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ABSTRACT
Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through
colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at
micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both
animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid,
are generated by fermentation of branched amino acids, generated from undigested protein
reaching colon. However, BSCFAs have been sparsely investigated when referring to effects on
energy metabolism. Here we primarily investigate the effects of isobutyric acid and isovaleric acid
on glucose and lipid metabolism in primary rat and human adipocytes. BSCFAs inhibited both
cAMP-mediated lipolysis and insulin-stimulated de novo lipogenesis at 10 mM, whereas isobutyric
acid potentiated insulin-stimulated glucose uptake by all concentrations (1, 3 and 10 mM) in rat
adipocytes. For human adipocytes, only SCFAs inhibited lipolysis at 10 mM. In both in vitro models,
BSCFAs and SCFAs reduced phosphorylation of hormone sensitive lipase, a rate limiting enzyme in
lipolysis. In addition, BSCFAs and SCFAs, in contrast to insulin, inhibited lipolysis in the presence
of wortmannin, a phosphatidylinositide 3-kinase inhibitor and OPC3911, a phosphodiesterase
3 inhibitor in rat adipocytes. Furthermore, BSCFAs and SCFAs reduced insulin-mediated
phosphorylation of protein kinase B. To conclude, BSCFAs have effects on adipocyte lipid and
glucose metabolism that can contribute to improved insulin sensitivity in individuals with disturbed
metabolism.
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Introduction

A diet rich in dietary fibers influences the regulation of
weight and appetite control as well as energy homeosta-
sis.1-3 These effects are most likely mediated by the short-
chain fatty acids (SCFAs), generated through colonic fer-
mentation of dietary fibers.4-11 The most abundant SCFAs,
namely acetic acid, propionic acid and butyric acid, appear
to have anti-obesity properties in both animal models and
human subjects when orally distributed.12-21 For example,
a high fat diet supplemented with acetic acid, propionic
acid or butyric acid improved both insulin sensitivity and
protected against weight gain in animal models.18,19 Fur-
thermore, inulin-propionate, a dietary fiber combined
with the ester of propionic acid, reduced energy intake,
accumulation of intra-abdominal adiposity and lipid con-
tent in the liver in obese human individuals.20

Branched SCFAs (BSCFAs), e.g. isobutyric and isova-
leric acid, are generated by fermentation of branched
amino acids, valine, leucine and isoleucine,22 generated
from undigestible protein reaching colon.23,24 However,

an increase of isobutyric acid has also been demonstrated
after ingestion of certain dietary fibers, such as polydex-
trose.25 To the best of our knowledge, less is known
regarding the role of gut-derived BSCFAs in the regula-
tion of metabolism. Nevertheless, a recent study showed
that a diet composed of brown beans increased colonic
production of isobutyric acid and propionic acid, which
was associated with lowered glucose and insulin concen-
trations in the blood as well as increased production of
the satiety hormone pancreatic peptide YY (PYY).26 Fur-
thermore, by supplementing the drinking water with leu-
cine, a branched amino acid, to mice fed a high-fat diet
has been shown to improve glucose tolerance and insulin
signaling as well as decrease inflammation in adipose
tissue.27 In obesity, adipose tissue shows a number of
structural, morphological and functional alterations
associated with a deteriorated fat storage capacity, an
imbalance in the circulating levels of fatty acids and adi-
pose tissue-derived hormones as well as pro-inflamma-
tory cytokines that promote insulin resistance.28-31 Thus,
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adipose tissue is a key target tissue for prevention of type
2 diabetes. We and others have previously demonstrated
health beneficial effects of SCFAs on adipocyte function,
involving effects on lipolysis, lipogenesis and glucose
uptake.32-38 BSCFAs have not been associated with out-
comes on host health as is the case for SCFAs and specif-
ically, effects of BSCFAs have not been reported when
referring to effects on adipocyte metabolism. In the cur-
rent study, we investigate whether the 2 BSCFAs isobuty-
ric acid and isovaleric acid have the ability to modulate
adipocyte function.

Results

Branched short-chain fatty acids inhibit
isoproterenol-stimulated lipolysis in a PI3-kinase
and PDE3 independent manner

Adipocyte lipolysis is mediated by hormones that
increase cAMP, leading to protein kinase A (PKA)-
mediated phosphorylation and activation of hormone
sensitive lipase (HSL), a rate limiting enzyme in hor-
mone-stimulated lipolysis.30 The effects of the BSCFAs
isobutyric acid and isovaleric acid, and the SCFA acetic
acid on basal and isoproterenol-stimulated lipolysis were
investigated in primary rat adipocytes. As shown in
Table 1, BSCFAs and acetic acid inhibited isoproterenol-
stimulated lipolysis, which was associated with reduced
phosphorylation of HSL (Fig. 1, Table 2). Insulin mediates its antilipolytic effect to a large extent

via a phosphatidylinositide 3-kinase (PI3 kinase)- and pro-
tein kinase B (PKB)-dependent activation of the cAMP-
degrading enzyme phosphodiesterase (PDE) 3B.39,40 How-
ever, as shown in Figure 2, the PI3 kinase- selective inhibitor
wortmannin and the PDE3-selective inhibitor OPC3911 did
not prevent the antilipolytic effect of either branched or
non-branched SCFAs on isoproterenol-mediated lipolysis,
whereas the antilipolytic effect of insulin was blocked by the
inhibitors. To get the human perspective, we also studied
lipolysis in adipocytes isolated from subcutaneous adipose
tissue of human donors. BSCFAs and SCFAs reduce phos-
phorylation of HSL whereas significant inhibition of lipoly-
sis was obtained with SCFAs (Fig. 1, Fig. 3, Table 2).

Branched short-chain fatty acids inhibit basal and
stimulated lipogenesis

The effect of BSCFAs and acetic acid on lipogenesis was
studied in primary rat adipocytes. Both basal and insulin-
stimulated lipogenesis, measured as the incorporation of
[3H]-labeled glucose into cellular lipids, were inhibited by
isobutyric and isovaleric acid, although to a lesser extent
for isovaleric acid in the basal condition (Table 3). Also,
acetic acid resulted in inhibition of lipogenesis (Table 3).

Table 1. BSCFAs and acetic acid inhibit lipolysis in rat adipocytes.
Lipolysis was measured after 30 minutes of stimulation without
(BASAL) or with 30 nM isoproterenol (ISO) in the absence (CTRL)
or presence of isobutyric acid (I-BA), isovaleric acid (I-VA) and ace-
tic acid (AA). The values for I-BA, I-VA or AA are related to respec-
tive CTRL (set to 1) in BASAL and ISO condition. The mean § SD
(n D 3-5) were used and significance levels were accepted when
�p < 0.05, ��p < 0.01 and ���p < 0.001. a8.4-fold, b8.3-fold, c6.4-
fold increase in ISO-stimulated lipolysis compared to BASAL.

1 I-BA 3 I-BA 10 I-BA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 0.74 0.57 0.90 0.52 0.60� 0.31
ISO 1a 1.07 0.07 0.98 0.12 0.39�� 0.26

1 I-VA 3 I-VA 10 I-VA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 1.73� 0.18 0.95 0.02 0.75 0.27
ISO 1b 1.10� 0.03 1.05 0.03 0.50�� 0.05

1 AA 3 AA 10 AA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 1.54� 0.29 0.81 0.21 1.16 0.42
ISO 1c 1.05 0.03 0.93 0.09 0.33��� 0.08

Figure 1. BSCFAs and SCFAs inhibit ISO-potentiated phosphoryla-
tion of HSL in primary rat and human adipocytes. In A-B, rat adi-
pocytes were stimulated without (Ctrl) and with isoproterenol
(ISO) in the presence or absence of 3 and 10 mM isobutyric acid
(I- BA), isovaleric acid (I-VA), propionic acid (PA) and butyric acid
(BA) for 10 minutes (n D 3). In C, human adipocytes were stimu-
lated with ISO in the presence or absence of 10 mM I-BA or I-VA
for 10 minutes (n D 3). Homogenates were subjected to immu-
noblot analysis and membranes were probed with antibodies
against pHSLS563 and b-actin. Representative blots are shown.
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Isobutyric acid potentiates insulin-stimulated
glucose uptake

The effect BSCFAs as well as acetic acid on glucose uptake
was studied in primary rat adipocytes. As shown in Table 4,
isobutyric acid induced a small, but significant potentiation
of both basal and insulin-stimulated glucose uptake. The

highest concentration of isovaleric acid inhibited basal
glucose uptake, while no effect on insulin-stimulated glucose
uptake was observed, which was also the case for acetic acid.

BSCFAs and SCFAs inhibit insulin-induced
phosphorylation of protein kinase B

To elucidate whether BSCFAs and SCFAs mediate their
effect via PKB, a kinase involved in most acute insulin-
mediated metabolic responses, we investigated their

Table 2. BSFAs and SCFAs reduce phosphorylation of HSLS563 in
primary human and rat adipocytes. Rat adipocytes were stimu-
lated without (CTRL) or with ISO in the absence or presence of 3
and 10 mM isobutyric acid (I-BA), isovaleric acid (I-VA), propionic
acid (PA) and butyric acid (BA) for 10 minutes. Human adipocytes
were stimulated without (CTRL) or with ISO in the absence or
presence of 10 mM I-BA or I-VA for 10 minutes (n D 2-3).Homo-
genates were subjected to immunoblot analysis, membranes
were probed with antibodies against pHSLS563 and quantifica-
tion was made using Image Lab Software (Bio-Rad Laboratories).
Data are presented as fold of isoproterenol (ISO). Mean § SD
were used and significance levels were accepted when �p< 0.05,
��p < 0.01 and ���p < 0.001. N/A; not applicable.

HSLS563 in primary rat adipocytes

CISO

n D 2#-3 CTRL ISO 3 I-BA# 10 I-BA 3 I-VA# 10 I-VA

Mean 0.02��� 1 0.77 0.5� 0.66 0.51���

SD 0.12 N/A 0.35 0.25 0.52 0.03

C ISO

n D 3 CTRL ISO 3 PA 10 PA 3 BA 10 BA

Mean 0.09��� 1 0.62�� 0.26�� 0.58 0.24��

SD 0.04 N/A 0.15 0.19 0.42 0.16

HSLS563 in human adipocytes

CISO

n D 3 CTRL ISO 10 I-BA 10 I-VA

Mean 0.20�� 1 0.61�� 0.31��

SD 0.20 N/A 0.10 0.24

Figure 2. BSCFAs inhibit lipolysis independent of PDE3B and PI3K
in primary rat adipocytes. Lipolysis was measured after 1 hour of
stimulation without (BASAL) or with 30 nM isoproterenol (ISO), in
the absence (CTRL) or presence of 10 mM of isobutyric acid (I-
BA), isovaleric acid (I-VA), acetic acid (AA) propionic acid (PA),
butyric acid (BA) or insulin (INS) (1nM). The inhibitor for PDE3
(OPC3911) and the inhibitor for PI3K (Wortmannin;WM) were
used in BASAL or ISO-stimulated lipolysis in the presence of the
branched or non-branced SCFAs. A) I-BA, I-VA and INS in combi-
nation with OPC3911; B) I-BA, I-VA and INS in combination with
WM; C) AA, PA, BA and INS in combination with WM. The values
for I-BA, I-VA, AA, PA, BA and INS are related to CTRL (control
without branched or non-branched SCFAs) in BASAL condition.
For A-C, mean § SD (n D 3) were used and significance levels
were accepted when �p < 0.05, ��p < 0.01 and ���p < 0.001.
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effect on PKB phosphorylation. The two regulatory sites,
Thr308 and Ser473 in PKBa, are phosphorylated by PDK1
and the TORC2 complex, respectively, and are necessary
for full activation of the kinase.41 Figure 4 and Table 5
depict that insulin-mediated phosphorylation of PKB at
Thr308 and Ser473 was decreased in response to BSCFAs
and SCFAs in rat and human adipocytes.

Materials and methods

Animal model

Sprague Dawley male rats, 36-41 d of age, purchased
from Charles River Laboratories (Germany), were kept

under standardized conditions in the animal house facili-
ties at Lund University. The Committee of ethical animal
research in Malm€o and Lund has approved all experi-
mental procedures (permission number: M245-12).

Figure 3. SCFAs and BSCFAs inhibit ISO-potentiated lipolysis in
human adipocytes. Lipolysis wasmeasured after 1 hour of stimulation
without (BASAL) and with 30 nM isoproterenol (ISO) in the absence
(CTRL) or presence of 3 and 10 mM of propionic acid (PA), butyric
acid (BA), isobutyric acid (I-BA) or isovaleric acid (I-VA), as shown in A)
for PA and BA and B) for I-BA and I-VA. The values are related to
BASAL CTRL (condition without lipolytic agent and SCFA or BSCFAs).
Mean § SD (n D 3-4) were used and significance levels were
accepted when �p< 0.05, ��p< 0.01 and ���p< 0.001.

Table 3. BSCFAs and acetic acid inhibit lipogenesis in primary rat
adipocytes. Lipogenesis was measured after 30 minutes of stimu-
lation without (BASAL) or with 1 nM insulin (INS) in the absence
(CTRL) or presence of 1, 3 and 10 mM isobutyric acid (I-BA), isova-
leric acid (I-VA) or acetic acid (AA). The values for I-BA, I-VA and
acetic acid are related to respective CTRL (set to 1), either in a
basal or an insulin-stimulated state. Mean § SD (n D 3-4) were
used and significance levels were accepted when �p < 0.05,
��p < 0.01 and ���p < 0.001. a11.2-fold, b6.4-fold, c5.7-fold
increase in insulin-stimulated lipogenesis compared to BASAL.

1 I-BA 3 I-BA 10 I-BA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 0.90 0.23 0.90�� 0.23 0.58��� 0.12
ISO 1a 0.98 0.09 0.88 0.14 0.61� 0.3

1 I-VA 3 I-VA 10 I-VA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 0.89 0.08 0.95 0.03 0.88 0.14
ISO 1b 1.01 0.02 1.00 0.02 0.61� 0.11

1 AA 3 AA 10 AA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 0.69 0.26 0.64�� 0.07 0.22�� 0.12
ISO 1c 0.84 0.11 0.62 0.21 0.05��� 4E-4

Table 4. Isobutyric acid potentiates insulin-stimulated glucose
uptake in primary rat adipocytes. Glucose uptake was measured
after 30minutes of stimulationwithout (BASAL) or with 1 nM insulin
(INS) in the absence (CTRL) or presence of 1, 3 and 10 mM isobutyric
acid (I-BA), isovaleric acid (I-VA) and acetic acid (AA). The values for
I-BA, I-VA or AA are related to respective CTRL (set to 1), either in a
basal or an insulin-stimulated state. Mean § SD (n D 6-7) were
used and significance levels were accepted when �p< 0.05, ��p<
0.01 and ���p< 0.001. a2.9-fold, b2.8-fold, c2.1-fold increase in insu-
lin-stimulated glucose uptake compared to BASAL.

1 I-BA 3 I-BA 10 I-BA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 1.29� 0.19 1.3�� 0.18 1.24� 0.21
INS 1a 1.24��� 0.05 1.27��� 0.1 1.25�� 0.11

1 I-VA 3 I-VA 10 I-VA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 0.94 0.12 0.95 0.05 0.69�� 0.1
INS 1b 1.02 0.03 0.74 0.2 1.01 0.12

1 AA 3 AA 10 AA
CTRL
Mean Mean SD Mean SD Mean SD

BASAL 1 0.98 0.09 0.87 0.14 0.82�� 0.1
INS 1c 0.98 0.06 1.06 0.11 1.14 0.21
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Human adipose tissue

Patients with scheduled reconstructive breast surgery,
recruited by the surgeons at Ska

�
ne University Hospital,

Sweden, were included in the study. Adipose tissue,
removed from the abdominal subcutaneous region of the
patients, reached the laboratory within one hour after
surgery. The preparation of adipocytes was immediately
initiated and usually 3 g of subcutaneous adipose tissue
was used for an experiment. All experiments were

approved by the Regional Ethics Committee in Lund,
Sweden (Dnr 2013/298).

Adipocyte isolation

Epididymal white adipose tissue was isolated and
digested in collagenase (Sigma Aldrich/C6885) for 30
minutes at 37�C with agitation and then washed as previ-
ously described.42 The total volume of packed cells (lipo-
crit) in the adipocyte suspension was determined as
described by Fine et al.43 The adipocytes were resus-
pended and diluted to the final cell concentration
(1-10%), depending on experimental setup.

Lipolysis

Lipolysis was measured as described by Dole et al.44

Aliquots (400 ml) of 5% (rat) or 10% (human) suspen-
sions of adipocytes were prepared in Krebs Ringers
HEPES (KRH) containing 25 mM HEPES (pH 7.4),

Figure 4. BSCFAs and SCFAs decrease phosphorylation of PKB in pri-
mary rat and human adipocytes. Primary rat or human adipocytes
were stimulated with insulin (INS) in the absence (CTRL) or presence
of 3 and 10 mM of SCFA or BCFA for 10 minutes. Homogenates were
subjected to immunoblot analysis andmembranes were probed with
antibodies against PKB, PKB at serine 473 (S473) and PKB at threonine
308 (T308) as well as b-actin. For primary rat adipocytes, results (nD
3-6) are shown for isobutyric acid (I-BA) and isovaleric (I-VA) (A, B). For
human adipocytes, results (nD 3–4) are shown for BA, PA, I- BA and
I-VA (C, D). Representative blots are shown.

Table 5. BSCFAs and SCFAs decrease phosphorylation of PKB in
primary rat and human adipocytes. Rat adipocytes were stimu-
lated without (CTRL) or with INS in the absence or presence of
3 and 10 mM isobutyric acid (I-BA) and isovaleric acid (I-VA) for
10 minutes (n D 3). Human adipocytes were stimulated without
(CTRL) or with INS in the absence or presence of 10 mM I-BA or I-
VA for 10 minutes (n D 3) or 3 mM and 10 mM propionic acid
(PA) or butyric acid (BA) for 10 minutes (n D 2-3). Homogenates
were subjected to immunoblot analysis and membranes were
probed with antibodies against PKB and PKB at serine 473 (S473)
as well as b-actin and quantification was made using Image Lab
Software (Bio-Rad Laboratories). Data are presented as fold of iso-
proterenol (ISO).Mean § SD were used and significance levels
were accepted when �p < 0.05, ��p < 0.01 and ���p < 0.001.

PKBS473 in primary rat adipocytes1

C INS

n D 3 CTRL INS 10 I-BA 10 I-VA

Mean 0.09��� 1 0.45�� 0.46��

SD 0.07 0 0.14 0.14

PKBS473 in human adipocytes2

C INS

n D 3 CTRL INS 10 I-BA 10 I-VA

Mean 0.04��� 1 0.60�� 0.65�

SD 0.04 0 0.10 0.22

PKBS473 in human adipocytes2

C INS

n D 2#-3 CTRL INS 3 BA# 10 BA 3 PA# 10 PA

Mean 0.02��� 1 0.84 0.30��� 0.98 0.35���

SD 0.12 0 0.13 0.14 0.27 0.05
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120 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM
MgSO4, 2.5 mM CaCl2, 1% BSA, 2 mM glucose, and
200 nM adenosine and incubated with or without 30 nM
DL-Isoproterenol hydrochloride (ISO) (Sigma-Aldrich,
St. Louis, MO, USA) in the presence or absence of 1, 3
and 10 mM isobutyric acid (Sigma-Aldrich), isovaleric
acid (Merck, Kenilworth, NJ, USA) or acetic acid
(Merck) at 37�C for 30 minutes in a shaking device
(150 rpm). The cell-free medium was transferred to wells
and buffer containing 50 mM glycine, 0.05% hydrazine-
hydrate, 1 mM MgCl2, 0.75 mg/ml ATP (Sigma-
Aldrich), 0.375 mg/ml NAD (Roche, Pleasanton, CA,
USA), 25 mg/ml glycerol-3-phosphate dehydrogenase
(Roche) and 0.5 mg/ml glycerol kinase (Roche) was
added. Lipolysis was measured at optical density of 340
as the release of glycerol into the cell-free medium.

De novo lipogenesis from radio labeled glucose

Lipogenesis was measured as described by Moody
et al.45 Aliquots (700ml) of a 2% suspension of adipo-
cytes were prepared in KRH with low glucose (contain-
ing 0.55 mM glucose and 3.5% BSA without adenosine)
and 14 ml D-[6¡3H (N)] glucose (22 mCi/ml) 0.81 Bq/
ml (Perkin Elmer, Waltham, MA, USA) was added as
substrate for lipogenesis. Cells were stimulated with
1 nM insulin (Novonordisk, Bagsvaerd, Denmark) in
the presence or absence of 1, 3 and 10 mM isobutyric
acid, isovaleric acid or acetic acid in a shaking device
(100 rpm) at 37�C for 30 minutes. Incubations were
stopped by addition of toluene-based scintillation liquid
(VWR Chemicals, Radnor, PA, USA) containing
0.3 mg/ml 2.5-diphenyloxazole (PPO) (Sigma-Aldrich)
and 5 mg/ml 1.4-bis-[4-methyl-5-phenyl-2-oxazolyl]
benzene (POPOP) (Sigma-Aldrich) and the incorpo-
ration of 3H into cellular lipids in the non-water soluble
phase was determined by scintillation counting.

Glucose uptake

Glucose uptake was measured as described by Foley
et al.46 Aliquots (200 ml) of a 5% suspension of adipo-
cytes were prepared in a glucose-free KRBH buffer con-
taining 120 mM NaCl, 4 mM KH2OP4, 1 mM MgSO4,
0.75 mM CaCl2, 10 mM NaHCO3, 1% BSA and 30 mM
HEPES (pH 7.4). Radiolabeled glucose [100 ml D-[14C
(U)] (57.8 mCi/mmol) (2.1 GBq/mmol)] was added as
substrate for glucose uptake. The adipocyte suspensions
were incubated with or without 1 nM insulin in the pres-
ence or absence of 1, 3 and 10 mM isobutyric acid, isova-
leric acid or acetic acid in a shaking device (100 rpm) at
37�C for 30 minutes. Adipocytes were separated from
the medium by addition of 60 ml dinonylphthalate and

then briefly centrifuged. Ultima Gold scintillation liquid
(PerkinElmer, Waltham, MA, USA) was added to the
cell suspensions and uptake of [14C] glucose was deter-
mined by scintillation counting.

SDS-PAGE and Immunoblot Analysis

Aliquots of a 10% suspension of adipocytes were used for
10 minute incubations with 1 nM insulin in the presence
or absence of different concentrations of isobutyric acid,
isovaleric acid, acetic acid, propionic acid and butyric
acid. Cells were homogenized with a lysis buffer contain-
ing 50 mM Tris-HCl (pH 7.5), 1mM EGTA, 1 mM
EDTA, 1% NP40, 1 mM Na- orthovanadate, 50 mM
NaF, 5 mM Na-pyrophosphate, 0.27 M sucrose, Nonidet
P 40 (Sigma- Aldrich) and Complete Protease Inhibitor
(containing inhibitors for serine-, cysteine-, and metallo-
proteases as well as calpains) (Roche) and centrifuged at
13 600 £ g for 15 minutes. The total protein amount was
determined according to Bradford. Samples (15-30 mg)
were supplemented with NuPAGE sample reducing
agent (Novex, Grand Island, NY, USA) and subjected to
SDS-PAGE. Proteins were electrotransferred to Amer-
sham Hybond-C Extra nitrocellulose membranes (GE
Healthcare Bio-Sciences, Pittsburgh, PA, USA) and the
membranes were stained with Ponceau S (0.1% in 5%
acetic acid) and then blocked with 10% milk in a buffer,
consisting of 20 mM Tris-HCl, pH 7.6, 137 mM NaCl
and 0.1% (v/w) Tween-20 for 60 min. Membranes with
proteins were probed with antibodies for protein kinase
B (PKB) (Cell Signaling Technology Inc., Danvers, MA,
USA) , phospho-PKB (S473) (Cell Signaling) and phos-
pho-PKB (T308) (Cell Signaling), phospho-HSL (S563)
(Cell Signaling) and b-actin (Sigma Aldrich) and incu-
bated overnight at 4�C. Proteins were detected using the
chemiluminescent Super Signal West Pico Luminol/
Enhancer solution (Thermo Fisher Scientific, Waltham,
MA, USA) and the ChemiDoc XRSC Imager (Bio-Rad
Laboratories, Hercules, CA, USA.). Image Lab Software
(Bio-Rad Laboratories) was used for quantification.

Statistics

Data are presented as mean § SD from the indicated
number of experiments. Statistically significant differen-
ces were analyzed using Student�s t-test and significance
levels were accepted when �p < 0.05, ��p < 0.01 and
���p < 0.001.

Discussion

The ability of colon-produced SCFAs and BSCFAs to act
upon peripheral tissues like adipose tissue requires that a
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fraction of these molecules reaches the systemic circula-
tion. Beyond the liver, the concentration of all 3 SCFAs
(acetic acid > propionic acid > butyric acid) as well as
isobutyric acid have been estimated to be in the micro-
molar range in the systemic circulation.4,21,47-50 Further-
more, using stable isotope technology, systemic
availability of colonic-administered acetate, propionate
and butyrate was shown to be 36%, 9% and 2%, respec-
tively.51 In another study, a net uptake of the SCFAs by
adipose tissue, measured as the arteriovenous difference
across the tissue times the tissue could be demon-
strated.50 In summary, SCFAs and BSCFAs are available
in the systemic circulation albeit at lower concentration
than used in the current study having isolated primary
adipocytes as in vitromodel.

The mechanisms whereby BSCFAs and SCFAs medi-
ate their effects observed on biological responses and cel-
lular signaling that have been reported herein, are still
unclear. However, it has become increasingly evident
that all macronutrients, carbohydrates, proteins and lip-
ids, also play an important role in the regulation of
energy metabolism as signaling molecules.52 Moreover,
free fatty acid receptors (FFARs) are likely to play impor-
tant roles in fatty acid- mediated regulation of energy
metabolism.10 Specifically, FFAR2 and 3 have been
linked to a number of effects exerted by SCFAs in adipo-
cytes, for example, FFAR2 was shown to suppress lipoly-
sis and stimulate adipogenesis as well as adipocyte
differentiation whereas FFAR3 was shown to induce lep-
tin expression.34-36,53 With regards to BSCFAs and their
binding to FFARs, to our knowledge, less is known. In
addition to acting as signaling molecules, BSCFAs and
SCFAs could mediate metabolic effects in adipocytes by
entering various metabolic routes as discussed below.

The finding that isobutyric and isovaleric acid inhib-
ited isoproterenol-mediated lipolysis and decreased iso-
proterenol-induced phosphorylation of HSL, indicate a
role for BSCFAs in the regulation of energy homeostasis
by protecting against lipotoxicity, as has previously been
reported for SCFAs.33-35 Importantly, the mechanism
behind the anti-lipolytic effect of BSCFAs and SCFAs
appears not to involve components utilized by insulin to
mediate inhibition of lipolysis. Namely, BSCFAs and
SCFAs induced inhibition of lipolysis in the presence of
inhibitors for PI3 kinase and PDE3B, whereas the anti-
lipolytic effect of insulin was inhibited as expected under
those conditions. Furthermore, phosphorylation of
PKB, a key kinase in mediating acute metabolic effects of
insulin such as inhibition of lipolysis, was downregulated
both at Ser473 and Thr308, 2 activity controlling phos-
phorylation sites.41 Having that in mind, it will be inter-
esting to test the ability of BSCFAs and SCFAs to inhibit
lipolysis in insulin-resistant adipocytes isolated from

obese individuals. Obese adipose tissue often has dysre-
gulated lipolysis, leading to excessive release of fatty acids
and decreased insulin sensitivity.29-31 As shown in this
paper, both BSCFAs and SCFAs reduce phosphorylation
of HSL whereas significant inhibition of lipolysis was
only obtained with SCFAs.

The finding that BSCFAs decrease the rate of de novo
lipogenesis,54 measured as the incorporation of [3H]-labeled
glucose into cellular lipids, is in agreement with previous
results with non-branched SCFAs.33 Altogether, these find-
ings indicate that BSCFAs and SCFAs facilitate storage of
diet-derived lipids in adipocytes rather than performing de
novo synthesis, which at least under conditions of fat over-
consumption appears metabolically beneficial. Also, the
effect to diminish de novo lipogenesis might lead to an
increased b-oxidation due to reduced level of malonyl CoA,
a metabolite known to inhibit the transport of fatty acids
into themitochondria.55 The inhibitory effect on PKB phos-
phorylation observed in response to the branched and non-
branched SCFAs and the phosphorylation and inactivation
of ACC33 might be molecular mechanisms for diminished
de novo lipogenesis. Isovaleric acid-containing porpoise oil,
given in the diet, has ameliorating effects on fatty liver in
OLETF (Otsuka Long- Evans Tokushima Fatty) rat, amodel
for type 2 diabetes, by increasing serum levels of adiponectin
and enhancing lipoprotein synthesis and secretion.56 How-
ever, isobutyric and isovaleric acid have been scarcely inves-
tigated with regard to effects on de novo lipogenesis.

The finding that isobutyric acid significantly increased
both basal and insulin-stimulated glucose uptake is in agree-
ment with recently obtained results for propionic acid and
to some extent also for butyric acid in rodent primary and
differentiated adipocytes.33 Phosphorylation of PKB is one
key event in insulin-induced glucose uptake,41 however,
phosphorylation of PKB was shown to be downregulated by
both branched and non-branched SCFAs. In agreement
with our findings on PKB, Kimura et al have observed a
decreased insulin- mediated phosphorylation of PKB at
Ser473 in response to acetic acid in adipocytes, an effect that
wasmediated by GPR43.36

In addition to acting as signaling molecules, BSCFAs
and SCFAs could act as energy substrates in adipocytes
by entering routes in lipid and carbohydrate metabolism
as has been described in colonocytes and hepato-
cytes.6,9,21,57 In hepatocytes, acetate and butyrate have
been described to be mostly introduced into lipid biosyn-
thesis, whereas propionate will mainly be incorporated
into gluconeogenesis.6 With regards to adipocytes,
BSCFAs and SCFAs might enter the lipogenic route after
uptake and activation by short chain CoA synthases.58-60

Thus, the inhibitory effect we observe on de novo lipo-
genesis from glucose could, at least to some extent, be
explained by the ability of BSCFAs/SCFAs to generate
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“competing” non-labeled acetyl-CoAs for the synthesis
of fatty acids. Likewise, it is possible that SCFAs and
BSCFAs, by the generation of long chain acyl-CoAs,
inhibit lipolysis by the inhibition of ATGL (triglyceride
lipase) and/or HSL.61-63

To summarize, in the current investigation we have
observed a number of effects in response to BSCFAs and
SCFAs on lipid and glucose metabolism and signaling in
adipocytes, possible mediated by FFAR 2 and 3. How-
ever, the possibility that the effects observed are medi-
ated by BSCFAs and SCFAs acting as substrates by
entering various routes in lipid and carbohydrate metab-
olism in adipocytes should not be excluded.
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