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Abstract

Summary: HMI-PRED 2.0 is a publicly available web service for the prediction of host–microbe protein–protein inter-
action by interface mimicry that is intended to be used without extensive computational experience. A microbial protein
structure is screened against a database covering the entire available structural space of complexes of known human
proteins.

Availability and implementation: HMI-PRED 2.0 provides user-friendly graphic interfaces for predicting, visualizing
and analyzing host–microbe interactions. HMI-PRED 2.0 is available at https://hmipred.org/.

Contact: nussinor@mail.nih.gov or agursoy@ku.edu.tr

1 Introduction

Microbes alter host cell signaling and modulate immune responses
to maximize their survival. They induce diverse physiological condi-
tions including immune-mediated diseases and cancers (Ruff et al.,
2020; Sepich-Poore et al., 2021). Though the importance of micro-
bial effects on human health is now well-accepted, in most cases the
detailed mechanisms through which they induce the conditions are
yet to be determined (Zhou et al., 2022). Microbial species interact
with their hosts by exploiting diverse strategies, including host–
microbe protein–protein interactions at multiple stages of the cell’s
life cycle with many different, albeit partially shared interactors
(Gupta et al., 2012; Guven-Maiorov et al., 2017; Schneider and
Hoffmann, 2022; Tyl et al., 2022; Walch et al., 2021).

As observed broadly across the eukaryotes, for microbes, mimic-
ry of favored interface motifs is an important and efficient strategy,
where a microbial protein can interact with a host protein if the mi-
crobial protein has a surface patch similar to the binding surface of
a known interactor of the host protein (Franzosa and Xia, 2011;
Guven-Maiorov et al., 2019; Lasso et al., 2021). That is, the micro-
bial protein postures as an intrinsic interactor of the host protein
and masquerades it, by mimicking the interaction interface, without
needing high sequence identity or global structural homology.
Interface mimicry studies suggest pathogenic mechanisms of cancers,
and neuropsychiatric symptoms associated with the recent coronavirus

disease 2019 (COVID-19) pandemic (Guven-Maiorov et al., 2017,
2019; Ovek et al., 2022; Yapici-Eser et al., 2021).

Computational methods have been developed to predict, inte-
grate and analyze general or virus–human protein–protein interac-
tions at a large scale, where the use of non-structural features is
incentivized due to the limited structural coverage (Andrighetti
et al., 2020; Ding and Kihara, 2018; Dong et al., 2021; Karabulut
et al., 2021; Mahajan and Mande, 2017; Wu et al., 2020). On the
other hand, it was suggested that the structural space is sufficient for
protein complex modeling (Kundrotas et al., 2012). Recent advan-
ces in deep learning enabled computational modeling of unsolved
protein structures from primary sequences with unprecedented qual-
ity, providing ways to reveal atomic details of protein–protein inter-
actions for the structural dark space (Baek et al., 2021; Jumper
et al., 2021). Exploiting the protein structural information across
the entire available space to accurately and efficiently model pro-
tein–protein interactions on a large scale is thus possible and vital.

To date, HMI-PRED (version 1) is the only method that screens
the whole structural space to predict host–microbe interactions
based on interface mimicry (Guven-Maiorov et al., 2020). That ver-
sion of HMI-PRED was a more conceptual study that provides the
predicted host–microbe interactions with limited microbial protein
coverage, search functionalities and outdated structural visualiza-
tions; thus, users need to perform filtering, analysis and visualization
for their individual proteins of interest. HMI-PRED 2.0 is therefore
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a completely rebuilt automated tool with the same core concept of
interface mimicry. HMI-PRED 2.0 is equipped with new interface
templates as well as computationally modeled microbial proteins to
cover broader interactions, enabling more potential host–microbe

interactions to be scanned. Visualization of templates and predicted
interactions are improved for publication-ready images. More im-
portantly, HMI-PRED 2.0 Library allows users to find host–microbe
interactions of interest from the pre-computed interactions in our

database with enrichment analysis and network visualization
options. We also provide bulk download for predicted interactions
as well as the microbial protein structures modeled using AlphaFold

2 (Jumper et al., 2021). Using HMI-PRED 2.0, users can predict,
search, analyze visualize and download the predicted host–microbe
protein–protein interactions. HMI-PRED 2.0 is freely available at
https://hmipred.org/.

2 Implementations

2.1 Workflow
The core concept of HMI-PRED 2.0 resembles HMI-PRED version
1 and PRISM (Fig. 1) (Baspinar et al., 2014; Guven-Maiorov et al.,
2020). First, the extracted surfaces from the microbe protein struc-
tures are structurally compared to the interfaces in our template
database using TM-Align, with an optional evolutionary hot spot
filtering (Tuncbag et al., 2009; Zhang and Skolnick, 2005). The fil-
tered microbe proteins are docked to the complementary proteins
(known interactors of mimicked ones) using Rosetta (Gray et al.,
2003). Thus, the predicted host–microbe interactions are structural-
ly well-aligned, evolutionarily conserved and energetically favor-
able. More details about the prediction algorithm, including the
estimated false positive rate of 18%, can be found in Guven-
Maiorov et al. (2020).

2.2 Implementation
HMI-PRED 2.0 is built on top of the Django framework, which is
suitable for database-centric web services (Django Software
Foundation, 2020). First, our new template database covers 60 868
protein complexes deposited on RCSB PDB (Burley et al., 2020) by
January 2021. Users can submit mmCIF-formatted files as input for
large structures. Our web service accumulated more than 1.6 million
predicted host–microbe interactions for over 20 000 microbial pro-
teins, among which 8520 are modeled using AlphaFold 2 (Jumper
et al., 2021). The modeled protein structures as well as predicted
interactions can be searched, viewed, analyzed and downloaded via
our web service. Proteins are visualized using NGL viewer, which
provides publication-quality structure views and interactive options
(Rose et al., 2018). We also provide options to visualize the interac-
tions as a network using Cytoscape (Franz et al., 2016) and perform
enrichment analysis via String (Szklarczyk et al., 2019) (Fig. 2).

Fig. 1. Interface mimicry workflow, the core prediction mechanism of HMI-PRED

2.0. The input microbial protein (red chain) is scanned through the host protein

template database (blue box) to predict host–microbial protein–protein interaction

(HMI at the bottom). The prediction process is composed of three main steps. The

3D geometry of the microbial protein is compared against templates, evolutionarily

conserved interaction hot spots are checked, and the protein–protein binding energy

is estimated. Therefore, HMI-PRED 2.0 predicts host–microbe protein–protein

interactions that are geometrically, evolutionarily and energetically favorable,

which can be used for downstream analyses (A color version of this figure appears

in the online version of this article)
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Fig. 2. Illustration of HMI-PRED 2.0 workflow. (A) Users can submit input protein structures or search for pre-computed interactions, which include experimentally solved or

AlphaFold 2-modeled microbial proteins. (B) HMI-PRED 2.0 predicts potential host–microbe protein–protein interactions based on interface mimicry concept. The interface

mimicry-based prediction process includes three main stages as shown in Figure 1. At the end of a prediction task, there may be multiple predicted interactions for a microbial

input protein. The false positive rate is approximately 18% based on our previous study. (C and D) HMI-PRED 2.0 web server provides two analysis/visualization functions:

human pathway enrichment analysis when multiple human proteins are targeted (C), and interaction network visualization showing diseases associated with targeted human

proteins (D). The charts in (C) are conceptual; the actual analysis output is a table with texts
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In the section below, we demonstrate the basic usage of our web ser-
vice. For more detailed usage, users are referred to the tutorials page
on our web service.

2.3 Basic usage
Users can either search for pre-computed host–microbe interactions

in our database or submit a new prediction task. HMI-PRED 2.0
Library allows users to find host–microbe interactions by several dif-
ferent filter options. One example is shown in the next paragraph.

Users can search predicted host–microbe interactions for all organ-
isms whose name contains ‘Epstein–Barr’ (case insensitive) and

moderate-to-high level of hot spot conservation. Under ‘Library—ALL
HMI’ page, write ‘Epstein–Barr’ in the ‘Microbe organism’ box on the

filter menu column. Also choose ‘med’ and ‘max’ in the ‘Hotspot conser-
vation’ on the filter menu, and hit ‘Apply’ (leave the default Max.
Rosetta score of �5.0 as is for this example). It returns 90 interactions

on the Host–Microbe Interactions table. Click ‘Enrichment Analysis’
button once the table is shown with results, which will redirect to String
with 20 nodes (human proteins predicted to interact with Epstein–Barr

viral proteins) and 12 edges. Under ‘Analysis’ tab, a few important path-
ways and diseases appear. For example, the associations between the

virus and ‘MicroRNAs in cancer’, ‘Ras signaling pathway’, ‘Kaposi
sarcoma-associated herpesvirus infection’ and ‘non-Hodgkin lymphoma’
are supported by literature evidence (Caetano et al., 2021; Fukuda and

Longnecker, 2007; Pinzone et al., 2015). Please note that the thorough
validation or individual investigation of these associations is out of the

scope of this manuscript. Users can apply filters according to their scien-
tific questions and perform analysis accordingly.

In case the microbial protein of interest is not found, users can
submit a new prediction task under ‘RUN HMI-PRED’ page by pro-
viding either a valid PDB ID with chain ID or a protein structure file

in mmCIF or PDB format. More details can be found on the tutorial
pages of our web service.

3 Conclusions

We developed HMI-PRED 2.0, a web service for structure-based

host–microbe protein–protein interaction prediction. HMI-PRED
2.0 provides user-friendly interfaces with analysis tools for users
without programming experiences. HMI-PRED 2.0 is freely avail-

able at https://hmipred.org/.
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