (Cho et al., 2016; Mathew
et al., 2016). Cre-LoxP recombination can successfully generate
ribo-tag mice expressing tagged ribosomes in specific cell types.
Using Cx3cr1CreER/CreER; Rosa26fsTRAP/fsTRAP mice, it was found
that the chronic environmental risk factor Cu exposure impaired
cognition and increased the incidence of AD by shifting microglia
toward inflammatory phenotypes at translational levels (Lim
et al., 2020). For multiple sclerosis (MS), another neurological
degenerative disease, Olig1-RiboTag mice permit isolation of
oligodendrocyte lineage cells, and allow specific translatomics
in vivo from targeted regions during the remyelination phase
of a MS model, and discovery of gene-expression pathways
intrinsic to oligodendrocytes with MS (Voskuhl et al., 2019).
Accurately interfering with the translation mechanism in specific
cells of targeted regions may be novel therapeutic targets for
neurodegenerative diseases.

The brain contains a diverse population of projection neurons
with anatomical and molecular heterogeneity. Dissociating each
projection neuron by laser-capture microdissection leads to
the loss of RNA pools located in dendrites and axons, which
account for >50% of the neuronal volume (Tóth et al., 2018).
Furthermore, cell isolation protocols are relatively inefficient,
while TRAP has sufficient power to simultaneously analyze
hundreds of cells for a candidate cell type (Huang et al., 2019).
Although ribo-tag mice constructed with cre-loxp recombination
have promoted the investigation of translation regulation on
memory consolidation in cell types of specific brain regions, more
specific spatial translational regulation such as axon-translation
achieved by viral-TRAP could provide new insights into memory
formation in projection neurons. Ostroff et al. injected retrograde
virus into cortical area TE3 to express tagged Rpl10a (ribosomal
protein L10a) at axon terminals, resulting in tagged Rpl10a
expression in retrogradely transduced projection neurons of
the amygdala region (Ostroff et al., 2019). Combined with
RNA-seq, genome-wide biomolecular profiling of anatomically
defined projective neurons can be performed. Ostroff et al.
using viral-TRAP not only proved the recent assumption that
axonal translation also occurs in the CNS neurons in vivo,

but also demonstrated that axonal translation in projection
regions is associated with memory formation. In addition to
these viruses, which do not cross synapses, transsynaptic viruses
may trace inputs farther upstream. Canine adenovirus type
2 – green fluorescent protein (CAV – GFP), a transsynaptic
virus, was injected into particular brain regions including the
nucleus accumbens shell, of transgenic mice whose ribosomal
proteins fused with anti – GFP camelid nanobody, and was
used to molecularly profile neurons projecting to farther regions
(Ekstrand et al., 2014).

Potential Applications of Translatomics
in Neurological Diseases
Alternative Transcript Isoforms
The nervous system exhibits the most divergent and extensive
use of alternative transcription isoforms, which may influence
development of genetically-defined neuron types, neuronal
maturation, and synapse specification (Furlanis and Scheiffele,
2018). Splicing misregulation is involved in the development
and maintenance of neurologic diseases (Licatalosi and Darnell,
2006). High-throughput RNA-seq of autistic brains has identified
a large number of downregulated alternative splicing of neuronal
activity-dependent exons (Parikshak et al., 2016; Quesnel-
Vallières et al., 2016). However, it is not clear to what extent
transcription isoforms detected by RNA-seq are indeed translated
into functional protein isoforms (Weatheritt et al., 2016; Tress
et al., 2017). In addition to arising from transcription isoforms,
protein isoforms may arise from same transcript encoding
multiple protein variants via alternative translation initiation
sites and termination sites. Although translatomics has not been
used to explore whether the process of transcription isoforms
to protein isoforms also plays an important role in neurological
diseases such as autism, the possible mechanism of protein
isoform production by translatomics in nervous cells has been
studied (see below). This could lead to further study of diverse
protein isoforms in neurological diseases.

As opposed to ribosome profiling in which only the coding
sequence protected by ribosomes is detected, polysome profiling
and TRAP can detect full-length translated mRNAs, including
untranslated regions. Wong et al. used polysome profiling to
investigate differential translation rates as quantified by shifts in
ribosomal load between variant mRNA isoforms with alternate
5′ UTRs in embryonic stem cells-derived neural precursor
cells (Wong et al., 2016). Furlanis et al. used TRAP to probe
transcript isoforms that are recruited for translation across
distinct neuron types (Furlanis et al., 2019). TRAP minimizes
low-level background noise from widely expressed non-neuronal
genes and facilitates detection of divergent alternative splicing
programs across closely-related cell types. These two methods
offer new possibilities to study contexts in which transcript
isoforms are not completely translated into alternative splicing
proteins. Ribosome profiling with codon resolution was used by
Sapkota et al. to uncover novel translation initiation sites in the
same transcript, which give rise to N-terminal protein variants,
and to identify new C-terminal extensions mediated by stop
codon readthrough in neuron-glia cultures (Sapkota et al., 2019).
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Moreover, this study coupled TRAP to ribosome footprints for
specific cell type analysis of translational readthrough in vivo.
Taken together, the three translatomics methods have greatly
enhanced our knowledge on diversity of protein isoforms.

Novel Neuropeptides
As signaling molecules and key mediators, brain-derived peptides
are responsible for brain activities, including learning, memory,
and stress (Borbély et al., 2013; Fazzari et al., 2018). Most
reported neuropeptides to date are characterized as ligands
for G-protein coupled receptors (GPCRs), which serve as
extraordinarily efficient drug targets in general (O’Brien et al.,
2019; Li et al., 2020). Given their therapeutic potential, significant
efforts have been made to search for novel functional peptides in
basic neuroscience. Currently, micropeptides from the brain are
receiving more attention in translational neuroscience. However,
the low abundance and atypical fragmentation of brain-derived
peptides limits the effectiveness of conventional proteomics. The
position of ribosomes and protected footprints by ribosome
profiling facilitate identification of translation products and
discovery of novel protein products. The combination of
ribosome profiling and mass spectrometry may facilitate their
detection in the brain (Tharakan et al., 2020). Moreover, the
ribosome footprint distribution can identify translated upstream
open reading frames (uORFs) (Jiang et al., 2017) and novel
translation initiation or termination sites (Sapkota et al., 2019),
providing clues for the discovery of novel micropeptides.

Single mRNA Molecule Translation
While the above-mentioned translatomics methods including
polysome profiling, ribosomal profiling, and TRAP-seq have
provided quantitative new insights for translation regulation
in vivo, genome-wide methods require averaging of many mRNA
molecules in cells, ignoring differences between individual
mRNAs. To visualize translation dynamics of single mRNAs in
living cells, Halstead et al. first developed a technique called
translating RNA imaging by coat protein knock-off (TRICK)
(Halstead et al., 2015), in which orthogonal bacteriophage PP7
and MS2 stem-loops were used to label a transcript with distinct
fluorescent proteins. The PP7 capsid protein was fused with
green fluorescent protein (PCP-GFP), and the MS2 capsid protein
was fused to red fluorescent protein (MCP-RFP). Untranslated
mRNAs simultaneously express green and red fluorescent
proteins, while in contrast translated mRNAs which are at least
undergoing the first round of translation are only labeled with
MCP-RFP in the 3′ UTR. However, the TRICK technique is more
suitable for detecting the first round of mRNA translation in
living cells. A method based on the recently developed SunTag
fluorescence labeling system to label nascent polypeptides of
mRNA was described (Morisaki et al., 2016; Wang et al., 2016;
Wu et al., 2016; Yan et al., 2016). In this method, the MS2 and PP7
systems (Halstead et al., 2015) are used to image mRNA to obtain
the quantitative and positional relationship between mRNAs and
the ribosome. Only one labeled polypeptide can be detected when
using a fluorescence labeling system alone. Boersma et al. applied
two independent MoonTag and SunTag systems with different
fluorescent proteins, so the spatial-temporal translation of two

different mRNAs can be observed in living cells (Boersma et al.,
2019). Furthermore, the combined MoonTag and SunTag systems
can image stop codon readthrough of single mRNAs by putting
MoonTag in the open reading frame of the gene and SunTag after
the stop codon (Boersma et al., 2019).

Few studies have achieved image translation of single mRNA
molecules in living neurons. These found that translation was
repressed in distal dendrites of primary neurons because ∼40%
mRNAs were translated in proximal dendrites, but only ∼10%
mRNAs were translated in distal dendrites (Wang et al., 2016;
Wu et al., 2016). The bursting translation behavior of these
mRNAs can effectively control the level and location of protein
in synapses. This method is thus very important to explore
the pathogenesis of mental disorders with synapse impairments
such as fragile X chromosome syndrome (Blanco-Suárez et al.,
2017). More experiments may be needed to verify and study
the translation changes of a single mRNA molecule in nervous
system diseases.

Applications of Translatomics in Other
Fields
Translating ribosome affinity purification has many applications
in the nervous system with multiple cells. In the nervous
system cells, gene translation plays a prominent role in
synaptic function (Sossin and Costa-Mattioli, 2019). Polysome
profiling, a traditional method for analyzing RNC-mRNAs,
can be traced back to the last century. Numerous studies
have explored the regulation of gene translation by polysome
profiling in vivo. Of note, in addition to obtaining RNC-
mRNAs that has been following, polysome profiling and
TRAP can also be utilized to isolate ribosome-association
protein complexes that are immunoprecipitated from gradient
fractions or purified polysome-associated mRNA transcripts.
The physiological functions of such protein complexes can be
determined by western blotting or mass-spectrometry (Gandin
et al., 2013; Simsek et al., 2017). One shortcoming of polysome
profiling is that the slow gradient fraction and translation
ribosome affinity purification method results in dissociation of
tightly bound proteins and hence does not isolate proteins which
interact transiently with ribosomes.

Initiation and advancement of translatomics guided by
ribosome profiling revealed that some putative long non-coding
RNAs (lncRNA) (Lu et al., 2019), microRNAs (Lauressergues
et al., 2015) and circular RNAs (Ye et al., 2019) were misannotated
as non-coding RNAs. Short open reading frames (sORF)
contained in non-coding RNAs are ignored because do their
small size (Figure 3). Micropeptides and proteins encoded by
non-coding RNAs have been implicated in a variety of biological
processes, such as embryonic development (Pauli et al., 2015),
muscle function (Anderson et al., 2015), glioma cell suppression
(Zhang M. et al., 2018; Wang J. et al., 2019), cell division
(Handler et al., 2008) and morphogenesis (Kondo et al., 2007). In
addition to non-coding RNAs, new translation patterns related
to known coding genes have attracted much research attention.
A significant portion of ribosome footprints outside of typical
protein coding regions (CDSs) derive from the sequence of 5
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FIGURE 3 | Translatome analysis in other fields. New translatable molecule: non-coding RNAs are found to contain short open reading frames (sORF); upstream
open reading frames (uORF) could translate into micropeptides and this translation can influence the translation of the downstream main open reading frames;
stop-codon read-through and alternative translation extends in both 3′ and 5′ direction.

’UTR (Brar et al., 2012; Archer et al., 2016; Murat et al., 2018).
Both upstream translation itself and micropeptides encoded by
uORF often result in the suppression of the translation of the
downstream main open reading frame (Figure 3; Mueller and
Hinnebusch, 1986; Vattem and Wek, 2004; Rahmani et al., 2009;
Wethmar, 2014; Ebina et al., 2015). Another translation pattern is
stop-codon read-through which we have described in the nervous
system (Figure 3; von der Haar and Tuite, 2007; Jungreis et al.,
2016; Li and Zhang, 2019). Ribosome profiling can also analyze
frameshift mutations in the main open reading frame, although it
has not been remarkably successful (Atkins et al., 2017).

In addition to the combined analysis with classical omics
including transcriptomic and proteomics in the nervous system
(Das Sharma et al., 2019; Lupinacci et al., 2019; Wang X.
et al., 2019; Tharakan et al., 2020), translatomics can be used
in conjunction with m6A-seq to characterize the effect of m6A
modification located in the coding region of mRNA on the
translation efficiency (Jia et al., 2019; Mao et al., 2019).

CONCLUSION AND PERSPECTIVES

The translation of mRNA into protein is an important
cellular process. Any significant changes in the translation

components can profoundly affect the development of
the nervous system, thereby causing neurological diseases.
Translatomics methods have revolutionized our ability to
monitor RNC-mRNAs in vivo and analyze the regulation of
translation. The applications of polysome profiling, ribosome
profiling, and TRAP-seq in neurological diseases are listed
in Table 1. However, it is clear that better protocols with
improved performance are needed for efficient analysis of
small samples of nervous system specimens. Compared
with the other two methods, ribosome profiling has more
gaps in the nervous system. In the future, depending on
the precise genomic positional information obtained by
ribosome profiling, the stop-codon readthrough occurring in
neurons or in glial cells can be used to explore modulating
effects of micropeptides encoded by putative non-coding
RNAs and uORF on the development of the nervous
system. Notably, the method of observing translation of
single mRNA molecules in live neurons is a powerful tool
for study of translation regulation in neurological diseases.
Various combinations of translatomics methods reflecting
different aspects of translatome and new translatomics
approaches such as RNC-seq and TCP-seq would be useful
in neurology field. Application of different omics data
types can elucidate potential causative changes that lead to
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neurological disorders, which is essential for the design
of precise and personalized medicine (Hasin et al., 2017).
The translatome, an upgraded version of transcriptome,
which couples with other omics such as genomics,
metabolomics and microbiomics, is likely to promote
development of translatomics in the study of the
nervous system.
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